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Abstract: Classical, semiclassical, and quantum theories of outer-sphere electron-transfer reactions in polar media are discussed.
For each, the Franck-Condon overlap factors for the hexaamminecobalt, hexaaquoiron and hexaammineruthenium self-exchange
rates and for the Fe?*-Ru(bpy),** cross-reaction are evaluated and compared. The quantum effect on the rates is relatively
unimportant in the “normal™ AG® region. Dircct sum and saddle-point evaluations of the quantum Franck-Condon factors
arc made and compared.

Introduction and bond angles of the reactants and by fluctuations in the sur-
An outer-sphere electron-transfer reaction in a polar solvent rounding solvent. In many systems the inner-sphere changes are
is characterized by changes in the force constants and bond lengths very small, so that the reaction is controlled by fluctuations in
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Table 1. Structural and Spectroscopic Data®
Co(NH,),** Co(NH,),** Ru(NH,)** Ru(NH,),**

M-N bond 2.114 1.936 2.144 2.104
length, A

hw (A, ), 357 494 350 500
cm™!

hw (Eg) 255 442

heo (F) 325 475

tww (F) 192 331

hw (F) 187 322

o (F) 143 246

Aouter 117 113
kJ/mol

¢ Reference S. Symmetries are for an effective octahedral
geometry.
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Figure 1. Model harmonic potentials for electron transfer vs. a gener-
alized configuration coordinate g.°

the solvent polarization (e.g., Ru(NH,)¢**/2* 2 and Cr(2,2’-bi-
pyridyl);**/#*3). On the other hand, some redox systems involve
substantial internal reorganization (e.g., Fe(H,0)s*/>*2 and
Co(NH;)¢*/**%). In such systems inner-sphere effects are im-
portant.

In this paper we briefly describe classical, semiclassical, and
quantum theories of electron transfer. It has been suggested that
reactions in which inner-sphere reorganization is important are
not adequately described by classical theory but require a quantum
mechanical treatment.*¢ A quantum mechanical treatment is
available for nonadiabatic electron transfers and was developed
at first for the solvent modes and later for the bond vibrations.58?

We discuss the nature and magnitude of quantum effects in
the particular cases of the very slow hexaamminecobalt self-ex-
change reaction, the hexaaquoiron sclf-exchange reaction, the
hexaammine ruthenium self-exchange reaction, and the Fe?*-
Ru(bpy);** cross-reaction.

It is expected that if nuclear tunneling is to be important, it
will be so for systems in which a high-frequency mode undergoes
a significant displacement. For example, in the hexaamminecobalt
self-exchange reaction the equilibrium position of the symmetric
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stretching mode, Aw = 431 cm™, is displaced by 0.18 A (cf. Table
I), and in electron-transfer reactions in which an electronically
excited bipyridyl complex is quenched, a ring mode, Aw =~ 1300
cm™, undergoes a substantial equilibrium displacement.

Nuclear tunneling will, other things being equal, be more im-
portant for high rather than for low-frequency modes as one can
see from the nature of harmonic oscillator eigenstates. We
consider for illustration purposes the one-dimensional model
surface sketched in Figure 1. Nuclear tunneling depends on the
overlap of reactant and product wave functions in the classically
nonallowed region, and therefore is directly related to the am-
plitude of the reactants’ wave function in the region ¢ > . This
wave function extends further into the classically forbidden region,
for any given energy, the higher the vibration frequency. It follows
that tunneling from a state of given energy is more probable for
a high-frequency mode than for a low-frequency mode, at a given
energy.

In the present paper it is found that for the reaction rate
constant a reasonable order of magnitude estimate for the con-
tribution of configurational changes of high-frequency quantum
modes in the first coordination layer, for typical metal-ligand
frequencies, can be provided by a classical expression.’

Quantum Treatment

Franck-Condon Factor. An approximate quantum mechanical
rate expression based on the golden-rule transition probability has
been derived for electron transfer systems in the nonadiabatic
limit.5%®  Within the Condon approximation the transition
probability in this expression involves the product of the square
of an electron-exchange integral and a thermally weighted sum,
G, of vibrational Franck~Condon factors (eq 1), where Q is the

= ézze- T i) PO(E, - En) 1)

reactants’ (vibrational) partition function and n and m designate
initial and final vibronic states, respectively. E, and E,, are initial-
and final-state energics. K, is the initial-state vibrational energy;
|n) and jm) are treated as harmonic oscillator eigenfunctions, equal
to a product over the system’s degrees of freedom of single-mode
harmonic oscillator functions.

The single-mode harmonic oscillator overlap integrals required
for evaluating G directly by the sum of eq 1 have been known for
many years.''"'> The expressions used in this work for these
integrals are presented in the Appendix (eq Al and A2) in terms
of f= ' fw,w’ and w being the frequencies associated with |m)
and |n), respectively, and in terms of the dimensionless change
X'/ in equilibrium coordinate value from |m) to |n). For a normal
mode X = F(AQ)?/2hw, where AQ is the change in the normal
coordinate, w/2x is the vibration frequency, and F is the force
constant for the mode (w? = F).

In the case of X # 0 but &’ = w, one obtains the well-known
limiting form!¢ for n > m

(nlm) = XV (om! /) 2e X2 LT (X) @

where L is an associated Laguerre polynomial. For n < m we
have [{n[m)| = [(m|n)| and then use eq 2 with m and n inter-
changed.

An approximate simple formula for the multimode case has
also been derived elsewhere, together with limitations on its va-
lidity.'* This relation was applied there to the hexaaquoiron
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self-exchange reaction and to the Fe2*-Ru(bpy);** cross-reaction
andzsshown to give good agreement with the exact quantum val-
ues.

Quantum Treatment of the Solvent. The interaction of the
solvent with the reactant ions is implicitly included ineq 1 as a
set of one or more harmonic modes. Usually only a single fre-
quency, hw; = 1 cm™, is used in calculations.5**!7 However,
in view of the significant decrease in the real part of the dielectric
constant of water at 170 cm™ (and the corresponding peak in the
imaginary part)'®"® we have chosen to use a two-frequency
quantum description of the solvent interaction: fw, =1 cm™ and
hw, =170 ecm™. A dielectric dispersion in the solvent was first
treated for electron transfer by Ovchinnikov and Ovchinnikova.?

As a first approximation for this two-frequency description we
divide the outer-sphere reorganization energy into two parts,
writing A, Which is 4 times the solvent reorganization energy,?'
as

At =M+ A 3)

= 1.1 1_1
>‘l' xoul((. fir)/(‘s ‘op) (4)
meao oL 1_1
2 — Nout G op &  €op

(g = 5.0' = real part of the dielectric constant on the “plateau”
between 1 and 170 cm™; ¢, = 78.3!% = static dielectric constant;
Cop = 1.78%2 = ﬂpz).

Thus, the quantum treatment of the solvent interaction (the
solvent is taken to be aqueous in this paper) involves two harmonic
modes included in the degrees of freedom of the system. In
performing the quantum mechanical calculation for the solvent
eq 2 was again used but X was obtained in the following manner.
It is first recalled that for an internal normal mode i of the
reactants X;, which equals F; (AQ))%/2hw,, can be rewritten as
A/ hey, since® A; = F(AQ)?/2. By analogy, we use for X for the
solvent \;/hw, and A,/ hw, where Ay and A, have been defined
in eq 3 and 4. The numerical values employed for X, , are given
later in the paper, while hw, , are given above.

Saddle-Point Method. For a system having several vibrational
normal modes of different frequencies, the direct evaluation of
eq 1 can require considerable computing time. However, G can
easily be evaluated approximately by replacing the & function in
eq 1 by its Fourier integral representation and then using the
saddle-point method. After some manipulations?>?* one obtains

where

G = (2nQ)" [ e aEr0 oy )
and, after using the saddle-point method to approximte the in-
tegral, one obtains eq 6,

G = 22" (1p)[V/2Q e 185 Hl1o) (6)
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where AE is the energy (endoergicity) of the transition, t, is the
stationary phase value of ¢ in the integrand in eq 5, and f, f*, and
t, are given in the Appendix.

In the case of a self-exchange reaction, product modes in the
oxidized species are equivalent to reactant modes in the reduced
species so that the formulas simplify considerably.® In a ther-
moneutral sclf-exchange reaction, to = —i/2kT. For other cases
eq A6 of the Appendix may be solved numerically, ¢.g., by iterating
from the approximate root

to = ~i(AE + N)/2kTA ™

where A = ;)" A, and each ), = !/,F(AQ)? Equation 7 gives
the exact saddle point in the high-temperature limit, when fre-
quency changes are neglected, and provides a reasonable starting
point for iteration in other cases.

Classical Treatment. When all the degrees of freedom of the
system are treated in the classical limit, Aw/2kT — 0, and when
frequency changes are neglected, eq 5 reduces to eq 8. This

G = (4nkTN)™2 exp[-(AE + \)?/4kTA] (8)

equation is similar in form to the classical expression for G** but
contains energies rather than free energies. This difference arises
because eq S tacitly assumes zero entropy of reaction, and indeed
the initial equation, (eq 1), with its assumption of harmonic
oscillators, does not contain any important AS® term,” whereas
the actual AS® can be quite large.?® The classically derived
expression is more general in this respect, since it does not assume
harmonic oscillations for all motions.® As defined earlier, A, =
1/,F(AQ)* and A = 3., "A;. It has been shown?’ that frequency
changes may be included in'an approximate manner by using an
average force constant to calculate A;, rather than using the initial
force constant. F; above is an averaged force constant

Fy,=2FF/(F+ F) )

where Fand F’are the force constants in the reactant and product
states, respectively. The classical value of the Franck—Condon
sum (eq 8) is computed by using \'s calculated with average force
constants given by eq 9.

“Semiclassical” Treatment.® Consider first a one-dimensional
case with a coordinate Q. The 6(E,, - E,) of eq 1 can be intro-
duced into |(njm)>. When the commutator of the initial and final
Hamiltonians, %, and %, is neglected, 8(E, — E,,) in the integral
becomes 8(%, ~ # ), which in turn is 8(V, — V,,) since the kinetic
energy terms in %, and %, cancel; V, and V,, are the potential
energies of the reactants and products, respectively. By using the
identity 3,{m){m| = 1, we may reduce the thermally weighted
double sum of squared overlap integrals in eq 1 to a single sum
over nof (n}o(V, - V,)ln) (c.8., sce analogous procedure for other
problems in ref 29). These integrals are readily evaluated, yiclding

(25) The only entropy change present in ¢q 1 (and hence in eq 5) is the
minor contribution from inner-sphere frequency changes, whereas the actual
AS° can be much larger. For reactions in which the set of reactants’ vibration
frequencies equals the set of products’ vibration frequencies AS®,y, = 0, where
AS®,y is the contribution to AS® from inner-sphere vibration frequency
changes. AS® for the Fe2*~Ru(bpy),* cross-reaction (eq 23) is ~180 J mol™
K12 AS°, for this reaction may be estimated as follows. Symmetric
stretching frequencies for Fe?*(aq) and Fe?*(aq) are given in the text (389
and 490 cm™, respectively). For simplicity we will assume that the ratio of
a frequency in the reduced state to that in the oxidized state is the same for
cach of the 15 (octahedral) normal modes. Vibration frequencies in the 2+
and 3+ oxidation states of Ru(bpy); are unknown. If by analogy with Fe-
(bpy);* (for which at least the symmetric stretching frequency is unchanged
upon oxidation??) it is assumed that the vibration frequencies in the 2+ and
3+ oxidation states of Ru(bpy); are the same, then the Ru(bpy),?*/** couple’s
vibrations contribute nothing to AS®,;,. Using standard equations® for the
quantum mechanical vibrational partition functions and for AS®, onc obtains
AS®, = -20 J mol™ K™! at 300 K, which is only about 10% of the total AS®
for the reaction.
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a sum of factors proportional to }x,(Q)[% where Q is that value
of the coordinate for which the reactant and product potential
energies are equal and x,, is the wave function of the reactants.
The ggemaining sum over n in eq 1 is then readily evaluated to
yield

G = (2x\hw coth 4)™/2 exp[-(AE + N\)?/(2Ahw coth 7)]
(10)

where v = hw/2kT and AE and X are defined asin eq 7 but A
is for the single mode being considered. Equation 10 is the same
as that obtained in ref. 28 by a different procedure. A detailed
derivation of eq 10 is given in the appendix.

For systems having two or more frequencies, onc obtains a
convolution of Gaussians of the form of eq 10. The convolution
is itself of the form of eq 10, but AAw coth v must be replaced
with T A\hw; coth v, and X by 217\;-26'”

This method of obtaini% G's, which originated in the theory
of optical spectra of solids,” is sometimes termed “semiclassical”
because of neglect of commutators of 7, and 7, although the
term “semiclassical” has a variety of other meanings (corre-
sponding to other approximations) in the literature.

Calculations and Discussion

We now proceed to consider quantum effects in four particular
cases of chemical interest: the hexaamminecobalt and hexa-
ammineruthenium self-exchange reactions, the Fe?*/3*(aq) self-
exchange reaction, and the Fe?*-Ru(bpy),* cross-reaction.

Hexaamminecobalt Self-Exchange Reaction. The large dif-
ference between the rates of self-exchange reactions 11 and 12
has long been a matter of interest in the theory of electron-transfer
rates.

k
Co(NH;)e* + Co(NH,)g"* —= Co(NH,)¢** + Co(NH;)¢**
: an

k, <102 M s at 25 °C*

k .
Ru(NH,)¢* + Ru(NH;)¢"* — Ru(NH,)¢** + Ru(NH;)¢™
(12)

ky = 10° M~ s at 25 °C*

In the quantum theory described earlier, the rate constant
involves the product of the square of an electronic exchange
integral and a sum of Franck—-Condon factors. It has been sug-
gested that the electronic factor for reaction 11 may be small
because of spin multiplicity restrictions.!* Further, the Franck-
Condon term is much smaller for the Co reaction than for the
Ru reaction because of the larger change in geometry from Co-
(NH;)¢2* to Co(NH,)¢** (cf. Table I).

Buhks et-al.5 evaluated the Franck~Condon sums, G, for re-
actions 11 and 12, by using the saddle-point method described
earlier. They found G(Co) = 7 X 107 18 cmand G(Ru) = 1.5 X
10719 ¢m so that the ratio of Franck—Condon sums contributes
a factor of ca. 1078 to the ratio k;/k,. But they also found that
the classical value of G(Co)/G(Ru) was ~107. The gross dis-
crepancy between the classical and quantum values, a factor of
1000, led them to suggest that G(Co) is heavily dependent on
quantum effects. There is clearly some error in either the classical
or the quantum Franck—~Condon factors of ref 5 since tunneling
effects should cause G(Co)/G(Ru) to be larger in the quantum
case than in the classical one, yet a smaller value was found for
the quantum case in ref 5.

Actually, we have found that the large classical value of ref
5 for G(Co)/G(Ru) is the result of using the inaccurate estimate

(29) (2) M. Lax, J. Chem. Phys., 20, 1752 (1952); (b) R. Kubo and Y.
Toyozawa, Prog. Theor. Phys., 13, 160 (1955); (c) K. Macda, Phys. Chem.
Solids, 9, 335 (1959). (d) D. Curie, “Luminescence in Crystals”, Wiley, New
(chg::;(i)l%:!, p 47 ff. (¢) T. F. Soules and C. B. Duke, Phys. Rev. B, 3,262

(30) T. Meyer and H. Taube, Inorg. Chem., 7, 2369 (1968).

(31) G. Brown and N. Sutin, J. Am. Chem. Soc., 101, 883 (1979).
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(28.5 kJ/mol) of Stynes and Ibers' for the hexaamminecobalt
internal reorganization energy. The latter seem to have treated
the bond length reorganization energy in the hexaamminecobalt
ions as containing only diagonal terms '/, ¥;=1%/,(Aq/)?, where
Agy is the displacement in the ith Co-N bond length and f, is the
Co-N bond force constant. But the reaction coordinate is actually
the symmetric stretching normal mode, and when expressed in
terms of bond modes cross-terms are obtained. The totally sym-
metric F matrix force constant Fj,, is given in terms of generalized
valence force field (GVFF) constants £ by eq 13,3 where f; is the

Fa,=fot 4 + fn (13)

diagonal force constant and f, and f,,” are off-diagonal force
constants. f,’ denotes interaction between displacements per-
pendicular to each other. f;, denotes interaction between dis-
placements on the same line. The symmetric stretching nor-
mal-mode force constant F, involves both the F and G matrix
elements and equals Fj, /. my,2 where my is the mass of one ligand.
The bond length reorganization energy is* ! /,F1(AQ,)?, where
AQ,, the normal-mode displacement, is (671,)'/249, (all six Agy's
are equal). Thus, this reorganization energy equals .+ 4f,
+ £,)6(Ag;)%. It thereby involves both diagonal (/) and off-di-
agonal (f}, and f;,") GVFF force constants, and the latter are almost
as important as the former.3 Accordingly, we have made a
comparison of the more correct classical value with the quantum
sum, as well as with the semiclassical sum for G.

In the high-temperature (classical) limit, the Franck-Condon
factors usually depend mainly on modes in which the product
potential is displaced in coordinate space relative to the reactant
potential (i.e., A ¢ 0). In the cobalt- and ruthenium—hexaammine
self-exchange reactions only the solvent modes and the totally
symmetric A, internal modes have nonzero X’s. Changes of
frequency in the other modes would also make some contribution
to G, of course, and as an example we include the'modes of Eg
and F symmetry later in quantum calculations of G. The ap-
proximate classical expression for G (eq 8) cannot treat modes
for which A = 0.

Using the known A;q stretching frequencies (cf. Table I) for
cobalt(I[/1IT) hexaammine, we calculated the A, symmetry force
constants Fy;; and Fy (i.e., the F,,_ for oxidation states 111 and
II) to be 2.45 X 10° and 1.28 X 10° N/m, respectively. Using
the average force constant of eq 9 and the Co-N bond lengths
in Table I, we found the internal reorganization energy to be about
48 kJ/mol’ (instead of the 28.5 kJ/mol calculated in ref 1). By
analogous calculation, the ruthenium(11/111) hexaammine internal
reorganization energy is found to be 2.5 kJ/mol, The total
outer-sphere \'s for the cobalt and ruthenium reactions have
recently been estimated as 117 and 113 kJ/mol, respectively.®

With use of these energy parameters, eq 8 yields as a classical
result G(Co)/G(Ru) =~ 5 X 10 which is in reasonable agreement
with the quantum result, both as given by Buhks et al. and as
calculated below.

In order to assess the accuracy of the saddle-point method for
the hexaamminecobalt system, we compared the value of G ob-
tained by direct sum with that obtained by saddle-point integration,
For simplified models consisting of only the A, internal mode
or of both the A,; and one of the two degencrate E%ier;temal modes,
both the direct and saddle-point calculations have been performed.
(For the E; modes AQ, is zero, if in the transition state each
reactant has octahedral symmetry, but Aw, is nonzero.) The results
are given in Table II. At least for the models in this table the
saddle-point evaluation is a very good approximation.

(32) (a) C. W. F. T. Pistorius, J. Chem. Phys., 29, 1328 (1958). (b) K.
Nakamoto, “Infrared and Raman Spectra of Inorganic and Coordination
Compounds™, 3rd ed., Wiley, New York, 1978.

(33) R. A. Marcus, ref 9a. See eq 4.3.8 (taking m = '/ and KP = K*)
and the discussion in appendix 2. Note that the internal reorganization encrgy
A¢*, involves a sum over both reactants, in the case of the present sclf-exchange
reaction.

(34) K. Schmidt, W. Hauswirth, and A. Maller, J. Chem. Soc., Dalton
Trans., 2199 (1975).

(35) The actual value calculated and used was 47.7 kJ/mol.
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Table II. Franck-Condon Sums (G)

direct saddle

system? sum point
Ru(NH,),?*/3 d
quantum solvent, quantum internal 1.04 1.08

classical solvent, quantum internal 0.93 0.97
effective force constant
classical solvent, quantum internal  1.02 1.02
classical solvent, classical internal®  0.82

CO(NH;)‘ 2413+ €
A, internal modes
quantum solvent, quantum internal  20.0 20.0
classical solvent, quantum internal 17.9 17.8
effective force constant®
classical solvent, quantum internal  19.1 19.1
effective force constant
classical solvent, classical internal® 4.4
A, g and E; internal modes

classical solvent, quantum internal 15.6 15.6
all internal modes
classical solvent, quantum internal 3.3

@ “internal” refers to intramolecular degrees of freedom of
reactants. Frequencies and displacements from Table I.
b Effective internal frequency used (see eq 9). The saddle-point
approximation is exact in this case. ¢ Equation 8. 4 All values
for G have been mutiplied by 10° cm™. ¢ All values for G have
been muitiplied by 10'® cm™'.

Table IIl. Franck-Condon Sums for Hexaaquoiron and
Tris(bipyridyl)ruthenium Self-Exchange and Cross-Reactions

reaction quantum classical semiclassical
Fe*-Fe** 8.5¢ 2.4 145¢
Ru(bpy), **-Ru(bpy),>* 1.4% 1.4% 1.6°
Fe?*-Ru(bpy),** 2.5¢ 1.5¢ 3.8¢
ko J0k, Ky K o fin ) 8 0.94 1.00 0.40

o Multiplied by 10'* cm-'. ® Multiplied by 10® cm™'.
© Multiplied by 107 cm™'. 9 Cf. c¢q 17. Rate constants are from
Table IV. k,,,k,;,and k,, are the rate constants for the
preceding three reactions, in the order listed.

For the complete hexaamminecobalt system consisting of all
the frequencics listed in Table I (AQ; = 0 for the E; and F modes),
the direct sum was found to require excessive computation time,
so only the saddle-point value of the Franck—Condon sum was
calculated. Assuming that it is reliable, we find (cf. Table II)
G(Co)/G(Ru) ~ 10'%, in agreement with the saddle-point method
value in ref 5.

Also listed in Table II are values of G calculated by using the
two-frequency quantum solvent model described carlier and
analogous values calculated by assuming wholly classical solvent
interaction. As expected, the classical solvent model yields a
slightly smaller value of G (less nuclear tunneling). The effect
is small, about 10% in the systems considered.

Hexaaquoiron(II/III) Self-Exchange Reaction. Like the hex-
aamminecobalt self-exchange reaction, the hexaaquoiron self-
exchange reaction proceeds with a large internal reorganization
energy involving the metal-ligand internal modes. Using met-
al-oxygen symmetric stretching frequencies in the ferric and
ferrous ions of roughly 490 and 389 cm™!, respectively,’ and a
change in equilibrium bond length of 0.14 A,% we calculated the
internal reorganization energy to be 35 kJ/mol, when an effective
single frequency of 431 cm™!, based on eq 9, is used. The out-
er-sphere reorganization energy has been estimated as 27 kJ/mol.2

It has been suggested that in a system like this one, in which
a high-frequency mode undergoes a significant bond length change,
quantum effects should be large. But calculation of the sum over
Franck—-Condon factors yields a quantum value of about 3.5 times
the classical value (cf. Table III). Thus, as in the hexa-
amminecobalt self-exchange reaction, no very large quantum effect
on the Franck-Condon sum is observed. Indeed, the discrepancy
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Figure 2. Curve similar to Figure 1, but for a nearly thermoncutral
reaction (AE = 0). Points a and b here are classical “turning points”
of motion on the reactants’ and products’ potential energy curves, for the
given energy E. Point ¢ is at the intersection of the two potential energy
surfaces. The actual nuclear tunneling distance is ab (CF. ref 26).

Table IV. Rate Constants For Hexaaquoiron and
Tris(bipyridy) ruthenium Self-Exchange and Cross-Reactions?

. Kealed- Keated:
reaction (quantum)  (classical) kobsad
Fe¥*-Fe* 6.3 1.7 4.2¢
Ru(bpy),*-Ru(bpy),>* 49X 10° 4.6x 10° 12x 10°%
Fe**-Ru(bpy),** 14% 10° 84X 107 7X 10°*%*

8 Unitsare M™* s’

is smaller than the other uncertainties in the overall calculation
of the reaction rates, and the quantum expression is more complex
(cf. the cancellation of terms in the classical expression, leading
to the simple cross-relation expression®' given below).

The “semiclassical” result in Table III is seen to be in large
error. It was shown in ref 26 that the semiclassical method
corresponds, tacitly, to assuming that the nuclear tunneling dis-
tance along the abscissa is ac in Figure 2, whereas it is actually
ab. This assumption is valid only when the products’ curve at the
intersection is very steep, for then point b ~ point ¢, and 50 is
valid when AE is quite negative. Identical remarks apply to the
reverse reaction when —AE is quite negative and hence, by mi-
croscopic reversibility, to the forward reaction when AE for the
forward reaction is quite positive. For AE ~ 0 one concludes,
since ac << ab, that the “semiclassical” tunneling rate will exceed
the quantum one,? a result confirmed in Table ITI (Fe?*-Fe**).
Related remarks apply to use of the semiclassical result in the
so-called inverted region (JAE| >> M), only now the semiclassical
answer is too low, for now it was shown?® the actual nuclear
tunneling distance is less than the tacitly assumed one.2¢

Cross-Reactions. Quantum effects on the classical cross-rela-
tion3 are found below to be relatively small, in the “normal” AG®
regime. In this relation, the rate constant k;; of

A,(ox) + Ay(red) — A (red) + Aj(ox) (14)

is related to those (%), k;,) of the self-exchange reactions (15)
and (16) when the work terms are either small or nearly cancel,

A,(ox) + Aj(red) — A (red) + A(ox) (15)
A,(ox) + Ay(red) — Ay(red) + Aj(ox) (16)
via eq 17,2' where K, is the equilibrium constant of reaction 14
kiy = (kpkaKifin)'? an

and f}, is given by eq 18, where Z is the collision frequency in -
In fi2 = (In K12)*/[4 In (kykz/2Z%) (18)

solution. Expressed in terms of the classical G’s, this expression
can be rewritten as eq 19, where

Gz = (GG nkKi/i2)'? (19)

(36) N. Hair and J. Beattie, Inorg. Chem., 16, 245 (1977).

(37) R. A. Marcus, J. Phys. Chem., 67, 853, 2889 (1963).
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In f;; = (In K,3)*/[4 In (G,G22)] (20)
G[} = (4«&;’(7’)1/20,1 (21)

The classical results in Tables I1I and IV are those for a classical
adiabatic result

ky = ZG, (22)

where Z is defined above (and is taken to be 10'! M~ s71212%),
Equation 22 is valid when work terms for formation of the pre-
cursor and successor complexes are neglected and when nona-
diabaticity is negligible. To assess a quantum correction, we
obtained the “quantum results” in Tables III and IV by using eq
21 and 22 but with the G in eq 21 replaced by its quantum value.
The “semiclassical” values in Table III were calculated by in-
troducing the semiclassical value of Gy into eq 21 and 22. From
the results of Table III for the cross-reaction

Fe?* + Ru(bpy);** — Fe** + Ru(bpy),®* 23)

one can see that the quantum effect on the calculated cross-re-
action rate (eq 17) is only a factor of 2 for reaction 23. The
quantum effect on the cross-relation, i.e., on the ratio of the left-
to the right-hand side in eq 17, is calculated to be a factor of 0.94.

In obtaining these results, the inner- and outer-sphere reorg-
anization energics for the Ru(bpy);>*/** self-exchange reaction
were taken from ref 2: Ao =~ O and ‘14 Aoat = 13.4 kJ/mol.
The reorganization energies for the Fe?*/>* self-exchange are given
above. The inner- and outer-sphere reorganization energies for
reaction 23 were then estimated from the additivity rule?’ to be
17.6 and 20.1 kJ/mol, respectively. To allow direct comparison
between the quantum and classical results, we employed the ef-
fective frequency 431 cm™ for the Fe**/3* symmetric stretch,
according to the rule for effective force constants given by eq 9.
The free energy of reaction for reaction 23 is readily calculated
to be —47.3 kJ/mol from the reduction gotentials of Ru(bpy);**
(1.26 eV¥4%) and Fe3*(aq) (0.770 eV*).

The calculated self-exchange rate constants in Table IV agree
reasonably well with the measured rate constants. However, the
calculated values of the rate constant for the cross-reaction differ
from the experimental value by 2-3 orders of magnitude. Several
explanations for the apparent failure of the theory to predict this
particular cross-reaction rate, when it predicts many others so well,
have been offered:>#45 (1) large differences in the stability of
the precursor and successor complexes, (2) nonadiabaticity, and
(3) nuclear tunneling. Since the quantum and classical calculated
rate constants are in good agreement, the third suggestion, nuclear
tunneling, can now be eliminated, so that the discrepancy is
probably due to 1 or 2.

Conclusion

We have shown that the Franck-Conden contributions to the
rates of the hexaamminecobalt, hexaammineruthenium, and
hexaaquoiron self-exchange reactions at 300 K can be reasonably
well approximated by the classical expression (factors of 4.3, 1.2,
and 3.5, respectively). These corrections are relatively minor, in
view of the uncertainties in the various quantities involved in the
rate expression. A nonadiabatic model was assumed, but anal-
ogous results would be expected for an adiabatic model.

Also for these systems, we have seen by direct comparison with
the exactly evaluated quantum sum of Franck—Condon terms that

(38) J. Miller and R. Prince, J. Chem. Soc. A, 1048 (1966).

(39) F. Lytle and D. Hercules, Photochem. Photobiol., 13, 123 (1971).

(40) T, J. Meyer, Isr. J. Chem., 18, 200 (1977).

(41) J.’Silverman and R. W. Dodson, J. Phys. Chem., 56, 846 (1952).

(42) R. C. Young, F. R. Keene, and T. J. Meyer, J. Am. Chem. Soc., 99,
2468 (1977). ‘

(43) B. M. Gordon, L. L. Williams, and N. Sutin, J. Am. Chem. Soc., 83,
2061 (1961).

(44) J. N. Braddock and T. J. Meyer, J. Am. Chem. Soc., 95, 3158 (1973).

(45) R. A. Marcus and N. Sutin, Inorg. Chem., 14, 213 (1975).

(46) E. A. Moelwyn-Hughes, “Physical Chemistry”, 2nd ed., Pergamon
Press, New York, 1961, pp 347, 352.

Siders and Marcus

the saddle-point approximation is a very good approximation to
the exact sum. The “semiclassical” approximation (eq 10) is a
poor one for self-exchange reactions such as Fe?*-Fe**.

The quantum effect on the cross-reaction relation (eq 17) for
hexaaquoiron(lI) with tribipyridylruthenium(lII) is negligible (a
factor of 0.94), since some cancellation of quantum effects occurs
in the calculation of cross-reaction rates.

We conclude that a reasonable order of magnitude estimate
for the contribution of configurational changes of high-frequency
quantum modes in the first coordination layer, for typical met-
al~ligand frequencies, to the rate constant can be provided by a
classical expression. Preexponential factors and activation energies
are expected to be more sensitive to use of the classical approx-
imation (they are to other approximations also) and will be dis-
cussed in a subsequent paper.
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Appendix
Harmonic Oscillator Overlap Integrals, The overlap integral
(n)m) is given by eq A1, where fand X are described in the text,

(rim) = -1y 2/ (1 + | P ominy 101049 x

min!

- (m+n)/2. L ik SESUU—

[+v7/a -n]'Fr,({\/%)ﬂm_’( ’\/?fﬁ)

(A1)

for f < 1. %, is the Hermite polynomial of order n, and F,(x)
= i"H, (ix). (Eq Al is given, for example, in ref 14 and 15
although with a few misprints.) For /> 1 one obtains for (n|m)
an expression whose absolute value is the same as that of the
right-hand side of eq Al.

For the case X = 0 and f = 1, eq Al reduces to eq A2."

T o 1" 2n2m ' ,,(u)m'
(2"'2'")_[(1+j)2] (22"“"-) A oy B

s ¢ 167 |
@n+1pm+1) =

ar [ @eriyem+ 112 "( f-1 )nm
T+ o SRAVEYY

> -1y 16/ !
i@l + Din - DiGm - DI| (/- 1)2

(2n)2m + 1) = (2n+12m) = 0

The sums in eq Al and A2 are only formally infinite; they are
actually terminated by the factorials in the denominators of the
terms of the sums when [ exceeds either m or .

Generating Function for the Saddle-Point Approximation. f{f)
(eq 5 and 6) is found (using methods in ref 23 and 24) to be given
by

N
f(e) = -le‘/z In [sinh 28, sinh 2a(w, tanh §; + w/ tanh &) X
_’l:

The second derivative of f(¢) is
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N
(1) = -, hz;);i{wf csch? 28; + w/? csch? 2a; +
w/? sech® a; sinh a; + w? sech?® §; sinh B;
2(0)] taﬂhﬁj + w!’ tanh a,-)
(wf? sech? B; — w2 sech? &) (w/? csch? a; — w}? csch? B))?
4(0)] tanh ﬁ] + wj’ tanh C!j)z 4((0] coth ﬁj + wj’ coth aj)z
w;* csch® a; cosh ay + w;? csch? B; cosh B;
2(0’] coth ﬁj + wj’ coth aj)
20w/ X/ csch® a; cosh a; + w; csch? B, cosh £)) _
h(«w; coth a; + w/ coth §))?
2:w/*w; (csch? a; - csch? )
h(w/ cothaj + wj’ coth ﬁj)’

} (Ad)

where N is the number of harmonic modes in the system

1
eupal
b= 7 ’h“”( kt ") (A5)
o = Yhihoft, N = hHheHAQ)?

and wj, w/, and AQ; are defined in the text. # is the saddle-point
value of ¢, i.e., ¢ such that

N
0="f(t)=Yih E w; coth 28; - w/ coth 2a; +

w? sech? B; - w/*sech? q; w/? csch? @ — w}? csch? §;
2(w; tanh §; + w] tanh @) = 2(w; coth §; + w/ coth o)
2\ wj*(csch? oy — csch? B))

h(w; coth a; + w/ coth B8)?

(A6)

“Semiclassical” Franck—Condon sum. The “semiclassical”
Franck-Condon sum (eq 10) may be derived from eq 1, the
golden-rule expression for the Franck—Condon sum, using tech-
niques originally applied to other problems.?’ Consider first the
case in which a single normal vibrational mode, of frequency w,
normal-mode force constant k = w?, and normal coordinate g,
characterizes both the reactants and the products. The reactant
Hamiltonian is

. =p*/2 + kg*/2 (A7)

The products’ Hamiltonian, in which the equilibrium value of ¢
is displaced by an amount a, is

H,=p*/2+ kg - a)? + AE (A8)

where AE is the reaction endoergicity. Equation 1 gives

G = (hQ) ' Te-r1/Dme/kT Jj :Z_ (njm) (mn) eXE=ENIN gy
(A9)

where the Fourier integral representation of the § function has
been introduced. Inserting the exponential in the coordinate
integral and noting that the wave functions corresponding to |n)
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and |m), x, and x,,, are eigenfunctions of %, and 7, respectively,
one obtains

G = (hQ)"Ze“"“/m"’/"Tj:wZ(nlm)(m[e’”r‘/*e"""/"ln) dt
(A10)

If all commutators of 7, and %, are neglected, which is the
semiclassical approximation in this approach, then?*®

elﬂ,t/he—lﬂ,:/h - el(ﬂ,—ﬂ,)l/h (All)

From eq A7 and A8 it is found that %, - %, = —ka(q - '/,a -
AE/ka), so eq A10 becomes

G = (hQ)—lze-(n-l-l/Z)hw/kT * { nle-irka(q'-l/h-AE/ka)ln) dr (A12)

where use has been made of the identity 3 ,.|m){m| = 1. Equation
Al2 may be rewritten as

G = (kahQ)™ Ten+'/IM/kT(n|5(q - Ysa - AE /ka)|n)
! (A13)
or simply
G = (kah Q) ' Le !/ Dhe/xT)y (g*)? (Al14)

where ¢* = '/, + AE/ka is the value of g for which the reactant
and product potential energies are equal. According to Mehler’s
formula,? the sum in eq A14 may be reduced to the single term

G = (2rAhw coth v)™V/2 exp[-(AE + N\)?/2\hw coth v]
(A15)

where v = hw/2kT and X ='/,ka?, and we have used @ = [2 sinh
(hw(2kT)]1.% '

Consider now a system having N normal vibrational modes,
each characterized by a frequency w; and normal-mode force
constant k; = w? Let a; be the difference between the equilibrium
values of the jth normal coordinate in the product and reactant.
Define A; = !/,k;a and v; = hw)/2kT. G{AE) is given by eq
A5 for each mode individually. G(AE) for the N-mode system,
where AE is again the reaction endoergicity, is a convolution of
the Gjs = 1,2, .., N). Thatis

Gak) = N-1

f:-"‘[:GIUI)---GN-I(}'N-I)GN(AE - E}’j) dyi...dyn-y
(A16)

Note that each G,(y) is a Gaussian distribution in y. G(AE) is
a convolution of the gaussians G;. Therefore G(AE) is itself a
Gaussian distribution and has a mean equal to the sum of the
means of the G; and variance equal to the sum of the variances
of the G;#7 Thus G(AE) for an N-mode system is given by eq
AlS5, but with A = ng]N Aj and MAw coth ¥= Zj':'lN )\;hwj coth
v; Explicitly

N
G = (27 L \hw; coth v;)7'/2 exp[-(AE +
j=1

Jn -

(47) A. Rényi, “Foundations of Probability”, Holden-Day, San Francisco,
1970, p 125, 208.



