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The classical mechanics of a system of two nonlinearly coupled .
oscillators of incommensurate frequencies driven by an oscillating
electric field are studied. The presence of quasi-periodic and
chaotic motion in the unforced system is shown to influence the
nature of energy absorption. Two essentially different types of
behavior are observed. In the first, energy is exchanged in a
periodic manner between the system and the forcing field. The exact
results are compared with perturbative analysis (based on Lie-
transform techniques) employed in this regime. In the second regime,
the energy exchange is erratic and a statistical analysis of a
family of trajectories shows the role of the chaotic motion in the
unforced system in the dissociation process. The results of the
theory are compared with those obtained from an ensemble of exact
classical trajectories and found to be in reasonable agreement.

INTRODUCTION

The phenomenon of multiphoton absorptjon in molecules has been
intensivelg studied in the past few years.!’? Several theoretical
models®*“»° have been proposed for the treatment of this problem.
One prevalent qualitative scheme is based on the separation of
molecular eigenstates into sets of discrete, quasi-continuous and
continuous levels with coherent absorption of energy in the discrete
set, and incoherent absorption by the quasi-continuum and continuum,
followed by dissociation.

Of interest to such studies ds the classical phenomenology. of
(forced) driven molecular fystems and the nature_of mode-mode



energy transfer in facilitating dissociation. As an initial approach,
we have studied® a system of nonlinearly coupled oscillators under
the influence of an external field coupled to only one of the degrees
of freedom. In essence, this resembles a simplified molecule inter-
acting with a laser field.

In the first section we describe the classical Hamiltonian and
some features of the autonomous and of the forced system dynamics,
for a system without a zeroth order internal resomance. (For such
nonlinear systems, exact analytic results are usually not possible;
there is, however, the well-known KAM theorem® regarding the stability
of motion under perturbations for both the autonomous and non-
autonomous cases.) An approximate analytic and statistical theory
is presented in the next section, followed by numerical results
from trajectories and comparison with theory. A concluding discussion
is given in the final section. The present symposium paper is an
abbreviated version of a more detailed presentation given elsewhere.?®

THE CLASSICAL HAMILTONIAN

Autonomous System

The Hamiltonian of the unforced coupled oscillator system
investigated is

H' = g(px2 + py2 + wx2x2 + wyzyz) + Ax(y? + nx?) (1.1)

where (x,p_,w_ ) and (y,p.,w_) denote the coordinate, momentum and
zeroth-order frequency,yregpectively. The values of parameters
chosen here are wy = 1.3, wy = 0.7, A=0.,1, n= -1; this type of
Hamiltonian has often been used in the nonlinear dynamics litera-
ture, and the parameters for the potential energy surface are similar
to those used in Ref. 7, although the larger value of n here
corresponds to a higher anharmonicity than that used previously.7b
The three saddle points for the dissociation channels are located

at (x,y) = (5.63,0) and (-2.45, * 7.71) with a minimum dissociation
energy of E = 6.54 units (at the last two points).

It is well known that the dynamics of the Hamiltonian H' has a
rich structure associated with it.’2 The trajectories are either
quasi-periodic in time or "chaotic". The basic difference between
these two types of motion is that the former trajectories are
confined to a torus in phase space while the latter are not. This
difference is easily characterized by the Poincaré surfaces-of-
Bection,7 which for the former type are smooth curves, while for the
latter they are a seemingly random set of points.



It has become convenient in the discussion of such systems to
describe a critical energya E above which most initial conditions
lead to chaotic type trajecto%ies. From the surfaces-of-section
for the motion,> one can extract the relative fraction of phase
space that leads to chaotic motion, by measuring the relative area
not covered by smooth curves. This is shown in Fig. 1.

The Nonautonomous (Forced) System

The interaction with the driving term is chosen to occur through
the y-degree of freedom, giving the total Hamiltonian,

H= H'-F y cos wt (1.2)

Here the driving frequency w is equal to w_.
Hamilton's equations obtained from (1.1) are

p. = (mx2 x + Ay? + 3anx?) (1.3)

ﬁy = -(wyzy + 2Xxy) + F cos wt

and can be integrated numerically.
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Fig. 1l: Fraction of phase sgace covered by tori as a
function of energy. - e e e e



We first consider some principal qualitative features associated
with a typical trajectory. Shown in Fig. 2 is the total energy con-
tent of the oscillators, E (i.e., H'(t)) as a function of time. Two
regions of behavior may be identified, separated by a vertical line
in Fig. 2: Regular energy exchange between the system and the field,
with a definite set of associated frequencies. Erratic energy
exchange between the system and the field with several associated
frequencies--in marked contrast to the previous region. Arrival at
this region was, for all trajectories studied here, ultimately
accompanied by dissociation, as in Fig. 2.

A related type of behavior was observed in an earlier classical
trajectory study @ of multiphoton absorption in CD3Cl (Fig. 4 of
Ref. 9a).° ‘(See also Ref. 9b for am examination of individual
trajectories.) The actual behavior of individual trajectories can
differ considerably in the extent to which they sample the two
regimes. Before presenting the numerical results obtained by inte-
grating Eq. (1.3), we first present an approximate analytic and
statistical theory of the process.
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Fig. 2: Time dependence of the total energy for a =
given initial condition.®



THEORIES FOR THE TWO REGIMES

The Regular Regime

In this regime, we find® that the overall behavior of the total
energy is well duplicated simply by treating the total system (with
F # 0) as a single, y-type oscillator of altered frequency &_,
driven by the external field. Thus, we now get the equation’of
motion

¥+ y Zy=Fcosuwt . ... . y (2.1)
where &, is not equal to w_ and may be determined® by standard
classical perturbation metfods.!®

Solution of Eq. (2.1) yields

y(t) = K sin (Gt + 6) + ———— cos ut (2.2)
Wy “=w
where K and © are determined by the initial conditions. The total
energy behavior, i.e., H'(t) determined mainly from (2.2), is shown
in Fig. 3, and it can be seen by comparison with Fig. 2, that the
overall features have the same behavior as the numerical results in
the regular regime. In the event that mixing is widespread in the
autonomous system (as in a 1l:1 or 1:2 resonance case), replacement
of the coupled system by a single oscillator may not be possible.
The frequency

R = %(Qy-w) (2.3)

determines the long periodicity in the energy behavior, while the
shorter oscillations have period equal to ﬂ/wy.

The Erratic Regime

In this regime, the total energy of the oscillators fluctuates
in time in an irregular manner. The difference between this and the
previous regime is similar to that between quasi~periodic and
chaotic motion in the autonomous system. The current absence of
rigorous analytic methods that are applicable for treatment of chaotic
behavior makes a statistical approach a useful first alternative.

We made® the following assumptions for our present system.
1) In the periodic regime for an individual trajectory, the total
energy is approximately the same for all maxima. 2) The erratic
regime sets in for an individual trajectory when the forcing term
leads the system into a portion of phase space where the underlying
motion is chaotic. - 3) All gystems in the-erratic regime ultimately
dissociate. -4) The probability of entering-the erratic regime
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Fig. 3: Time dependence of total energy in the regular regime
predicted by the Lie transform analysis.s

at a given peak is simply that fraction, (1-z), of phase space not
covered by tori.

With the above assumptions, we deduced® that the fraction f_(t)
of trajectories that are surviving at time t is given approximately
by

£ (e) = BT (2.4)

Here B depends on the properties of the regular regime, and 7 is
dependent on those of the autonomous dynamical system in the regular-

chaotic regime. B is given by (2.3).

NUMERICAL RESULTS

Regular Regime

In the quasi—geriodic regime, a quantum state has its analogue
'in an eigen torus. b We analyze the forced system in terms of a
family of trajectories with initial conditions uniformly chosen



over the torus corresponding to the ground state of the system (1.1).
Using the perturbation method of the Lie ttansform,1° which is
described in Ref. 5, the dependence of various dynamical quantities
on system parameters is somewhat complicated. However, the long
periodicity, which is determined by B, was 150 time units compared
to the observed value of 160 time units. The amplitude of the first
peak in Fig. 2, was 5.1, which agrees well with the value of 5.0
predicted by the Lie transform analysis5 (cf Fig. 3).

Erratic Regime

The connection between the onset of erratic behavior in the
forced system and chaotic behavior in the forced system may be
examined by turning off the field along the trajectory and then
allowing the system to evolve from this "initial condition". When
the field was turned -off in the regular regime, a quasi-periodic
trajectory was obtained, while turning off the excitation in the
erratic regime produced a typically chaotic trajectory.
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Fig. 4: Ln of fraction fs(t) of surviving trajectories as
a function of time for F = 0.1, w = 0.7.°

On a logarithmic scale, fg(t) is very roughly linear, (during
the first few half lives) in accord with Eq. (3.4) and has a slope
at half life of -0.002. 1In applying Eq. (3.4), we estimate [ = 0,5
8t Emax = 5.0 (from Fig. 1). Thus (B/m) ln C = -0.004. This value
agrees to a factor of two with the empirical value obtained from
Fig. 4. It must be emphasized that the model is only a first
approximation. The decrease in slope of the lnfg(t) vs t curve
with time in Fig. 4, may be due to the residual unreacted systems
being "locked" into a regular part of phase space instead of
sampling the latter more randomly, ‘

CONCLUSION AND SUMMARY

In our study of this problem we have formulated a classical
phenomenology of a driven coupled oscillator system. Two essentially
different kinds of behavior can be distinguished: the exchange of
energy between system and field occurs with a well-defined time scale



deriving from several aspects of the motion in the forced and
unforced system. Secondly, the energy behavior can become highly
erratic, and the latter motion inevitably led to dissociation under
the conditions studied. The contrasting regular and erratic regimes
in the forced system have their immediate analogue in quasi-periodic
and chaotic motion in the autonomous system.

. A time lag is observed in the appearance of dissociation when
an ensemble of -trajectories is analyzed. The distribution of life-
times shows a power-law decay, which is tied into the extent of
stability .in the -motion of the autonomous system, This distribution
can be understood semi-quantitatively, and it is demonstrated how
the parameters governing the decay rate can be approximately related
to the parameters of the system.

In larger systems that are more typically "molecular", the
analysis will necessarily become more complicated although the
essential physics of multidimensional forced systems is likely to
be similar for systems without internal resonances. The presence
of several coupled modes will probably reduce the overall
periodicity, and indications are that chaotic motion can occur at
fairly low energies (compared to dissociation). 1In higher—dimen—
sional systems, methods based on spectral characteristics 1! or on
the mean rate of separation of nearby trajectories12 are more
suited for measuring the extent of chaos since surfaces of section
become considerably more difficult to compute. At this time con-
siderable effort is being devoted in the literature to the prediction
of widespread chaos in such systems,® and it may ultimately be
possible to obtain 7 without recorse to numerical experiments,
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