Ann. Rev. Phys. Chem. 1981. 32:267-309

QUASIPERIODIC %2730
AND STOCHASTIC BEHAVIOR
IN MOLECULES'

D. W. Noid

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

M. L. Koszykowski

Sandia National Laboratories, Livermore, California 94550

R. A. Marcus

California Institute of Technology, Pasadena, California 91125

INTRODUCTION

The extent and rate of intramolecular energy transfer play a role in a vari-
ety of problems in chemical dynamics. Examples are unimolecular reac-
tions (1a,b), chemical activation (2a,b), vibrational-rotational-translation
energy distribution of the products of a dissociating species (3, 4), infra-
red multiphoton decomposition of molecules (5a,b, 6), internal conversion
and intersystem crossing of electronically excited states (7a—d), dissocia-
tion of vibrationally excited state-selected van der Waals complexes (8),
fluorescence spectra of electronically and vibrationally excited molecules
(9a,b, 10a,b), chemiluminescent spectra of vibrationally excited molecules
(11), reactions induced by excitation of high overtones of a bond vibration
(12a—), and high overtone spectra (13a,b). The present article reviews
recent theoretical studies on the quasiperiodic and chaotic dynamical as-
pects of vibrational states and describes how those studies may be related
to intramolecular randomization.
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In the earliest of these phenomena extensively studied, that of unimol-
ecular reactions, two limiting forms of a theory of unimolecular dynamics
were given some decades ago—RRKM (Rice, Ramsperger, Kassel, Mar-
cus) (1, 14) and Slater theories (15). The first assumes, in effect, that the
molecule can explore all of the energetically accessible phase space avail-
able to it, consistent with the given total angular momentum and the given
energy. The second assumes, instead, that there are, in addition, hidden
constants of the motion which further limit the region of phase space
explored by the molecule. For example, in the Slater theory normal modes
of vibration (harmonic oscillators) are assumed in these quite anharmonic
molecules, and so the assumed constants of the vibrational motion are the
maximum amplitudes of each normal mode during the motion of the iso-
lated molecule.

Most of the current experimental evidence on unimolecular reactions
supports the first approach (sometimes termed the statistical approach)
(1a,b). However, in some cases, such as in the excitation of a van der
Waals complex (8) to a vibrational state v of the molecular part, and the
subsequent dissociation, e.g.

ILHe + v — L,*(v)He — L,*(v — 1) 4+ He,

dissociation occurs before the molecules can randomize its energy among
the various coordinates.

In RRKM theory it is assumed that intramolecular energy randomiza-
tion is complete before dissociation or isomerization occurs. The time for
the dissociation (isomerization) depends on the molecule and on its vibra-
tional energy but is frequently of the order of nanoseconds. An example
where the actual time for randomization has been estimated in experi-
ment, namely by Rynbrandt & Rabinovitch (16), involves the reaction

CF,— CF — CF=CF, + CH, — CF, — CF — CF —CF,,

\ / N\ _/ N\ /
CD, CD, CH,
where the CH, containing ring is, thereby, formed in an initially vibra-
tionally excited state. The estimated time for intramolecular ring-to-ring
energy transfer from the experiments was about 1 ps. Analogous times for
other intramolecular energy transfers were estimated in other chemical
activation experiments (17).

The study of dissociation, chemically activated or multiple infrared
photon induced, under collision-free conditions in molecular beams (6),
plus related studies in low pressure bulb systems (17), are of particular
interest. For example, it has occasionally been suggested that “intramo-
lecular” randomization is due to long-range collisions, a possibility which,
it has been argued, has been eliminated in suitable studies (17a,b, 18).
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The question of how intramolecular energy transfer occurs is perhaps
obvious on a classical basis but is a more subtle one quantum me-
chanically, and we consider it below. There is, for example, no “intramo-
lecular energy randomization” if the state of the vibrationally excited
molecule prepared by collision or by IR or UV light absorption were a
single stationary quantum state.? The excitation step in intramolecular
energy randomization experiments then involves the preparation of a
group of states, and recognition of this is important in understanding
randomization.

Studies of the nature of the underlying anharmonic motion are ex-
pected to provide added insight into the various experiments related to the
intramolecular energy transfer, and to provide understanding for the na-
ture and meaning of “randomization.” This article on recent theoretical
work—classical, quantum, and semiclassical—is divided into a number of
parts. In the first, we review the classical mechanical developments in an-
harmonic systems (as molecules are). There is numerical and theoretical
evidence on the nature of vibrations. Notably, the famous KAM (Kolmo-
gorov, Arnol’d, Moser) theorem (19-23), which dates from the middle
1950s and early 1960s, states that at sufficiently low perturbations (and
thereby by a scaling argument at low energies) the classical motion of a
system of coupled anharmonic oscillators is largely quasiperiodic (“regu-
lar”), i.e. has good action variables (19-23). At higher energies, for an
increasing fraction of initial conditions, it tends to be “chaotic” though
deterministic. [The former corresponds to an anharmonic version (24) of
Slater’s theory while the latter corresponds to RRKM-type theory, as
discussed below.] Theories exist for the prediction of the energy range
where this largely chaotic motion becomes important, and these too are
considered. The various ways in which regular and chaotic motion is usu-
ally detected numerically are also summarized.

In the second and third parts of this article we review the question
of possible analogous semiclassical and quantum mechanical behavior.
Many methods are now available for calculating quantum mechanical ei-
genvalues in the “regular” regime from classical mechanics using semi-
classical arguments. This aspect of the quantum mechanics of bound
states is reasonably well understood and is reviewed first. Semiclassical
efforts to make calculations of eigenvalues in the chaotic regime are less
well-founded theoretically but are also examined. Current results to date
in the chaotic regime depend mainly, though not exclusively, on the use of
perturbation theory, which assumes the system to have good action vari-

Except in the case of a “chaotic” quantum state, described below. In this case, the “ran-
domization,” as judged by the probability density l¢f?, is instantaneous: The pure state
excited is already a “randomized” state.
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ables, i.e. by definition to be quasiperiodic even when it is largely chaotic,
i.e. even when the good action variables do not exist.

Various alternative suggestions have been made as to what constitutes
analogous regular and chaotic quantum mechanical behavior, and these
are compared. We consider in a later section the ways in which this
difference in behavior may or may not be revealed in experimental
observations.

The fourth part contains a review of related work on spectral proper-
ties, including the calculation of a classical power spectrum from a classi-
cal trajectory, a comparison with the aid of semiclassical ideas with the
quantum mechanical power spectrum of the same variable, and some dis-
cussion of local versus nonlocal modes of vibration.

We cite in the fifth part some recent classical trajectory studies. Appli-
cations of techniques and phenomena discussed in the previous sections
are also presented. Direct experimental data on intramolecular energy
transfer are sparse, but we do cite some indirect data. Major questions
remain to be resolved both experimentally and theoretically, and some of
these are noted. Not surprisingly, a number of uncertainties or controver-
sies exist in this relatively young field, and we address some of these too.

There is a substantial body of literature on model or formal descriptions
of radiationless transitions (7) and, increasingly, of infrared multiphoton
absorption. It would be interesting to relate such studies to the notion of
quasiperiodic and chaotic states discussed in the present article; however,
'some brief remarks are made.

The literature reviewed in this article is primarily that prior to Decem-
ber 1980, although in several cases it was possible to include later papers.

CLASSICAL MECHANICS

The classical mechanics of Hamiltonian systems of coupled oscillators
(and hence of vibrating molecules) has been the subject of intense study in
recent years (19-23). During this period the conceptual understanding of
the detailed as well as of the qualitative dynamics has undergone a radical
transformation. The framework for the study of the dynamics of nonlinear
systems originated in the seventeenth century with the development of
classical mechanics. Cases for which a separation of variables can be
made do not reflect the actual dynamics of highly coupled systems or of
weakly coupled highly energetic systems. Approximate methods (25a,b)
were developed to study coupled systems and have proven to be useful in
many cases; however, they explicitly excluded any possibility of detecting
fundamental changes in the underlying dynamics—which is the central
theme of this review. Around the turn of the century there was specula-
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tion by Poincaré (26) that systems with extremely different types of dy-
namics could exist. Nowadays, it is commonly accepted that three differ-
ent regimes of the dynamics exist: (@) a regime where the classical motion
is largely quasiperiodic, (), a mixed regime of quasiperiodic and chaotic
motion at different initial conditions, and (c¢) a regime of largely chaotic
motion.

The advent of digital computers made possible “exact” calculations of
the motion of coupled systems. The classic first study was by Fermi et al
(27), published in the 1950s, and involved an exact numerical solution of
the equations of motion for a linear string of anharmonically coupled
oscillators. Some years later there was renewed interest in the field and
several groups of astronomers (e.g. 28-30a,b) demonstrated that two cou-
pled oscillators could exhibit regimes of qualitatively different dynamics.
This work was later reproduced by many groups using more accurate nu-
merical methods. The KAM theorem states that quasiperiodic motion will
occur for extremely small values of the perturbation. There is numerical
evidence that it also occurs at larger perturbations and that at still larger
ones some qualitative transition in the nature of the classical dynamics
may OcCcCur.

The classical motion is of two types. The first type of motion, which is
similar to that observed in uncoupled systems, is called by various authors
quasiperiodic, regular, or stable. The second type of motion, which is
qualitatively different from the first, has been loosely but equivalently
referred to as chaotic, stochastic, ergodic, or irregular. Such a classifica-
tion for classical dynamics has implications for a wide range of disci-
plines, such as chemical kinetics (1), laser chemistry (5, 6), high resolu-
tion spectroscopy (31a,b), lattice dynamics (32), plasma physics (33),
astronomy (28-30a,b), and fluid mechanics (34). Examples of several tra-
jectories of the quasiperiodic type are given in Figures 1-3. An example of
a chaotic type of trajectory is given in Figure 4. ,

At least six different features distinguish the two types of motion. They
are described below:

1. One difference is the behavior of a trajectory in occupying phase
space. A trajectory is defined as the set of coordinates q and their conju-
gate momenta p as functions of time which result from the solutions of
Hamilton’s equations for a given set of initial conditions. When a 2m
dimensional phase space (m is the number of coupled vibrations) is di-
vided into volume elements, the quasiperiodic trajectory will occupy only
a limited number of the energetically allowed elements, while the chaotic
trajectory appears to occupy all or almost all of them. In the quasiperiodic
case the trajectory covers ergodically a manifold (a torus) of at most m
dimensions in the phase space (20), and so the constants of the motion are



272 NOID, KOSZYKOWSKI & MARCUS

2
D e 3

g /AN \
Nl (PR

.-\\ '\&/@‘\\ (ffé,\t- : '- //
5 @‘%&- BN P /
-2

-3 -2 -1 0 Ny 1 2 3 4

Figure I A plot of a quasiperiodic trajectory for the Hamiltonian,

H o= pt + p + 0% + 07y + Ay + ex),
with w, and w, incommensurate: y (1) is plotted versus x (). The trajectory is bounded by the
“caustics” AB, BC, CD, and DA. On the cllipse-like curve the potential energy equals the

total energy.
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Figure 2 A plot of a quasiperiodic trajectory for the Hamiltonian given in the legend to

Figure 1, with w, = w,.
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Figure 3 A plot of a quasiperiodic trajectory for the Hamilton given in the legend to Figure
1, with 0, = 2w,

of a type which restrict its coverage of phase space considerably. The
property of the filling of phase space by a chaotic motion can most easily
be seen by examining a projection of the trajectory onto a plane in the
2m-dimensional phase space. The plane for m = 2 could be chosen as
g, =0, p, > 0 and thereby one plots p, vs g,. These plots, known as
Poincaré surfaces of section, are widely used to examine the dynamics of
coupled oscillators (28-30a,b). A quasiperiodic surface of section will
appear to be a smooth closed curve (the projection of the torus on the
p, — g, plane). A chaotic surface of section will consist of points that
appear to be randomly scattered over the energetically accessible region
of the plane. These Poincaré surfaces of section can be extended to higher
dimensions, as noted below. An example of a Poincaré surface of section
for several quasiperiodic trajectories is given in Figure 5.

2. The apparent randomization of some phase space trajectories leads
naturally to the speculation that a comparison of microcanonical phase
space and time averages of some function of the dynamical variables
would also be a useful criterion. The averages would not be the same in
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8

Figure 4 A plot of a chaotic trajectory for the system in Figure 3 but computed for a
higher cnergy.

the quasiperiodic case, but in the chaotic regime they are expected to be
the same or nearly the same. The equivalence of time and phase space
averages is the basic assumption of the quasi-ergodic hypothesis of statis-
tical mechanics (35). It was thought that a large number of degrees of
freedom were necessary for this hypothesis to be correct but now one finds
this chaotic behavior in systems with as few as two degrees of freedom.

3. Another method of differentiating the two types of classical motion,
introduced by Noid et al (36), involves looking at the frequency spectrum
of a dynamical variable or correlation function for a trajectory or for a set
of trajectories (36-40),’

I(w) = -2]; r (f(0)f(r))e “'dt 1.
— L jim & Ff(r)e""""dt y 2
2w T T | )7 ’ '

‘The derivation of Eq. 2 from Eq. | is given in (36).
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Figure 5 A Poincaré surface of section for five different trajectories of the type depicted in
Figure 1. One is a periodic trajectory (13 dots).

where f(¢) is any function of the coordinates and momenta. To obtain a
classical infrared absorption spectrum one sets f to be the dipole moment.
The () indicate an average over the appropriate ensemble of trajectories.
It is, in Eq. 1, an average over trajectories having the same action vari-
able, but different angle variables, i.e. phases. In Eq. 2, in the quasi-
periodic (but “non-degenerate™) case, a single trajectory suffices to obtain
the spectrum corresponding to a torus. (In a degenerate system a family
of rotated trajectories describes a torus.) The frequency spectrum of a
dynamical variable for quasiperiodic motion consists of a series of sharp
lines, the m fundamentals for m coordinates, the overtones, and combina-
tions. The chaotic frequency spectrum has a broad series of lines forming,
perhaps, a continuous band if the trajectory time is infinite. The bands
occur near the sharp lines of any neighboring quasiperiodic trajectory.
Examples of a spectrum for a quasiperiodic trajectory and for a chaotic
trajectory are given in Figures 6 and 7.

4. The correlation function of a dynamical variable changes from being
flat or oscillatory (totally correlated) in the quasiperiodic regime to de-
caying (uncorrelated) in the chaotic regime (41). When the energy is
placed in some zeroth order mode initially for any trajectory, that modal
energy undergoes regular oscillations in the quasiperiodic regime but
decays intramolecularly in the chaotic regime [apart from Poincaré
recurrences (42) in the latter case] (41). This method is closely related
to No. 3.

5. The motion of two neighboring points in phase space has very often
been used in numerical experiments to distinguish between the two types
of motion. Quasiperiodic motion is characterized by a linear separation of
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the points, while for chaotic motion the points separate exponentially
(43a,b, 44).

6. Property 5 led Kolmogorov (45) to define an entropy of the trajec-
tory which has been found to change fairly rapidly at a critical energy
where the dynamics change from largely quasiperiodic to largely chaotic.
In practice one does not numerically calculate the Kolmogorov entropy
but rather an approximation to it called the k-entropy or an entropy-like
quantity. The latter is defined as (46a—c)

k=1im—‘-21n|ﬁ‘|- 3,
i=1

n—oo NT Ido!

where |d,| is the initial separation between two trajectories. The |d] are
defined as follows: |d,| is the separation at time 7. The trajectories are
then “slid” a distance |d,| apart again and integrated a time 7 to produce a
separation distance |d,|. The process is repeated until Eq. 3 converges.
Benettin et al (46a,b) have calculated the k-entropy for some systems,

I (w)

0 i

2
w
Figure 6 A power spectrum of the variable x + y for a quasiperiodic trajectory similar in

shape (“box-like”) to the one in Figure 1. The intensity /(w) at frequency w is plotted versus
. The width of each line is due to a truncation error which could be reduced in size by using

longer time trajectories.
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Figure 7 The power spectrum described in the legend to Figure 6, but for the chaotic tra-
jectory in Figure 4.

and in particular for the Hénon-Heiles (28) system, and discussed the
relation to the Kolmogorov entropy.

The transition from predominantly quasiperiodic to predominantly cha-
otic motion arises when one has added enough energy to the system, or
alternatively, when the coupling parameters have been increased. The
critical value of the energy or of a coupling constant in the Hamiltonian is
usually obtained with numerical experiments, but it has also been studied
with various approximate analytical methods. As with all approximate
methods, the selection of a zeroth order Hamiltonian is crucial to the
success of each method. No method presently exists for predicting
whether or not a system is “integrable,” i.e. quasiperiodic for all initial
conditions. Several of the methods designed to predict the critical energy
are briefly described below.

The earliest of these methods, called the overlap of resonances method,
is due to Chirikov (47a—c) and to Ford (43a,b). In this method the Hamil-
tonian is written in terms of zeroth order action-angle variables and the
coupling is expanded in a Fourier series. When there exist a large number
of periodic terms (“resonances™) which resonantly couple the oscillators in
a perturbative treatment, one predicts that the motion will be chaotic.
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Detailed studies have found that this approach leads to qualitative agree-
ment with numerical experiments. As stated earlier, the prediction de-
pends upon the selection of the zeroth order Hamiltonian. This method
has been applied to coupled oscillators (e.g. 48a,b, 49). Using Chirikov’s
method, Oxtoby & Rice (49) obtained good agreement with the trajectory
studies of Bunker (50) for predicting the onset of stochastic (RRKM)
behavior for a number of systems.

Toda (51) and Brumer & Duff (52a,b) have devised another approach
(TBD) which has had some success and has been recently modified by
Cerjan & Reinhardt (53). This TBD approach associates chaotic motion
with negative curvature in the potential energy surface. If the trajectory
can reach such a point of negative curvature, the motion is predicted to be
chaotic. Limitations of this approach have been described (48, 54-56).
Aizawa (55) has performed detailed numerical experiments on the
Hénon-Heiles Hamiltonian and shown for this system that the regions of
negative curvature are not related to the chaotic motion.

Another method, due to Mo (57, 58), consists of calculating the phase
space averaged time correlation function of some dynamical variable.
This calculation is approximate and uses techniques developed by Mori &
Zwanzig (59a,b). It seemed to be successful for several model systems.
The prediction of chaos rested on calculation of the moments. An exact
calculation of the moments (41) for the Hénon-Heiles Hamiltonian has
shown them to vary smoothly with energy (rather than abruptly) and to
differ by about 15% from those calculated perturbatively (57), yielding a
corresponding modification of the predicted critical energy for onset of
chaos (60). However, the basis of Mo’s method, namely the change of a
correlation function with energy, is presently questionable, since no obvi-
ous break in behavior from oscillatory to exponential was observed (41).

Ramaswamy & Marcus (61) have given a graphical method of locating
the centers of resonances. They used a perturbative method to calculate
the energy, for a fine uniform grid of action variables. The energy was
plotted vs a parameter in the Hamiltonian and they looked for intersec-
tions. At such intersections (in the limit of a sufficiently fine grid) the
derivative of the energy with respect to some action variable vanishes, i.e.
there is a resonant center. One could then use Ford’s method (43a,b) to
calculate resonance widths and look for overlap of resonances. Another
graphical method, in the form of modal energy plots, for describing reso-
nant interaction regions has been given by Oxtoby & Rice (49).

We outline in this section the main features of classical motion in the
quasiperiodic and chaotic regimes. There are, of course, many factors
which complicate an understanding of Hamiltonian dynamics. It has been
demonstrated that different regions of quasiperiodic and chaotic motion
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can exist at the same energy. Systems with sufficient energy to escape can
also be found to exhibit quasiperiodic motion, and therefore never escape.
The nature of the complications of a system with three coupled oscillators
is still controversial: It is not yet clear whether at a given energy the mul-
tidimensional phase space can be divided into two (chaotic and quasi-
periodic) regions or whether there are instead different “chaotic” trajecto-
ries with different average properties (62a,b, 63a,b).

In this section we discuss only, and that briefly, Hamiltonian systems
with smooth potentials. More details and discussions of hard potentials
and algebraic mappings are given in the recent reviews of Tabor (64) and
Berry (65).

SEMICLASSICAL EIGENVALUES

The discussion in the previous section indicates that two types of dynam-
ics will be important in anharmonic systems. As a first step toward under-
standing the semiclassical dynamics of isolated molecules we consider
next systems of relatively low energies, i.e. in the quasiperiodic regime.
The semiclassical analysis to be used seeks a correspondence between this
classical dynamics and the quantum mechanics. Semiclassical mechanics
has its beginning in the old quantum theory (Eq. 4) (66) developed by
Bohr, Sommerfeld, Einstein (67), and others:

% Zpdq = (n,+ 6,) 2wk, (i=1tom) 4.
G

where the p and q are 2m conjugate momenta and coordinates, the », are
quantum numbers, the C; are topologically independent paths, and ¢, are
known constants whose values were obtained for various systems by Keller
(68a,b) and Maslov (69). A perturbation series for the action variables
was used by Born (66) for treating systems having smooth potentials.
“0Old quantum theory,” now in the form of semiclassical wave mechanics,
was later extensively applied to obtain quantitative results for systems
with hard-wall potentials by Keller (68a,b). More recently, Marcus and
co-workers (56, 70-74) were able to obtain bound state eigenvalues for
nonseparable anharmonic systems with smoothly varying potentials. In
the following discussions we describe the recent methods as exact, iter-
ative (which would be exact if converged), or noniterative.

The first exact technique used classical trajectories and was introduced
by Eastes & Marcus (71). They calculated the topologically independent
§Zpdq integrals along the caustics (the multidimensional classical “turn-
ing points”). (The caustics are indicated in Figure 1, AB, BC, CD, DA.)
The initial conditions of the trajectory were then varied until one trajec-
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tory was found that gave integer values for the quantum numbers n, for
Eq. 4. The agreement with a quantum calculation for a system of two
coupled oscillators with noncommensurate frequencies was excellent. This
technique is difficult to apply when the caustic has a complicated struc-
ture, and the method was extended by Noid & Marcus (72). Instead of
caustics, Poincaré surfaces of section were used for the paths C; to evalu-
ate the integral in Eq. 4. The surface of section technique, which is com-
putationally much simpler than the caustic method, was applied (72) to
the same system used earlier and the results were in excellent agreement,
as they should be. The surface of section technique was also successful in
calculating eigenvalues for a state where the caustics underwent radical
changes (for the “box-like” (71) or nonbox-like trajectory cases). The
method was also applied to systems with 1:1 (73) and 1:2 (56) resonances
in the zeroth order problem, again with reasonably good agreement with
an exact quantum calculation. By using the surfaces of section expressed
in terms of zeroth order action angle variables, it was possible to extend
the method to give excellent results for a three dimensional system (74).
The modified method was computationally simpler than the previous one.
The energies of compound state resonances have also been found with this
methed by quantizing quasibound trajectories (75). The system studied
had a Morse-harmonic potential with parameters chosen to resemble a co-
linear collision of an inert gas atom with a diatom halogen (75).

There are a number of approximate semiclassical quantization tech-
niques. They range from relatively simple noniterative approximate proce-
dures to iterative perturbative methods. Each method implicitly assumes
that a torus or “remnant of a torus” exists. (The torus itself does not exist
in the chaotic regime.) For some cases the approximate methods tacitly
assume that the shape of the torus is only a minor distortion from that of
the unperturbed torus. Direct information on the shape of the torus, when
it exists, is provided by the exact trajectory method described above. It
permits one, for example, to adapt the choice of Poincaré surface of sec-
tion to this shape (e.g. by using various curvilinear coordinates). The
methods are thus complementary.

Percival & Pomphrey (76a—c, 77) have developed two closely related
methods based upon a classical variational principle for motion on a torus.
In the one they most commonly use, the time-dependent classical vari-
ables are expanded in a Fourier series. Frequencies are chosen, Fourier
coefficients are evaluated numerically, and the process is iterated. The
equations were, as in all of classical mechanics, obtained from a varia-
tional principle, but the method appears to be iterative rather than varia-
tional in the usual sense. These authors have also developed a variational
method (76a—c, 77) in which a trial expression for the energy was chosen,
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obtained for example from a low order perturbation theory, and the pa-
rameters were evaluated by finding the minimum energy for the given
action variables. The latter has been applied to the helium atom (78a,b).

The first (iterative) procedure (76a—c, 77) is iterated to make the value
for the energy converge for integer quantum numbers and thus provide
the semiclassical eigenvalues. The method yielded excellent agreement
with exact quantum results for several two and three dimensional non-
degenerate systems, for those eigenvalues for which convergence was ob-
tained. Jaffé & Reinhardt (79) recently applied the method to a nearly
degenerate system and to a very energetic system and found that for some
states it diverged. Colwell (80) used an admittedly ad hoc method to
remove this difficulty. She omitted the terms in the Fourier expansion
that caused the divergence. This modification yielded a number of eigen-
values for OCS not obtained by the original procedure (77), but, as Col-
well has remarked, without analytic justification. Approximately 70% of
the bound state eigenvalues for OCS could be obtained in this way (80).

Chapman et al (81) have developed an iterative method which is an
extension of Born’s perturbation approach (66), by use of iteration on the
generating function. The generating function is expanded in a Fourier
series (as it can be for tori when they exist) and the series is truncated.
Real as well as complex Fourier series have been used in the application of
this method to two-dimensional model systems as well as to SO, and H,O
(82). All were in good agreement with quantum mechanical calculations.
The method has not been used for degenerate systems thus far.

Sorbie & Handy (83-86) have developed an approximate perturbative
noniterative method based upon classical trajectories. This method, based
upon evaluating the §pdq over a trajectory until it “closes”™ or comes
arbitrarily close to closing upon itself, probably works best if the trajec-
tory is box-like and hence for a nondegenerate system. Model systems
(84) as well as nonrotating H,O and SO, have been treated by this
method (85). The computational time may be comparable to that of the
“exact” surface of section technique.

Delos & Swimm (87a—c) have applied a perturbative noniterative
method to a nonseparable anharmonic classical system by using a method
developed by Birkhoff (88) and Gustavson (89). Basically the method is a
procedure to canonically transform the Hamiltonian into a power series in
harmonic oscillator Hamiltonians. Like all perturbative expansions, the
expansion used in general ultimately diverges (90a—c) and one must trun-
cate. For example, Contopoulos (63a) reported results on a model system
using second, eighth, and eleventh order perturbation theory. Eighth was
better than second but eleventh diverged. Delos & Swimm truncated the
expansion at eighth-order and the resulting Hamiltonian of uncoupled
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new harmonic oscillators was quantized via the usual semiclassical path
integrals. The method was applied to a model two-dimensional system
with no degeneracies and was found to give excellent agreement with a
quantum calculation. When applied to a system with 1:1 zeroth order de-
generacy the agreement was not as good: ~87% of the quasiperiodic and
60% of the eigenvalues in the classically chaotic regime were reported
(87a—c). It should be pointed out, however, that this is the first method
discussed to obtain eigenvalues when the classical dynamics was chaotic.

Jaffé & Reinhardt (79) have devised a perturbative noniterative
method which is most closely related to that of (81). While Chapman et al
(81) expanded the canonical transformation to the good action variables
in a series, Jaffé & Reinhardt used a series of canonical transformations
to obtain the good action variables, which they described as the classical
limit of the Van Vleck transformation. They calculated action-angle
variables to zeroth order, then to first order, etc. This iteration was con-
tinued until the action variables seemed to converge. Good agreement was
obtained for several model systems with two degrees of freedom (79), and
for most states in the Hénon-Heiles system for the perturbation param-
eter used (91).

The computer algorithms for the perturbative-iterative and variational
methods are lengthier than that of the trajectory-surface of section
method, but typically require less computer time, at least for systems with
polynomial potentials. The main limitation of the former involves
convergence.

Schatz and co-workers (92, 93) have also developed techniques based
upon Born’s perturbation theory. These involve using either a second or-
der perturbation calculation or using classical trajectories to evaluate a
quantum number as the phase average of the unperturbed quantum num-
ber over the trajectory. This second method tacitly assumes that the tra-
jectory is box-like and that the caustics are only slightly distorted from
the unperturbed ones. They have calculated eigenvalues for several non-
degenerate model systems and for the stretching vibrations of CO, and
have obtained good agreement with the quantum values (92). This work
has also been applied to scattering calculations (93): the method was used
to determine the initial conditions for the internal coordinates of a trajec-
tory and to analyze the final states after the collision. Another example of
the use at low order perturbation theory is given in (94).

Gutzwiller has developed a significantly different technique (95-99) for
the semiclassical calculation of bound state properties. His method begins
with a Green’s function approach used to calculate the semiclassical prop-
agator. Quantization conditions are then derived which depend upon the
location of a family of periodic orbits. The method is intended to be appli-
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cable to both nondegenerate and degenerate systems as well as to the
chaotic regime. Gutzwiller’s method has not been extensively tested, per-
haps partly because of the difficulty involved in obtaining a family of
periodic orbits. In an early application of this method by Miller, only one
periodic trajectory was used per state (100) but was found to give spuri-
ous results (72). Miller later developed corrections for this method (101),
by replacing a Gutzwiller expansion by a sum in the vicinity of a periodic
orbit to yield an approximation to the tori found by Marcus and co-
workers. Families of periodic orbits have been used to calculate eigen-
values and/or densities of states (98, 102).

Berry & Tabor (103a,b) have obtained in a different way Gutzwiller’s
formula for the density of states in terms of families of periodic orbits.
There was excellent agreement between their semiclassically calculated
density of states, and the quantum result for a model problem. The cal-
culations showed significantly more structure than the classical density
of states.

Gerber & Ratner (104) have used semiclassical wavefunctions within a
self-consistent field quantum calculation for two coupled oscillators, with
good results for the eigenvalues.

Gutzwiller has applied his method of using families of periodic orbits to
a system stated to be chaotic, the anisotropic Kepler problem, with quite
reasonable results (99). This problem is a nearly degenerate system, and
for a truly degenerate system a single periodic orbit would suffice. It
would be interesting to see if this method can be used to locate semi-
classically the eigenvalues for anharmonically coupled oscillators in the
classically chaotic regime. Once again, one should make sure that spuri-
ous eigenvalues do not, as in the one-periodic-trajectory case (72), also
appear.

In the chaotic regime only two of the above techniques have located the
eigenvalues. Swimm & Delos (87a—c) reported 60% of the chaotic eigen-
values in the Hénon-Heiles system (a 1:1 resonance system) with good
results in some cases. Jaffé & Reinhardt (79) reported values for all of the
eigenvalues of this system. More detailed calculations on other chaotic
systems are needed to reach a conclusion on the applicability of these
techniques. It should be pointed out that the above system may, for the
value of the perturbation parameter chosen, not be quantum mechanically
chaotic, as discussed in the next section. The above perturbative tech-
niques are expected to break down in the quantum mechanically chaotic
regime, i.e. in the regime of overlapping accidental Fermi resonances con-
sidered below.

An approach that is applicable to both the quasiperiodic and the cha-
otic regime is the quantization of the energetically accessible phase space
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volume. However, this method can only be expected to locate the levels to
within half the level spacing (38a,b, 105). Of course, any method pro-
posed for the chaotic regime must do better than this to represent a quan-
titative improvement.

QUANTUM MECHANICS

The dramatic distinction between the classical dynamics in the quasi-
periodic and chaotic regimes has led to the question of whether this
behavior reflects qualitatively different motion in molecular quantum
mechanics, and, if so, how. In the previous section we discuss how semi-
classical techniques are being used to bridge the gap between classical
dynamics and the quantum mechanics of coupled vibrations in molecular
systems. The correspondence has been successfully demonstrated in the
quasiperiodic regime. In the chaotic regime the correspondence is not as
satisfactory, since an adequate, generally applicable method of describing
the semiclassical mechanics in the chaotic regime has not been developed.
Reflecting this situation, numerical experiments on the Schroedinger
equation are now being used to search for a quantum analogue of classical
chaos, just as numerical experiments with Hamiltonian mechanics were
originally used to gain insight into classical chaos.

Studies of quantum chaos have only very recently begun to be reported,
and as a result the conceptual understanding of the phenomenon is not as
complete as in the quantum quasiperiodic case. In several examples of
these numerical experiments the time-independent properties of the wave-
functions in coordinate space and their eigenvalues have been investi-
gated. The Schroedinger equation was solved by a variational calculation,
by expanding the wavefunction in harmonic oscillator or other wave-
functions, and the resulting variational matrix was diagonalized to obtain
eigenvalues. The convergence of this solution depends upon the complete-
ness of the original expansion of the wavefunction.

One definition for an ergodic (chaotic) quantum state, proposed by
Nordholm & Rice, is that its wavefunction have contributions from a
large number of basis functions (106a—c). Each of the “quantum ergodic”
wavefunctions, so defined, was termed global and the remaining ones,
local. A number of two and three dimensional systems of coupled oscilla-
tors were studied and in general at higher energies, where the motion is
usually classically chaotic, they found more global states. Conversely, at
lower energies, where the classical dynamics is generally quasiperiodic,
the wavefunctions were assigned as being predominantly local. However,
it was recognized that the characterization of “globality” vs “locality” was
basis set dependent (106b).
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Subsequent work by Noid & Marcus (73) showed, instead, that al-
though the global states were the ones that mixed the energies of the
zeroth order Cartesian coordinate modes, they did so in a nonchaotic way:
all of the states labeled global were found to correspond semiclassically
to quasiperiodic states, while many of the states labeled local corre-
sponded instead to classically chaotic states. The states which have exten-
sive “mixing” (i.e. global) were those with moderately large and large
internal angular momentum / (hence the latter is not ergodically dis-
turbed in these global states) and had trajectories analogous to the one in
Figure 2. These higher / states are precisely the ones for which the tori
persist, in this Hénon-Heiles system, when the energy is increased in the
increasingly classically chaotic regime. In summary, these results showed
that one cannot equate modal energy mixing with the opposite of quasi-
periodicity and hence with classical chaos. To do so leads semiclassically
to inconsistencies. Characterization of globality vs locality is nevertheless
very useful, since it is desirable to know for experiments when modal
energy mixing occurs, regardless of whether it does so in a “quasiperiodic™
or “chaotic” way. Classical examples of quasiperiodic modal-mixing
states are given in Figures 2 and 3, and of a quasiperiodic “modal non-
mixing” state in Figure 1.

Wavefunctions are difficult to calculate accurately, as compared with
eigenvalues, unless the basis set is large enough and particularly appropri-
ate. We return to this point later in the calculation of Wigner functions.
For example, Noid & Marcus noted that the Hénon-Heiles system has C,,
symmetry (73) and that certain pairs of states must therefore have identi-
cal dynamical properties. With a given basis set about 50% of these equiv-
alent states appeared (106a,b) to have different global-local properties.

Heller has commented further on this system (107), noting that since
the system had C,, symmetry it must have two symmetry classes of wave-
functions which will not mix. Therefore, in an isolated system a wave-
packet of one symmetry type cannot chaotically mix with one of another
symmetry type, and it cannot be truly “ergodic.” There has been some
discussion in the literature on whether a measurement would break this
symmetry and thus make the mixing actually observable (108).

Stratt et al (109) have extended the Nordholm & Rice criterion. They
introduced a type of “natural orbitals” for the system (the smallest basis
set in which the exact states can be adequately described). The local-
global suggestion was then examined using the nodal patterns and natural
orbitals. This method gave good agreement with the classical mechanics.
Although this method is no longer as basis set dependent, the method does
depend on the coordinates used in selecting the “best” small basis set. The
semiclassical results (73) obtained earlier suggest that for the Hénon-
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Heiles system polar coordinates are more appropriate than Cartesian
ones, and it would be interesting to use them. Evidence that classical
chaos doesn’t necessarily imply quantum chaos has been obtained by Kay
(110) and by Noid et al (38a).

Another example of interest is the Fermi resonance system where, for a
particular value of the perturbation parameter, one can separate the vari-
ables (56). Such a system is quasiperiodic. If one describes the wave-
functions in terms of an (x,y) basis set, one would presumably conclude
that many of them are global (reflecting, however, a nonchaotic modal
energy mixing). This provides again an example where global does not
imply quantum ergodicity or quantum chaos (the spectrum is quite regu-
lar), a distinction frequently overlooked; globality is related to the useful
concept of modal energy mixing. It might be useful to label such states
(and the non-low angular momentum ones in the Hénon-Heiles system)
specifically as “modal energy mixing states.”

Percival (111a) conjectured, by analogy with the classical behavior,
that the spectrum would be “irregular” for a quantum mechanically
ergodic system and “regular” otherwise. He also postulated that another
criterion for the quantum analogue of classical chaos would be a large
sensitivity of the eigenvalue to a perturbation, reflected in the second
derivative of the eigenvalue with respect to a perturbation parameter, in
the chaotic regime. Pomphrey (111b) then used variational calculations
on a model system (Hénon-Heiles) for three values of the perturbation
parameter and calculated second differences of each of the eigenvalues. In
the calculation there were no large values of the second difference in the
classically quasiperiodic regime, whereas there were several large values
in the chaotic regime. Noid et al (38a,b) found in a later calculation on a
different system (Hénon-Heiles with a different value of the perturbation
parameter) that the second differences varied smoothly with energy in
each sequence of states. Except for two eigenvalues (the states which
involved an avoided crossing, discussed below), there were no large second
differences.

In a different problem, the libration-rotation of a pendulum, one may
anticipate a relatively large second difference for the state just below the
rotational barrier when the perturbation parameter is changed to lower
the barrier. For this case the second difference detects a qualitative
change in the classical dynamics (though not actually chaos, since this is a
one-dimensional system).

The behavior of the probability density l¢|* in coordinate space was
examined for a system with a 1:2 Fermi resonance (56) in the zeroth
order Hamiltonian. For this system the semiclassical “eigentrajectories”
(trajectories which satisfy Eq. 4) occupied a limited amount of the ener-
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getically accessible coordinate space. The trajectories spread out over the
entire coordinate space in the chaotic regime. When plots of [¢|* were
compared to eigentrajectories in the quasiperiodic regime and to chaotic
trajectories at higher energies, it was found that in both regimes the larg-
est probability was in the same region of coordinate space as the trajecto-
ries (56), as in Figure 8.

McDonald & Kaufman (112) and Stratt et al (109) have used an ap-
proach analogous to that of examining ly|* above, namely they examined
the location of the nodal lines of the wavefunction in coordinate space.
For several examples it was shown that in the quasiperiodic regime the
nodal lines could be easily assigned quantum numbers but they became
very complicated and irregular in the chaotic regime. For some states, at
least, the overall pattern may correspond to that expected for an avoided
crossing of eigenvalues, described below. A regular nodal pattern was also
seen in [(37) Figure 7].

Berry & Tabor (113) and Zaslavskii (114) have postulated that a sta-
tistical distribution of eigenvalues defined by Wigner (115, 116) would
occur in a quantum ergodic system. McDonald & Kaufman (112) tested
this postulate for the stadion (cf 117) (which has been analytically proven
to be classically ergodic) (118). They found that the distribution of eigen-
values was statistical and that in a separable system and hence quasiperi-
odic one, the distribution was significantly different, as predicted (113).
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Figure 8 Plot of the squarc of the wavefunction, l¢], for the system described by Figure 3.
Figure 3 is the trajectory which corresponds semiclassically to this particular wavefunction.
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It has been suggested (106a, 119, 120) that the Wigner functions would
more directly reflect the underlying classical dynamics. Hutchinson &
Wyatt (121) calculated the Wigner functions for the Hénon-Heiles sys-
tem and found a qualitatively different distribution at low and high ener-
gies, a result that seemed to agree with the corresponding classical behav-
ior in the surfaces of sections. However, it is clear from one of Hutchinson
& Wyatt’s figures (Figure 2b) that in the intermediate energy regime the
basis set was too small to resolve +/ and —/ states. Even less resolution
would be expected in the higher energy “chaotic regime.” Accordingly, it
would be useful to pursue these interesting calculations with the aid of a
larger basis set so as to distinguish neighboring states.

The time evolution of wavepackets composed of a sum of eigenstates
has been investigated by several groups. Brumer & Shapiro (122) used a
wavepacket with a Gaussian spread over energy states, and saw no major
distinction between the behavior of an ergodic and a separable system.
Kosloff & Rice (123) interpreted this in terms of a newly defined quantal
Kolmogorov entropy which predicted no change. However, since their
(123) quantity is always zero, it wouldn’t detect any change, even as
% — 0. Heller (124) has emphasized that implicit in the choice of Brumer
& Shapiro’s wavepacket was a stochastic nature (i.e. microcanonical-like)
and no difference in the two regimes would be expected. He then pre-
sented an example of wavepackets highly localized in coordinate space
whose time evolution does change considerably in the two regimes. Weiss-
man & Jortner (125) looked at two Gaussian wavepackets of Hénon-
Heiles states, one concentrated in the classically quasiperiodic region and
the other in the classically chaotic region of phase space, both at the same
energy. They found rapid dephasing of the initial coherence in the later
case. Koszykowski et al (41) have seen a behavior similar to that de-
scribed by Brumer & Shapiro and by Heller, but for the time-correlation
functions of classical dynamical quantities: the canonically averaged cor-
relation functions showed only smooth changes between the regimes while
modal ones changed somewhat more dramatically (41). Criteria for sto-
chastic and nonstochastic behavior, using wavepackets, have been dis-
cussed by Heller (126).

Noid et al (38a,b) examined the quantum mechanical spectrum for the
Hénon-Heiles system, and observed, for the perturbation ameter used,
a continuation of the sequences of eigenvalues, i.e. a 3@1‘ spectrum,
into the classically chaotic regime. That is, using the spectrum as a crite-
rion, classical chaos did not necessarily imply quantum chaos.

They then studied the behavior of the eigenvalues of the Hénon-Heiles
system as a function of the perturbation parameter. When these eigen-
values were plotted as a function of the perturbation parameter, it was
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discovered that the only pair of eigenvalues having a large second differ-
ence near the value of the Hamiltonian parameter used in (106a—c) and in
(73) underwent an avoided crossing there (terminology borrowed from
that for electronic states where crossings and avoided crossings occur as a
function of nuclear coordinates). These two states were among those, it is
interesting to note, for which Delos & Swimm (87a—c) did not report
good eigenvalues. The avoided crossing behavior of the eigenvalues was
then examined on a model of a triatomic molecule (127), which had many
more states than the previous system. This calculation demonstrated no
avoided crossings in the classically quasiperiodic regime, but displayed
many overlapping avoided crossings in the chaotic regime.

A summary of our view of the significance of these crossings is the
following: The introduction of a perturbation X into a quantum mechani-
cally integrable system can distort the shapes of the original wave-
functions gradually with increasing A. Then, near some A, a pair of states
may undergo an avoided crossing (an accidental Fermi resonant interac-
tion) (38a,b) and one achieves near this X a drastic change of the shape of
each of the two wavefunctions (which is now a linear combination of the
previous two wavefunctions) with a subsequent small change of A. If a
state participates simultaneously in many such resonances, its shape be-
gins to take on a statistical character, and it can be termed “chaotic”
(128, 129). This ability to participate depends on the density of quantum
states, and so on the size of #.

The onset of extensive avoided crossings clearly produces irregular
spacings of eigenvalues instead of regular ones, i.e. produces an irregular
spectrum instead of a regular one. This feature of avoided crossings thus
provides a mechanism, a purely quantum mechanical one, for the irregu-
lar spectrum conjectured (111a) by Percival.

Avoiding crossings have also been examined for stadion-like problems
(105, 130). They were also examined by Ramaswamy & Marcus (131),
who applied quantum perturbation theory to the Hénon-Heiles Hamil-
tonian to study the behavior of the eigenvalues. They found many more
crossings for Pomphrey’s system (111a,b) than for Noid’s (73), and, cor-
respondingly, there were many more large second differences in the for-
mer. The simple perturbative approach does not distinguish between
crossings and avoided crossings, but one can do so by the use of degener-
ate perturbation theory at the crossing (131). States of unlike symmetry
can cross, and in an actual crossing there is no “state mixing.” For exam-
ple, a particle in a two dimensional box exhibits many crossings of the
energy levels when the ratio of the length of the two box sides is changed.
The significance of multiple avoided crossings has not yet been fully es-
tablished, but we believe that it is the quantum counterpart of classical
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overlapping resonances (129). Some interesting results on chaos and
quantum maps are discussed in (64, 132-134).

It is well known that a correspondence between classical and quantum
mechanics is obtained by replacing classical Poisson brackets {,} by
commutators [ , ] and dynamical variables by Hermitian operators
(135). It has been suggested (136), correspondingly, that some insight
into the quantum analog of classical integrability is obtained by using this
operation and the following property of classical integrability. A classical
dynamical system of m coordinates is defined as integrable (i.e. having m
constants of the motion) if there exist m functions F; in phase space for
which {F,, F;} = 0 (137a, cf 137b), with F, = H.* Correspondingly, for an
analogous m-dimensional system in quantum mechanics we (136) might
define as a quantum mechanical integrable system one for which there are
m operators F,, with [F,, F;] = 0—i.e. one for which a complete set of
commuting observables actually exists. Examples are systems that permit
separation of variables. Another and different example is the quantum
mechanical Toda lattice (138). From these m commuting operators there
are m constants of the motion, and they yield a set of m quantum num-
bers. Because of the existence of such constants, the eigenvalues can be
characterized by sets of m integers, and in turn, this characterization
gives rise to regular series of spectral lines (without invoking a semiclassi-
cal argument). Because of the existence of these sets of integers and their
implications in terms of nodal surfaces, one expects to find, correspond-
ingly, “regular” wavefunctions, with regular nodal patterns in the differ-
ent spatial directions—directions which are better described in some co-
ordinate systems than in others. Similar conclusions were reached earlier
from pictures of wavefunctions by Noid et al (139). This picture is sup-
ported by the corresponding semiclassical eigentrajectories, each of which
is confined to the same spatial region in which the corresponding regular
eigenfunctions are concentrated (56).

In Hamiltonian systems which are “close” to these integrable systems,
it was suggested (136) that qualitatively similar quantum mechanical be-
havior might occur for most states in the nearly integrable domain, i.e.
regular, if not sharp, nodal patterns, and regular series of spectral lines.
An avoided crossing of two such states results in states whose wave-
function becomes approximately a linear combination of the two previous
wavefunctions, and the nodal pattern becomes a composite of the two
previous nodal patterns. Further, the splitting near the avoided crossing

“That is, these F; are integrals (constants) of the motion, e.g. the good action variables.
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introduces a local irregularity in the spectrum. When a state becomes
simultaneously involved in many overlapping avoided crossings at the
given value of the perturbation parameter, the wavefunction becomes ex-
tended in all directions and tends to “occupy” much of the classically
energetically accessible region (128, 139).

We have noted, because of our results in (38a,b), that classical chaos
may be a necessary but not a sufficient condition for quantum chaos.
Additional conditions for quantum chaos have been suggested (129, 140).
These conditions cannot be satisfied when the spacing of adjacent states is
too large. In some systems, judging from the numerical results, these
conditions appear to be satisfied, since quantum and classical chaos (the
former described via many overlapping avoided crossings) appear to begin
in the same energy region (127, 131). Kay has extended (140), with re-
sults similar to those in (129), and has tested the theory (110).

The classification described earlier for quasiperiodic versus chaotic
states is designed for bound states. Bound states are appropriate for the
description of the absorption steps in IR multiphoton absorption energies
below the dissociation energy, in fluorescence and absorption spectra, and
in internal conversion and intersystem crossing, where the electronic cou-
pling is also considered. States with energy above the dissociation limit
enter into treatments of unimolecular reactions, chemical activation, and
IR multiphoton absorption in the true continuum. Bound classical quasi-
periodic states can exist indefinitely at energies above the dissociation
limit (75). Semiclassically, their quantum mechanical counterparts are
“quasiperiodic” quantum states (75) that are, however, connected to the
outside by leakage of the wavefunction beyond the caustics and thereby
are unbounded.

Yet to be classified are the unbounded states, both classical and quan-
tum. They involve families of trajectories leading from the separated par-
ticles to the formation of the vibrationally excited parent molecule and
then to a redissociation. These states might, if the system spent a long
enough time in the parent molecule’s phase space, appear as largely quasi-
periodic or as largely chaotic before reemerging. The trajectory’s spec-
trum for the time spent by the trajectory in the molecule, if that time is
long enough, or perhaps the rate of separation of neighboring trajectories,
could again be used to distinguish chaotic from “quasiperiodic-like” cases.
In the quantum case an individual unbound state corresponds to a reso-
nance and perhaps, by analogy with the bound states, it could be classified
as “quasiperiodic” or “chaotic.” This is an area where further study is
needed. For simplicity, we use this classification for unbound states, with
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spectral properties analogous to those for bound quantum states. In either
case the state has a decay width (as do also the bound states, when cou-
pling to the radiation field is included).

CORRELATION FUNCTIONS AND SPECTRA

In the sections above we are principally concerned with the phenomenol-
ogy of classical and quantum dynamics of coupled anharmonic molecular
vibrations, both at low and high energies. A particularly interesting fea-
ture, one directly connected with some experimental observations, in-
volves the spectroscopic properties of the system. Such power spectra are
also of interest in other fields such as turbulence in fluids (34) and in
confined plasmas (33), although we make no attempt to review these non-
chemical areas. Using the new high resolution state selected spectroscopic
methods, applied to low pressure and low temperature systems, as in some
molecular beams for example, a detailed examination of the spectra in the
two regimes would be of much interest.

Noid et al (36-38a,b) developed a semiclassical method of obtaining vi-
brational power spectra from classical trajectories. They used the zeroth
order eigentorus (the torus satisfying Eq. 4) to calculate the autocorrela-
tion function of any dynamical variable. Then, as prescribed in linear re-
sponse theory, the corresponding absorption (power) spectrum is given by
the Fourier transform of the correlation function. An appropriate corre-
spondence principle interpolation was then used to obtain the transition
frequencies in the quasiperiodic regime. The agreement between this cal-
culation and an exact quantum calculation was excellent for two and
three dimensional model systems. Later deficiencies in intensities of or-
dinary FFT numerical methods were corrected and, using the same
method, intensities of lines were predicted using a correspondence princi-
ple (38a,b, 141). They were in excellent agreement with a “converged”
quantum calculation obtained using variational wavefunctions. Recently,
fundamental and overtone frequencies and intensities were calculated,
from the classical spectrum of a Morse oscillator (141), using the corre-
spondence principle. Again, good agreement (now analytic) was found
with the quantum mechanics. Noid et al (36-38a,b) have also found that
when the classical motion becomes chaotic the spectrum becomes much
broader and consists of many more lines. (Ultimately for an infinite time
trajectory these lines may yield a continuous band.) Powell & Percival
(40) have extended this classical-trajectory-spectral method by defining a
Fourier entropy which is a measure of the number of significant Fourier
coefficients. The Fourier entropy was found to change dramatically in the
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chaotic regime and was proposed as a test for chaotic motion. Hansel (39)
has also used the classical-trajectory-spectral method and numerically
found that the width obtained was proportional to the k-entropy of the
trajectory, a measure of the extent of mixing. A corresponding quantity
has been evaluated in fluid mechanics. The velocity power spectrum of a
laminar flow is sharply peaked and consists of a few lines, while for
turbulent flow it becomes very broad and consists of many more frequen-
cies (34).

Heller et al (124, 142a,b) have developed a method for calculating the
vibrational part of vibronic spectral lines obtained when a wavepacket is
excited in a Franck-Condon transition. In the quantum calculation one
considers the correlation function for the evolution of a wavepacket that
was originally localized in coordinate space. The Fourier transform of this
time correlation function then yields the quantal results. In this semiclas-
sical calculation they use a small ensemble (e.g. << 10) of trajectories
initially located in some region of coordinate space relevant to a Gaussian
distribution. Short-time trajectories are then used to calculate the cor-
relation function, and via a Fourier transform the spectrum is obtained.
Several examples were given and the frequencies and intensities of the
quantum and classical calculations agreed well. This short-time trajectory
method has been used for obtaining the envelope of the vibrational spec-
trum arising from the lowest vibrational state in an electronic Franck-
Condon transition. Longer trajectory times begin to show more of the
vibrational structure. The results may be sensitive to the particular trajec-
tories chosen for the ensemble. A Gaussian distribution is most appropri-
ate for a vibronic excitation from the zero-point vibrational level of the
initial electronic state. If one wished, instead, to describe the pure vibra-
tional spectrum of some particular ensemble of initial quantum states (or
of one of them) one should presumably choose a corresponding ensemble
of eigentrajectories (or one of them), rather than a Gaussian ensemble,
and use the method of (36—38a,b).

Mo developed a perturbative approach to examine the behavior of the
autocorrelation function of the distance of the phase space point from the
origin (57). She postulated that the correlation function would behave
exponentially in the chaotic regime, and calculated the critical energy for
chaotic motion with excellent results. Koszykowski et al (41) investigated
various correlation functions of dynamical variables averaged over a
microcanonical ensemble. They found, in general, a smooth evolution of
each time microcanonical correlation function as the energy was increased
from the quasiperiodic regime into the chaotic regime, with no abrupt
change on entering the chaotic regime. This result seems to be in qualita-
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tive agreement with Heller’s argument (126) that a nearly microcanonical
wavepacket (a packet over a Gaussian distribution of energy levels) is not
sensitive to the transition between regimes.

When the same classical autocorrelation functions were calculated and
only phase averaged, not microcanonically averaged, a more obvious
change from oscillatory to decaying behavior (with some superimposed
oscillations) was observed (41). The decay time for the mode energy auto-
correlation gives information about the time scale for intramolecular
modal energy relaxation. This modal energy relaxation has important ex-
perimental implications, as discussed below. Abarbanel (143) has demon-
strated that in the chaotic regime the behavior of phase averaged time
correlation functions will be in general oscillatory and decaying.

There has been much interest lately in highly excited overtone spectra
(13, 144a—d) and in the concept of local modes vs normal modes. For
some systems it has been found that local modes (bond stretches) can
more usefully be used to assign the spectra than normal modes. In a
normal mode treatment the wavefunction ¥ of an excited normal mode is
concentrated along that normal mode axis in a configuration space in
which the axes are the normal mode coordinates. In a local mode treat-
ment, a local mode excited y would be concentrated instead along a bond
displacement direction in that space. (This direction is at some angle
to each normal mode direction.) There is some evidence from a two-
coordinate study by Lawton & Child (145a,b) that in H,O the trajecto-
ries are concentrated along such directions in, at least, some highly ex-
cited vibrational states. Because of symmetry, one has symmetry-adapted
local modes (146a), whose wavefunction is composed approximately of a
linear combination of the individual local modes (chemical bonds). In
actual molecular systems, because these (symmetry-adapted) local modes
are also coupled to many other vibrations, there is a broadness of the
spectral lines, which is an indication of intramolecular relaxation. It is not
yet known whether this relaxation is of the energy loss kind or of the pure
dephasing kind.

An interesting study of unimolecular decay rates in the tunneling re-
gion of the Hénon-Heiles system was made by Waite & Miller (146b).
Apart from a symmetry-induced specificity they found that the decay
rates were well represented by RRKM theory plus tunneling. Perhaps this
result was due to the many (3) exit channels, as they noted. Many of the
states were modal mixing. Results obtained instead with a single exit
channel potential surface, and also with presumably little or no modal-
energy mixing, showed non-RRKM behavior.
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CLASSICAL TRAJECTORIES

Many classical trajectory calculations have been performed related to the
experimental problems discussed above. Because of limitations of space
we merely list a sample of these here. Reviews of the trajectory studies
for unimolecular reactions have been given by Bunker (147a,b) and
Hase (2b).

The lifetimes of vibrationally excited dissociating species have been
studied using trajectories by Bunker et al (50, 147a,b, 148), Wilson et al
(149a,b), Wolfe & Hase (150a,b), and Brumer & Karplus (151). These
studies use relatively short times because of computer time. Particularly
by Bunker and by Hase, the lifetimes were compared with RRKM-type
lifetimes. The time-dependent energy redistribution in a molecule was
investigated by Parr et al (152). Energy distribution of the reaction prod-
ucts of a dissociated molecule were examined by McDonald & Marcus
(153) and by Wolf & Hase (150a,b), who looked at exit channel effects.
The lifetime of a van der Waals complex was studied by Woodruff &
Thompson (154). Resonances in quasibound states have been located
semiclassically by use of trajectories and compared with quantum calcula-
tions, by Noid & Koszykowski (75). Kay (110) used an ensemble of tra-
jectories originating from some volume element in a zeroth order quan-
tum number (zero-order action variable) space and studied their rate of
appearance in other volume elements of that space. Comparisons were
made with a corresponding quantum mechanical calculation.

There have been a number of trajectory studies of infrared multiphoton
dissociation. Noid et al (155a—) studied the energy distribution of the
reaction products of infrared multiphoton dissociation and, along with
Hansel (156a,b) and Ramaswamy et al (157), investigated the time-
dependent energy absorption in this process. SF in a laser field was simu-
lated by Poppe (158). The behavior of a diatomic molecule in a two-laser
field was investigated by Noid & Stine (159a,b), who also looked at the
effect of laser polarization (160a,b).

Energy transfer in a collision of an atom with a collinear triatomic
molecule has been studied in the chaotic and quasiperiodic regimes by
Shatz & Mulloney (161) and by Noid & Koszykowski (162a,b). Rela-
tively chaotic and nonchaotic trajectories in bimolecular reactions have
been studied by Duff & Brumer (163) and by Wyatt and co-workers
(164a—c). Using a microcanonical ensemble rather than trajectories, Liu
& Noid (165) have estimated Franck-Condon factors in the chaotic
regime.
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RELATION TO EXPERIMENTAL RESULTS

In relating experimental data to studies described in the preceding sec-
tions 2 number of questions arise: When do the data indicate the occur-
rence of intramolecular energy randomization and how rapid is it? How is
such randomization or lack of it related to the theoretical studies of quasi-
periodic quantum states (i.e. those with a regular though possibly exceed-
ingly complex series of spectral lines) and chaotic quantum states, for a
system containing many coordinates? The quasiperiodic states may be of
two kinds, those which mix and those which do not mix the energies of the
unperturbed modes. Those which mix are termed “modal energy mixing.”
In a modal coordinate space (e.g. bond modes or normal modes), a non-
modal mixing state may nevertheless have its principal axes (those of the
corresponding box-like trajectory) inclined at an angle to that of some
coordinate excited in an experiment (128). In that case the excitation of
even this state excites two modes.

One mechanism for intramolecular randomization directly involves the
preparation of the state, which can be a wavepacket of many “exact” vi-
brational states. The subsequent dephasing due to energy differences
among the states corresponds to a randomization, a mixing of the energy
among the zeroth order modes, regardless of whether the individual eigen-
states are quasiperiodic or chaotic. In this case there is a relaxation time
associated with forming this more randomized state. Of course, if each
quantum state is already chaotic its behavior is instantaneously “micro-
canonical.” The rate of the randomization in a wavepacket will depend on
the detailed nature of the states and on the packet originally prepared: at
low energies, where the individual states are not chaotic and where the
density of states is small, there may be little, if any “randomization.”
There may be differences, too, in the behavior of a dissociating system
and a nondissociating system which typically will have a “stiffer” poten-
tial energy function and which frequently has lower vibrational energy.
We consider next some of the specific data.

One of the most common sources of information in the past on in-
tramolecular energy transfer has been unimolecular reaction rates
(1a,b). Collisional activation leads to the formation of vibrationally-
excited molecules, which either subsequently decompose unimolecularly
or are collisionally deactivated. In the RRKM theory, it is assumed that
each reactive vibrationally excited species explores all the zeroth order,
microcanonically accessible quantum states available to it before decom-
position, consistent with the given total energy and angular momentum
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(perhaps with some adiabatic rotations).” Thereby, in one view, largely
“chaotic” or largely modal mixing quasiperiodic quantum states are tac-
itly assumed—each such state senses most parts of the accessible “phase
space.” Another mechanism for randomization (128) is discussed below.
Typically, RRKM theory has been successfully used to interpret a large
body of data on unimolecular reactions and on chemical activation (la,b,
2a,b, 17).

In the alternative theory of Slater (15), one assumed that all vibrations
are harmonic; the “phase space” explored by the molecule was limited by
the m constants of the motion (for m vibrations), the m maximum vibra-
tional amplitudes (or the m vibrational action variables). One severe re-
sulting constraint, for symmetric systems such as cyclopropane, was that
because of the symmetry assumption throughout the dissociation of a
molecule, only about half of the vibrations could participate. Actually,
during the dissociation the symmetry is broken, and so the assumption
that symmetry is maintained, which followed directly from the harmonic
oscillator assumption, leads to a large error. The effects of the introduc-
tion of substituents to destroy the initial symmetry (170, 171a,b), which
would be small in the RRKM-type theory but large in Slater’s theory,
were indeed experimentally found to be small (reviewed in (17)). Anhar-
monic studies for 1:1 degenerate systems (73) showed that even a little
anharmonicity permits extensive energy sharing between the unperturbed
degenerate modes.

In a formal modification (24) of the Slater approach, which removes
the above restriction, quasiperiodicity is assumed, but not harmonicity,
and so the correct tori, assumed to exist, are used. The dissociation rate
constant of a vibrationally excited species now depends on all the action
variables J instead of only the energy and angular momentum L, and is )
written as k(J). In the quantum case one specifies instead the values of
the set of quantum numbers n,, . .., ny, and so one can write k(m), if the
states n were individually excited in a collision. When k(m) for a given E
and L does not fluctuate too widely with m, the expression simplifies to

5Other forms of RRKM-type, i.c. statistical, theory are (a) phase space theory (166a,b),
which assumes that the reaction has a loose transition state (no steric factor for the reverse
reaction, a bimolecular association); (&) statistical-adiabatic theory (167), which assumes vi-
brational adiabaticity (e.g. 168) along the exit channel to define the transition-state separa-
tion distance for each outgoing internal quantum state; and (c) statistical-dynamical theory
(169a,b), which includes in a vibrational adiabatic statistical way exit channel effects. In the
case of a loose transition state (b) and (c) reduce to (a).
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yield the RRKM expression. Thus, information about the dependence of
k(n) or n in a given energy interval is of particular interest.

The collision of a molecule with a large second molecule will probably
initially excite some portion of the second molecule, the nearest part, for
example. Quantum mechanically, we have suggested that a wavepacket of
the exact vibrational quantum states is excited by the collision (128), and
that the ensuing motion of this wavepacket provides an intramolecular
energy redistribution. If a wavepacket is evenly distributed over a micro-
canonical set of states (41) or over a broad set of states of different
energies (128, 142a,b), its behavior may or may not depend on whether
those states are “chaotic” or “quasiperiodic.” In any case, the quasiperi-
odic treatment in (24) would be modified. One would use, as a first ap-
proximation, some wavepacket-averaged k(m).

Some information, largely indirect, is available experimentally on the
behavior of the vibrational states. For example, excitation in different CH
vibrations for a vibrationally excited species has been produced by Reddy
& Berry using various laser spectral lines (12a,b). If the collision-free
decomposition rate constant is a monotonic function of the energy, then
either the excitation has produced a set of chaotic quantum states, or the
rate constant does not vary particularly among the quasiperiodic unbound
states, for any given energy, i.e. k(n) can be replaced by a microcanonical
average. In either case, RRKM-type theory becomes applicable. Experi-
mental studies with methyl isocyanide revealed very little, if any, devi-
ation from monotonic behavior (12a,b), while studies with allyl isocyanide
revealed some fluctuations of perhaps 50%, or less in some cases, from the
monotonic curve (12a,b). It was already noted above that small enough
fluctuations in k(n) with n at a given E and L would yield behavior
indistinguishable from RRKM. Fluctuations of 50% might well not cause
significant deviations from RRKM-type unimolecular reaction rate vs
pressure plots. The most remarkable and important finding in these re-
sults, sometimes overlooked, is that state-selectively prepared molecules
(12a—c) have dissociation rates relatively close to (factor of 5 or better)
those predicted from related unimolecular reaction studies, e.g. predicted
from RRKM at the same energy. It would be very desirable to have
experimental thermal unimolecular reaction rates for all three molecules
studied in (12a—c), for a more accurate comparison.

Another source of exciting different sets of vibrations is via electronic
excitation, e.g. from S, to S, states of aromatic-like molecules, and from
S, to S, followed by internal conversion to S,. The detailed interpretation
will ultimately involve analysis of the fates of the various excited states,
including measurements of the triplet states formation rates (S,—-T, at
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low energies, S, — S, at high energies). However, a “bump” in the plot of
fluorescent lifetime (~ 20%) (172) and a “step” in the nonradiative decay
rate vs excitation near the S, excitation threshold (173) have been attrib-
uted to a difference in vibrational distribution of S, species produced by
the two routes (172, 173).

Chemical activation produces an initial excitation very different from
the excitation produced in unimolecular reactions, and yet the two sets of
results yield consistent agreement for the lifetimes of the vibrationally
excited species (2a,b). The simplest interpretation, and the one normally
given, is that RRKM-type theory applies in each case, i.e. there is energy
randomization of the vibrationally excited species in both cases. One ques-
tion that arises is whether or not the state prepared by chemical activation
involves a superposition of an almost microcanonical distribution of quasi-
periodic states (cf 174).

Translational (3,4) and vibrational (11, 175) energy distributions of
products of chemical activation have been studied in molecular beams.
The results can largely be summarized as follows: When the transition
state in the exit channel is “loose” and the lifetime of the intermediate
molecule is not too short, the translational energy distribution obeys
RRKM-type theory (3, 11, 175, 176a,b). When the lifetime of the inter-
mediate is too short, as in

(estimated to be <1 ps (176a,b)) there is deviation from this theory
(176). When the transition state in the exit channel is “tight,” exit chan-
nel effects can occur (169a,b, 177), and then even when the distribution in
the transition state is RRKM-like the final distribution need not be
(169a,b, 177).

The mechanism of an intramolecular “randomization” in a molecule
(radical) formed by chemical activation, or vibrationally excited by colli-
sion or by infrared absorption, may involve any of the following:

1. A wavepacket of vibrational states is formed containing appreciable
contributions from most of the “exact” vibrational eigenstates of the
molecule at that energy. It dephases and the molecule then displays a
statistical microcanonical behavior, though not necessarily a single ex-
ponential decay rate.

2. All the vibrational states of the molecule may be largely chaotic (or
modal mixing quasiperiodic) and so have somewhat similar properties.

3. The states are largely not modal-mixing quasiperiodic, though
some “randomization” from the prepared state occurs as a result of
dephasing.
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To distinguish No. 2 from No. 3, one can, in principle, after allowing
sufficient time for dephasing to occur, follow the time-decay of the en-
ergetic molecules. They will decay via a single exponential in No. 2, if
the energy distribution is narrow enough, but in a2 more complicated way
in No. 3.

It is interesting to note the behavior of the product C,H;F of the chemi-
cal activation step (11),

F + C2H4 —_ C2H3F + H.

Here, the intramolecular collision-free randomization, judged from its
infrared chemiluminescence, is apparently not complete, even though the
C,H,F has survived for milliseconds (178). The presumed deviation of the
intramolecular energy distribution from the microcanonical one was not
large, a factor of two or less deviation in some modes. Its persistent non-
equilibrium distribution may be due to the low density of states (176a,b,
178), sparsity of internal resonances, and/or a presumed stiffness of the
potential energy function at the low vibrational energies involved.

In infrared multiphoton absorption it seems reasonabie to attribute the
coherent behavior of the absorption in the lower energy states to quasi-
periodic states (155-157). It has been concluded in a recent study by
Stephenson et al (179) of the energy distribution of products in the multi-
photon dissociation of CF,CFCl that the behavior is RRKM-like. Similar
conclusions had been drawn by Lee and collaborators (6) in their many
studies of the translational energy distribution of the products. The
uniqueness of the latter interpretation was questioned by Thiele et al
(180). Subsequently, measurements of the lifetime of the parent molecule,
SF,, were inferred from the secondary dissociation of the SF; to support
the original view (181). The original articles (6, 180, 181) contain a more
detailed discussion. In an interesting study by Richardson & Setser (182),
the CF bond in CH,FCH,Br was excited with a laser and the HBr:HF
ratio was measured and found to agree with statistical theory. These ex-
periments and those on other systems are discussed in an excellent review
by Oref & Rabinovitch (17a).

Infrared multiphoton absorption has a number of other aspects particu-
larly related to intramolecular randomization: relation of the photodis-
sociation IR spectrum (plot of amount of absorption vs wavenumber at
a given intensity) to the low signal IR absorption spectrum, and the be-
havior of the absorption cross-section as a function of fluence. The preva-
lent picture of IR multiphoton absorption is that successive photons are
pumped into a given mode, which will rapidly saturate unless the energy is
leaked to other modes. The latter leakage is presumed to occur extensively
at an energy where the density of states is sufficiently large, i.e. where the
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so-called quasicontinuum begins (e.g. 183a—c). For some molecules this
quasicontinuum is reached already at a very low energy and their absorp-
tion cross-section is independent of energy fluence until extensive dissocia-
tion is reached (e.g. 184a,b). Thereby, for many molecules there is at least
extensive modal-energy mixing at quite low energies. At present it does
not appear to be known whether the quantum states involved are chaotic
or modal-mixing quasiperiodic. Indeed, the distinction between these
may, for some purposes, be unimportant.

Another aspect of whether the quasicontinuum begins at low or at high
energies concerns the comparison of the low signal infrared absorption
spectrum and the photodissociation spectrum. It has been suggested that
if these parallel each other,® the quasicontinuum is reached even at the
energy at which only one IR quantum is absorbed (e.g. 185, 186a,b). [An
alternative interpretation is that there is little or no anharmonic shift.
Another interpretation is that only one photon is needed for dissociation, a
proposal that can be excluded, since the A—B bond strength is much stron-
ger than the energy of one photon (187)]. Frequently, the photodissocia-
tion IR spectrum is red shifted (6) or otherwise rather different from the
IR ground state spectrum and the presumption has been that the quasi-
continuum does not set in until a higher energy is reached. [For a criti-
cism of that interpretation see review by Lyman (184a) and references
cited therein.] In SF, a number of absorbed CO, photons (e.g. ~ 5) in the
v, band are believed needed before the quasicontinuum is reached. A
variety of interesting theoretical treatments have been given (cf 6, 188,
and references cited therein).

In contrast, van der Waals complexes (8) may provide an example of
quasiperiodic states, with their relatively well-defined spectral pattern (8).
The large frequency difference between that for the diatomic molecule
(I, in the I,He example given earlier) and that for the relative motion
(I, ... He) presumably contributes to this stability (24). If the frequen-
cies were similar, about 1:1, or even if they had a low order commensura-
bility, there could be extensive energy exchange between these degrees of
freedom, thus leading to a more rapid dissociation.

Fluorescence spectra of rotationally cold molecules have been studied
by photoselectively exciting a particular vibration of an electronically ex-
cited state, and observing the resulting fluorescence spectrum, e.g. (9a,b).
In the case of alkyl benzenes, for the excitation of a particular ring mode
(e.g. ve), the fluorescence was sharp for short chain alkyl groups but
broader for long chain ones. Thus, in the latter case the prepared state, i.e.

‘In (185, 186a,b) where the dissociation of ions was studied, the photodissociation spec-
trum was compared with the IR spectrum of the parent molecule, since that of the ion was

unknown. For a neutral model see (198).
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the set of quantum states excited, in the long chain alkyl case involves a
wavepacket of states of different energies, which then dephase. The sharp-
ness of absorption spectra shows that this energy band is very narrow. The
diffuseness of the fluorescence spectra shows that even at fairly low ener-
gies there is extensive energy randomization. A detailed discussion of the
fluorescence spectra, using concepts drawn from electronic relaxation the-
ory, has been given by Freed & Nitzan (189) and, more formally, by
Mukamel & Smalley (190). Any dephasing, if it occurs, does so on a time
scale less than nanoseconds, the time scale for the time-resolved experi-
ments (9a,b).

Experiments were performed on N,-alkyl benzene complexes, where the
predissociation rate to N, and the alkyl benzene was much slower than the
fluorescence decay rate for long alkyl chain lengths (191). For argon-
alkylbenzene complexes the fluorescence decay rate was much faster than
the predissociation rate (191), regardless of chain length. The interpreta-
tion of the former is similar to that given above, i.e. the state (or states)
prepared by excitation of the v; mode in the excited electronic state is also
delocalized in the long chain alkyl benzene.

Energy randomization in the excited electronic state has been studied
indirectly by Parmenter and co-workers (10a,b). They examined the fluo-
rescence of p-fluorotoluene (and p-difluorobenzene) molecules containing
about 2000 cm~! vibrational energy in the electronically excited state S,
using a laser linewidth of 0.3 cm~'. O, collisionally quenches the fluores-
cence. Use of large O, pressures reduced the fluorescence to that from
molecules living only about 10 ps. The fluorescence became less congested
with decreasing survival time for the emitting molecules (increasing O,
pressure). The results suggest that the combination mode primarily ex-
cited is anharmonically coupled to other modes, so that a wavepacket of
states is initially formed. The energy differences among the states lead to
a “dephasing”; the “dephased state” is a more “randomized state.” Its
fluorescence is broader than the original. The occurrence of dephasing
itself is consistent with the existence of either many quasiperiodic states or
chaotic states. A biexponential behavior for the growth of the “unstruc-
tured emission” was found, with apparent relaxation times of ~ 10 and
~ 200 ps.

As one might expect in the study of local modes, there is good experi-
mental evidence in the spectrum that one should speak of symmetry-
adapted local modes (146). We discuss briefly above the possible transi-
tion in the nature of the wavefunction, from that of a normal mode for the
fundamental to one of a symmetry adapted local mode for the high over-
tone case (e.g. in the case of CH vibrations). The origin of the width of
these high overtone bands is not yet understood, although some study has
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been made (192). Either the width reflects an “energy loss” mechanism to
the other modes (7, relaxation time) (chaotic or modal mixing quasi-
periodic states) or it reflects changes in this CH mode, without energy
loss, by coupling to the other modes (“pure T,” relaxation time) (non-
modal mixing states), the width corresponding to a relaxation time of
1 ps. Trajectory calculations (193) suggest that this mechanism is not of
the T,-type, although such calculations rest of course on an assumed po-
tential energy surface.

There have been laser infrared double resonance investigations, de-
signed to study intramolecular relaxation in vibrationally excited SF;, by
probing different parts of an IR absorption band, one part of which was
used to excite the molecule. Lyman (194) has summarized recent studies
and the difficulty of determining an intramolecular relaxation time. Other
experiments related to intramolecular relaxation are cited in (189).

There have been a number of experimental areas related to intramolec-
ular energy transfer, which, because of space and time limitations, we do
not review. These include unimolecular ion decomposition, where the re-
sults parallel those found in unimolecular reactions of neutrals, and pho-
todissociation. We refer the reader to recent reviews (195, 196). Other
relevant reviews on topics in intramolecular energy transfer are given in
(189) and in assorted articles in a recent publication (197).

CONCLUDING REMARKS

Many theoretical studies have provided evidence for a transition in the
classical dynamics from largely quasiperiodic behavior at low energies
to largely chaotic behavior at high energies. The nature of the correspond-
ing transition in quantum mechanics is being extensively investigated.
One possibility (when # is “small enough”) involves the transition from a
regular to an irregular spectrum, perhaps reflecting the onset of many
“avoided” crossings.

Using semiclassical ideas, the correspondence between classical and
quantum mechanics is reasonably well understood in the quasiperiodic
regime. Mixing of energy in the zeroth order modes can occur even in the
quasiperiodic regime via an internal resonance, though in a nonchaotic
way. Thus, intramolecular “randomization” of energy can occur both in
the chaotic and, particularly when there are enough coordinates, in the
quasiperiodic regimes. Thereby, some randomization can arise from an
excitation of a wavepacket of many exact quantum states (quasiperiodic
or chaotic states) within some energy range in a system with enough
coordinates. The subsequent time-evolution of the packet redistributes the
energy.
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The chance of observing deviations from RRKM-like behavior is pre-
sumably greater the narrower the band of states that has been prepared,
unless each of those states’ is chaotic. There is considerable evidence in
the experimental data for some randomization, even in the experiments of
(9a,b), at low energies in complex molecules. Examples of nonrandomized
systems exist (e.g. van der Waals molecules), and the reasons for these
probable differences in behavior are beginning to be understood. The
challenge to the experimentalist is the preparation of as narrow a band of
states as possible, consistent with the study of their real-time evolution.
The challenge to both the theorist and the experimentalist is to infer from
these data and from high resolution spectroscopic data the nature of the
vibrational quantum states involved: in the language of this review,
modal-energy-mixing or nonmodal-mixing and, if the former, chaotic or
quasiperiodic.
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