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On the onset of chaotic motion in deterministic systems
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In the present paper the classical counterpart of the quantum avoided crossing method for detecting chaos is
described using classical (Lie-transform) perturbation theory and a grid of action variables. The results are
applied to two systems of coupled oscillators with cubic and quartic nonlinearities. The plots of encrgy of
members of the grid versus the perturbation parameter provide a visual description for predicting the onset of

cheos.

I. INTRODUCTION

The study of classical dynamical systems!® is current-
ly of great interest, partly because analogous prob-
lems (regular versus irregular motion) arise in nu-
merous other fields.? In the present paper, a method
for studying the onset of chaotic motion in classical '
systems is presented. Chaos is of particular interest
in the behavior of isolated molecules, since theories
of unimolecular reactions, chemical activation and in-
frared multiphoton dissociation frequently assume its
presence {e.g,, RRKM for unimolecular reactions) or
absence (e.g., N. B. Slater’s theory).

For a system with N degrees of freedom, i.e., N co-
ordinates ¢,, ..., gy and the conjugate momenta p,, ...,
pn, the Hamiltonian function is 'Jc(ql. veny Droeoby).
Such a system is termed integrable! if there exist N
independent smooth functions of q, p, the *isolating
integrals,” f;, ..., fx=3C (the total energy) with vanish-
ing Poisson brackets {f, f;} =0 for all ¢,j. (This is
trivially true for N=1, and so, in the rest of the dis-
cussion N=2.) It can be shown that integrability im-
plies! the existence of a suitable system of canonical
coordinates, the so-called action-angle variables, In
this case, the dynamical flow of the Hamiltonian in the
2N-dimensional phase space actually occurs on sub-
spaces of dimension N, on which the N action variables
are constant. The motion can then be described as a
Fourier series in at most N fundamental frequencies,
their overtones, and combinations,*

For nonintegrable systems one might imagine that
the only isolating integral is the total energy (and for
field-free systems in three dimensions, the total
angular momentum and any space fixed component),
thus leading to ergodic flow on the energy hypersur-
face.® In the typical case, however, the flow of a dy-
.namical system is neither integrable nor ergodic,*

For a large class of nonlinear Hamiltonian systems,
the theorem of Kolmogorov—Arnol'd and Moser (KAM)"*
assures the existence of stable (regular) motion on
N-dimensional submanifolds in the 2N¥-dimensional
phase space, for sufficiently small perturbations, Un-
fortunately the theorem guarantees the existence of such
motion without any reasonable estimate of how much
(as a measure) of the flow is close to the integrable
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flow or of how large the perturbation must be to give
rise to any appreciable amount of such irregular be-
havior,

Numerical experiments have provided evidence of
KAM type behavior® for many typical nonintegrable
systems as for example in the early work of Hénon
and Heiles, ? where the Hamiltonian

=3(p}+pi+qi+ad) +ailgl -5qd)

was studied over a range of energies. (The variation
of energy is equivalent, via a scaling, to variation in
the strength of the nonlinear perturbation,) At low
energies, the flow was seen to be almost entirely
quasiperiodic (flow on a 2-dimensional torus), being a
small perturbation of the behavior of the integrable
system,

=40} 0} + atead).

At high energies, an appreciable fraction of the
classical trajectories was observed to be no longer - '
regular (quasiperiodic), corresponding to the lack of
existence of (local) action-angle coordinates, or
equivalently, due to the absence of tori. In current
terminology, this latter type of motion is called ‘cha-
otic.” The differences in the two types of behavior is
easily visualized in several ways: The Poincaré sur-
faces of sectiqn" for regular motions are smooth closed
curves while for chaotic motions they are an apparently
random splatter of points; the spectrum of the motion®
(Fourier transform of the coordinates) is'a discrete
set of lines for the regular case and a “grassy” broad
set of lines for the chaotic case; the rate of separation
of nearby regular trajectories is linear in time, where-
as for chaotic motions, it is exponential,®®

The energy range over which the motion changes
character, from being primarily regular to primarily
chaotic, is usually quite small; this has become known
as the “stochastlc” or “chaotic” transition. Predicting
this transition for arbitrary systems is no simple task!®
and a variety of methods have been proposed.!! In the
present paper we describe a method for studying and
predicting this onget for systems that are perturbed
oscillators with no low zeroth order internal resonances,
We consider, in particular, when, as a function of the
energy and where in phase space, local chaos is likely
to occur,

The remainder of the paper is organized as follows,
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In Sec, II, the proposed method is outlined and the con-
nection with recent quantum-mechanical studies'®! on
the role of multiple “avoided crossings” in producing
quantum chaos is described, In Sec, III, the method

is applied to two simple examples of two coupled oscil-
lators with cubic and quartic nonlinearities, Finally,

in Sec, 1V, the summary is given,

Il. USE OF AN ACTION LATTICE

. We consider a particular class of conservative Hamil-
tonians of the general form

N r N
1
.'IC=§ ; (pf+wqu)+7t{‘;~ a,,,q.q,q.} cee 2.1

where ¥=2 and the p’s and ¢’s are canonically conjugate .

variables such that

3 .« 93

q—;—, —P-W. (2.2)
and the zeroth order frequencies, w do not satisfy any
“dangerous” commensurabilities (in the sense of secu-
lar perturbations). For such Hamiltonians, a succes-
sive series of transformations can be performed (via
standard classical canonical perturbation methods'*),
to convert i to a function of new variables, §, %, such
that

%, q; N~F(E,n; V), - (2.3)
wl.th ’

E=0F/on, 1n=-0F/s¢, (2.4)
and

F&,n; 2)=f (8 +nw’; 2), (2.5)

i,e., the transformed Hamiltonian is a function of the
new variables £, 7, only in the combination (£ + w2,
This is merely the Birkhoff normal form® of 3¢, and

is a power-series expansion in A. For the present, we
are not concerned with the convergence properties of
the normal form!*!S; in practice, a low order expan-
sion in A has sufficed in the systems we have studied
for providing a more than adequate description of 3¢

for the purpose at hand. The transformation to good
action-angle variables, I, # for iC is effected by

¢=vVT/rw cos2nd, (2.6a)

n =VIw/n sin2q8, (2.6b)
such that

F(E, n; M= K(; 0), (2.7

and X is a function of the new action variables I alone,
For A =0, the transformations are exact; the question
which we now consider is; What can be learned about
the behavior of the true Hamiltonian 1 by studying its
(integrable) approximate K? There are some points

to be noted, Firstly, K is integrable (and thus can
show no chaos), whereas 1€ is not (and can thus ex-
hibit chaotic motion). Secondly, since the I’s are con-
stant in X, i.e,, —8K/86=I =0, fixing a set of actions
I defines a torus for F. Some tori persist and some are
destroyed by a perturbation A. For the former, “good”
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action-angle variables, with actions being constants of
the motion, can be defined, while for the latter they
cannot, and these will be termed unstable tori,

The preceding analysis would be of no particular
value if there was no stability criterion for such tori.
We can, however, obtain s8uch a criterion by the fol-
lowing construct. A recently proposed definition'® of
quantum stochasticity is in terms of avoided crossings
of energy eigenvalues with respect to the variation of a
parameter, There, one examines the energy eigen-
states of a Hamiltonian, C,

¥X=Hy +\H,, (2.8)

where Hp 1s an integrable Hamiltonian, and H, is a non-
integrable perturbation, by exact quantum mechanical
methods, and observes the levels that avoid crossing,
It was proposed"® that overlapping avoided crossings,
rather than isolated ones, gave rise to a “statistical”
character in the quantal eigenfunctions, and thus to ap-
parently erratic spacings in the eigenvalue spectrum,
producing thereby the irregular spectrum of Percival, !®
It was further seen that the location of such avoided
crossings in energy -parameter space, can be simply
determined by the use of quantal”® perturbation theory
for the system examined,

They could also be determined by semiclassical per-
turbation theory. Now, semiclassical quantization is
essentially a procedure of constructing good action-
angle variables either by trajectory' or perturbation
methods'® and then applying Einstein-Brillouin-Keller—
Maslov rules, ° Trajectory methods are dependent on
finding invariant tori for a system with Hamiltonian X,
tori on which the action integrals along N independent
paths C; aré individually quantizable, i.e.,

prdq=(n +a,/4)h, 2.9)

¢

where »; is an integer, a; the Maslov index, and & the
unit of action (Planck’s constant), Accordingly, a quan-
tum state then corresponds to such an invariant torus,
Since it is easier to perform the semiclassical quantiza-
tion by perturbation methods, the variation of semi-
classical eigenvalues with a parameter is most easily
studied by quantization of the normal form, i.e., by

the further transformation,

l-(n+a/a)n, (2,10)
80 that .
K(@I; N)~E(; a; A), (2.11)

where the n’s are (integers) the good quantum numbers,

- For a particular choice of n, then, E(n) is the semi-

classical eigenvalue. In examining the-eigenvalue vs
parameter variation, the crossing (degeneracy) of more
than two such eigenvalues in a small A neighborhood
may be interpreted as the signature of overlapping
avoided crossings in the true system, and thus as a
signature of torus destruction, when the exact levels are
“split” at the crossings,

-The above statements have.been phrased for a par-
ticular set of tori, namely the “quantizable” ones;
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Those with actions of integer plus a/4. Since classi-
cal chaos occurs through the destruction of arbitrary
tori, we now seek to extend the above ideas to include
all tori and so to be classical., This can be done in
N-dimensional action space: One difficulty in achieving
this objective is the fact that the classical actions are
continuous variables while quantization selects only

a discrete set of realizable actions; thus, the analog

of curve crossings for the classical case may be diffi-
cult to visualize,

This particular obstruction is overcome in the pres-
ent paper by using a discrete set of actions to examine
such resonant interactions between tori., The set of
actions are chosen to correspond to a “lattice”®—with
integer separations in the unit of action, denoted by c.
Semiclassical quantum mechanics corresponds to a
particular placement of this lattice on the space of ac-
tions such that one selects only those actions equal to
(n+a/4)h, i.e., c=h, To study the stability of all
tori via the analog of curve crossing, we need merely
to study the parameter dependence of sets of actions
equal to (n+a/4 +x)c with y fixed for a given set, #'™
corresponding to a particular placement of the lattice
in action space, By varying x*'® and using the above
grid, one can scan the results for isolated and multiple

_avoided crossings. Since the energies of tori with
arbitrary actions can be easily determined through
K(I; A), this latter task reduces to the study of simple
polynomial functions in the present instance, Further,
since K, F, and X are related by known transforma-
tions, knowing the particular tori of F that are unstable
is equivalent to knowing where toroidal instability oc-
curs in the phase space for i,

The connection of these suggestions on isolated and
overlapping avoided crossings with another concept is
as follows. For each crossing, there is a zero fre-
quency (aK/&I=0) for some action I, a linear combina-
tion of actions I;, and so there is a periodic trajectory
and an internal resonance, If there are two avoided
crossings in the neighborhood of each other with differ-
ent rotation numbers, i,e,, different integers m, for
the two resonances §m;w; =0, for each there are two
periodic orbits in the vicinity of each other and two
different resonances.

Chirikov has postulated!!® that when these resonances
overlap, and indeed when they become dense, one has
chaos, Perturbations of nested tori normally leave the
tori deformed but still nested, However, if each torus
is associated with a periodic trajectory, their mutual
perturbation causes the two periodic trajectories to
break up into “islands” with elliptic and hyperbolic
fixed points, This intersection of tori is presumed to
cauge local chaos, ''™#2 A different approach with the

" same objective, i.e., locating periodic orbits, has been
proposed by Greene, !¢

The above discussion of the method proposed here
will be illustrated using two examples with N=2 dimen-
sions in the followlng section.

I, TWO EXAMPLES
A. The Barbanis Hamiltonian23
The Hamiltonian
*®,q; V=30f+pi+wigi+wigd) +A9q (3.1)

has been studied extensively in the literature,® Here
we avoid the choice w;/w,=1 or 2 to within O(x), Th
canonical transformation to normal form is easily ac-
complished through the Lie transform,""' giving

F(&,m;2) = (82 +nl/0Dol + (£} +5}/wwi]

2
+ m[(‘”g - 3w}/8)(&} +ni/w))?

The subsequent transformation to action-angle variablés
is direct, using

L= +n¥/wdom.

One has
' 2
KOG0) = y(1y/2) + 0l03/27) + gyl (0} - 3ul/8)

x I3/ mPwh + (w0 /w M I/7)] + O(\Y) . (3.3)

In order to apply the method outlined in the previous sec-
tion, we finally obtain the polynomial

E(ns X5 A) =w[(n1 + a|/4 +x1‘)C/21T +w2(na + a2/4 +XQ)C/21T
+ ﬁ[(nz + a2/4 + Xz)z 2/411'2 + ﬂz(m + (!1/4 + X;)

X (ny + @ty/4 + Xa) &/ 4n? +O(x‘) (3.4)
2)*(w} — 3w}/8) 22
Bi wiwy 2"’1 - 4‘02 ﬂz w,wz(w,! - 4(0;;

The Maslov indices a, and @, are both equal to 2 in
this case and the unit of action here is ¢. The proce-
dure for determining the Lie transform is well known
(in particular for the Barbanis Hamiltonian’®) and the
details will not be given here. As a straightforward
application of the method, we present the curves for the
set of actions with x;=X,=—% (i.e., the lattice picks
out actions exactly equal to integers) and with a unit of
action ¢c=2n7. The parameters of the Hamiltonian (3.1)
are w}=1.6 and w}=0.9. It can be seen in Fig. 1 that
the lowest multiple crossing of curves occurs at E=19
units in the neighborhood of A= ~0.08, the value of A
at which the system has been studied frequently This
is indeed the value of the energy at which Sorbie and
Handy® report the presence of chaoti¢c motion (we have
independently confirmed this. cbservation by examining
the rate of separation of nearby trajectories at this en-
ergy*") by observing the Poincaré surfaces of sections
of a several trajectories of the Hamiltonian (3.1).

One may obtain additional information from curves
such as these, Since the actions are well defined along
these curves, one can use the perturbation theory to de-
termine the (approximate) initial conditions for the tori
of the exact 3¢, and how they behave in the vicinity of

. the avoided crossings of the action set. Withx=-1%

this is done for some values of A around A= -0, 08,
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Shown in Figs. 2, 3, 4, and 5 are some energy versus
A plots, the pertinent trajectories in (g, ¢;) space, the
corresponding Poincaré surfaces of section and their
Fourier spectra, ® for two of these curves in Fig. 2.

These diagrama are helpful in visualizing the change
that the tori undergo as a function of the perturbation.
The curves in Fig. 2 are labeled nyn,, so that the ac-
tions for the respective tori are n, +%, np+1. (Dueto
the symmetry of the perturbed Hamiltonian, only even
geparations in the n,’s need be considered.) Note that
there are both isolated avoided crossings and multiple
avolded crossings; specifically around A= -~ 0.08, we
expect the tori with (n;, #,) equal to (2, 18) and (5, 14) to
digplay the most sensitivity to perturbation. The top-
most curve, n=(11, 8) in Fig, 2, undergoes no cross-
ings when A=-0,08+0. 01, and thus we expect the torus
to be stable in that X interval even though the energy is
very close to the dissociation energy.

In Fig. 3, the trajectories of the (i, n,) tori, % (11, 6)
and (2, 18) are shown; as expected, the former is stable
at all values of A in Fig. 3, while the latter, which has
undergone a multiple avoided crossing around A= - 0,08
is unstable, developing from a quasiperiodic trajectory
(at A=-0.07) to a pericdic one (at A =-0.08), to a tube
orbit (at A= - 0. 085) with a definitely chaotic motion (at X
=-0,00). This dramatic change in the (2, 18) torus is

21.00 ’-
2025
>
[C]
g 19.50
w
1875
18.00 1 1
042 -0 -0.10 -0.09 -0.08 -0.07 -0.06
A
FIG. 1. Constant action curves for the action lattice with

X1=X3=—4% and ¢/27=1, for the Barbanis system. Note that the
lowest multiple crossing around A=—0.08 occurs at E~ 19.0
units.
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FIG. 2. Constant action curves for the lattice with x; =x; =~}
Only a few of the curves are shown here; the numbers {1, n,)
are those in the actions (2;+4 +xy, n2 +4+X3).

further evident in the Poincaré surfaces of section shown
in Fig. 4. We observe the change {rom a single smooth
curve to a set of points, to a chain of 5 “islands” and
finally to a more “random” surface of section. The
ability of the present static description to sense the dy-
namics—the existence of stable and unstable fixed points
that give rise to the island structure is clear.!® The

(5, 14) torus undergoes a similar change, There is no
such change in behavior of the (11, 6) torus; one can,
however, see that the future avoided crossing with the
(15, 0) torus is anticipated by the dimple in the surface
of aection; the avoided crossing there gives rise to two
islands.’

The associated spectra of the motion display the
changes similarly, in Fig. 5. For the (11, 6) torus, the
spectra at the different A values are virtually identical
in their features, while for the (2, 18) torus, the spec-
trum changes from a discrete set of lines, to that char-
acteristic of a chaotic trajectory.

An important consideration here is whether the chaotic
trajectories individually sample all portions of the en-
ergy shell since they are no longer confined to tori.

The results in Figs. 3 and 4 indicate that while these
chaotic trajectories are not as restricted as the regular
ones, they are nevertheless not ergodic on the energy
shell; thus one cannot generally expect the average of
any dynamical quantity along such a trajectory to very
closely equal the microcanonical average at that energy.

J. Chem. Phys., Vol. 74, Ne. 2, 15 Jenuary 1881

W




R. Ramaswamy and R. A. Marcus: Chaotic motion in deterministic systems

2.0

A\
A
i
X3l

i

A

N
A
W

)
)

A,

AAA
i
e
XY

%
00

v

WYY

(Y
AN
0

i
W
/."Q

Oy

A
'

=

I

1389

G

00

60

90
-60
G,

FIG. 3. Trajectories with fixed actions at different values of the parameterA. From left
=—0.08, A=—0,085, and A==0.09. The upper set of diagrams

6.0

(a) are for the torus (11,

torus (2, 18). (The corresponding action curves are shown to Fig. 2.)
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FIG. 5. The Fourier spectra of the trajectories in Fig. 3.

There has to be extensive chaos and mixing (perhaps ex-
tensive overlapping resonances in the Chirikov
gense). 1™ :

B.' Quartic perturbation

In this section we apply the method to a somewhat dif-
terent type of perturbing potential, which more clearly
{llustrates the effect of an isolated avoided crossing.
This system is that of two coupled oscillators with a
quartic perturbation, 8¢

1¢=4(p} +p} + wig} +wigd) +2rqigl - (3.5)

For the case w;# w, to within O(3), the application of
the Lie-transform technique is direct, and ylelds the
normal form, which when expressed in terms of the ac-
tions I, and I,, gives :

. 2
K =w,(1,/21) + wy(ly/27) + M, L/47%ww,) - -8—);-5

2 272 2 2y 12
x,[(3w’ -20p11, | (2w} - 3wl 12]_1_0().3) ,
1(% ) -w}iwiw? 4{w? -w,’gwgw,’

which leads to the energy expression

(3.6)

E(n; x; A) = wylny + /8 +X,)¢/27 + wylny + ay/4 +X5)c/2n
+ M wwylny +0ay/4+x1)c/2n(n, +y/4 + X2)e/27
= By(ny + g /& +xHng + aa/8 +X) /(2
- Bylny +@y/4 +xy)mp + /4 +%,)°cY/(20)° +000)

(3.7

with

6=z A}(3w? - 2uwd) 8= A2(2wd -3w?)
1= Fwf - whwiwi = f{wi- wf)wfwg )
Again, the Maslov indices a,, «, are both 2. We choose

the parameters w}=1, w}=% and examine the system
for a grid with c=27,X;, X, = —% and in the vicinity of A

'=-0.0125. At this A, the system dissociates at E

=10.0 units. Shown in Fig. 6 are the curves for the
above action lattice, which gives a first set of over-
1apping avoided crossings at ~ E=28.5 units and thus the
“chaotic transition” is predicted to occur at a somewhat
higher energy relative to dissociation than in the pre-
vious example, The systematic study of a few tori in

J. Chem. Phys., Vol. 74, No. 2, 16 January 1981
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ENERGY

0 ) 1 1 J 1
.-0020 -0.015 -0.0I10 -0.005 00

A

FIG. 6. Constant action curves for the quartic Hamiltonian,
with xy=x,=—-4 and ¢/27=1, A few of the curves are labeled
(14, n,y); the tori corresponding to some of these curves are
ghown in Fig. 7.

this system is shown in Fig. 7. Of particular interest
here is the effect of an isolated crossing which has been
presumed to convert a torus to that of a periodic tra-
jectory and, when the E, vs A curve has passed through
the crossing region, restore to the system its original
torus. This behavior is dramatically seen in Fig. T(b).
A crossing occurred around A= -0.01 for the tori with
actions (4, 8) and (8, 2). Analogous changes were ob-
served in the Poincaré surfaces of section.

C. Discussion

For convenience we have chosen the unit of action, ¢
=27 in the foregoing examples. There is, however, a
natural unit of action in these problems, related to the
size of the secular perturbation terms, which cause

actual crossings to become avoided crossings. The
choice thus depends on the degree of detail desired. One
might anticipate that a suitably normalized plot of num-
ber of crossings N, in some interval AX versus energy
would be approximately independent of the choice of c,

if there were enough crossings in the interval.

There is ancther point regarding the method presented
here: The crossing of several action curves in some
small X neighborhood is itself not sufficient to give rise
to chaos, unless in addition, the “coupling” between
such curves is enough to mix them, i.e., cause an over-
lap. Thus, in addition to information regarding the po-
sition of the crossings, one should additionally estimate .
the “width” of each avoided crossing in a more detailed
examination, %

In the concluding part of this section we consider the
relation between the present method of crossings to that
of Chirikov.!!® When a crossing occurs here, for ac-

" tions (I1,1) and (I{’,1;') one has

K3, 1) =K', 1;") + 0(®) , (3.8)

where p=4 and 2 in the examples given earlier. Ex-
panding Eq. (3.8) yields, to order »°,

wyllf =11") +w (I3 = 1,") + oI -1'')=0. (3.9
If Ij —1{’ and I; -I;' are sufficiently small, Eq. (3.9) re-
duces to Chirikov’s condition, since we have chosen the
grid of action with integer separations. Thus, within
the approximation of neglecting the higher powers of I,
I', the present method is useful for locating these in-
ternal resonances and the energy at which they occur,
at a glance. Chirikov goes further and estimates the
“widths” of these resonances; we intend to present an
approximate method of doing this? in a subsequent pub-
lication. For the exact trajectories, the width of the
resonances would be related to the width, in action
space, of the separatrix separating the islands such as
those in Fig. 3(b).

If the higher order terms in Eq. (3.9) were truly
negligible, then at the crossing of two curves one should
have an exactly (I; -1;'): (I3 -I;") resonant trajectory.
Because of the approximations involved here, we usually
locate only resonances that are close to this resonance,
as in Fig. 7, where the two periodic trajectories have
the ratio 8K/8I, : 8K/8l, of 35:33 [Fig. 7(a)] and 3:5
[Fig. T(b)] while the ratio I =I;'1 : |I; ~13| i8 (8-4);
(8-2), i.e., 2:3,

1V. CONCLUSION

Chaotic motion in dynamical systems is defined via
the existence of orbital instability (cf. the discussion in
Sec. I). However, the onset of such chaos is not a well-
defined notion.!?° We have shown in this paper, how one
may detect the gradual destruction of toroidal motion by
examining the energy dependence of tori with fixed ac-
tions, as a function of the perturbation, This enables
one to locate in an approximate but nevertheless useful
manner, which specific tori undergo destruction both
in terms of total energy, as well as the region of phase
space where such instability appears. In application to

J. Chem. Phys,, Vol. 74, No. 2, 15 Januery 1981
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FIG. 7. Trajectories with fixed actions at different vitlues of the parameter A for the Hamiltonian (3. 5). From lelt to right, these
are at A=—0,009, A=0,010, A=—0.011, respectively. The upper sct of diagrams, (a), are for the torus (8, 2), while the lower

ones, (b) are for the torus (4, 8).

two simple two-degree-of-freedom systems, the utility
of the method and the ease in its usage have been illus-
trated.

The interplay between classical and quantal ideas in
this method of analysis leads to some interesting conse-
quences. Firstly, it follows from Sec. III, local classi-
cal chaos by no means implies classical ergodicity.
Similarly, in the analogous quantum definition, '* the
near degeneracy of several eigenstates (i.e., the quan-
tum overlapping avoided crossings) probably does not
give rise to quantum ergodicity (in the sense of average
of dynamical quantities equalling the classical micro-
canonical ensemble average at that energy), but to a
slightly restricted phenomenon. Extensive overlapping
of many avoided crossings could however, approximate
ergodicity. Secondly, while local classical chaos does
not imply quantum chaos (in that the former can set in
well before the latter), the actual workings of chaos are
probably similar in many respects, especially in a
semiclassical picture.

We have dealt with systems here that do not have
zeroth order internal resonances, In systems with in-
ternal resonances, reduction to Birkhoff normal form is
itself a trivial matter, *® but subsequent transformation

The corresponding action curves are shown in Fig. 6.

to the E polynomial requires explicit integration. '*®

Thus the application of the method is straightforward,
but requires more computation. This will be explored
in future work. !
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