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A mechanism for clectron transfer reactions is described, in
which there is very little spatial overlap of the electronic orbitals
of the two reacting moleculcs in the activated complex. Assuming
such a mechanism, a quantitative theory of the rates of oxidation-
reduction reactions involving clectron transfer in solution is
presented. The assumption of “slight-overlap” is shown to lead to
a reaction path which involves an intermediate state X* in
which the clectrical polarization of the solvent does not have the
usual value appropriate for the given ionic charges (i.e., it does
not have an equilibrium value). Using an cquation developed elsc-
where for the clectrostatic frec cnergy of nonecquilibrium states,
the free cnergy of all possible intermediate states is calculated.
The characteristics of the most probable state are then deter-
mined with the aid of the calculus of variations by minimizing its
free cnergy subject to certain restraints, A simple expression for

the electrostatic contribution to the free energy of formation of
the intermediate state from the reactants, AF?*,is therehy obtained
in terms of known quantities, such as ionic radii, charges, and the
standard free energy of reaction.

This intermediate state X* can either disappear to reform the
reactants, or hy an electronic jump mechanism to form a state X
in which the ions are characteristic of the products. When the
latter process is more probable than the former, the over-all
reaction rate is shown to be simply the rate of formation of the
intermediate state, namely the collision number in solution multi-
plied by exp(—AF*/kT). Evidence in favor of this is cited. In a
detailed quantitative comparison, given elsewhere, with the
kinetic data, no arbitrary parameters are needed to obtain reason-
able agrecment of calculated and experimental results.

INTRODUCTION

DURING recent years oxidation-reduction reac-

tions involving the transfer of an electron between
the reactants have been the subject of many kinetic
studies.! Several generalizations may be drawn from
this data. For example, it was found that isotopic ex-
change reactions between ions differing only in their
valency are generally slow if simple cations are involved
and fast if the ions are relatively large, such as com-
plex ions.

This behavior has been qualitatively explained by
Libby? on the basis of related ideas of Franck, applying
the Franck-Condon principle. The degree of orientation
of the solvent molecules toward an ion greatly depends
on the charge of that ion. For a given icn, it will there-
fore be different before and after this ion undergoes an
electron transfer. Libby observed that the solvent
molecules near the reacting ions cannot adjust them-
selves immediately to the change in ionic charges result-
ing from an almost instantaneous electronic jump. A
state of high energy, he suggested, is therefore produced.
Such-a barrier to reaction would be greater for small
ions, since they are more highly solvated than large ones.
This conclusions is in agreement with the fact that in
most cases the smaller ions react more slowly in these
isotopic exchange redox reactions. .

Another observation which can be drawn from a

* This research was supported in part by the Office of Naval
Research under Contract No. Nonr839(09). Reproduction in
whole or in part is permitted for any purpose of the U. S. Govern-
T See review articles: Zwolinski, Marcus (Rudolph J.), and Ey-
ring, Chem. Revs. 55, 157 (1955); C. B. Am hlett, Quart. Revs. 8,
219 (1954) ; 0. E. Myersand R. J. PratwooJ,) Radioacisvity A pplied
to Chemislry, edited by Wahl and Bonner (John Wiley and Sons,
Inc.,,New York, 1951), Chap. 1; Betts, Collinson, Dainton, and Ivin,

Ann. Repts. on Progr. Chem. (Chem. Soc. London) 49, 42 (1952);

R. R. Edwards, Ann. Revs. Nuclear Sci. 1, 301 (1952); M.
Haissinsky, J. chim. phys. 47, 957 (1950); and recent reviews in
Ann, Rev. Phys. Chem.
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summary? of data on isotopic exchange reactions having
simple mechanisms is that the entropy of activation of
such reactions is large and negative. It is of interest
that all these reactions were between ions of like sign.
It was assumed® that a reorganization of the solvation
atmospheres about the reacting ions occurred prior to
reaction, but it was believed that this would con-
tribute a positive term to the entropy of activation. It
was suggested that the reorganization would involve
a partial “melting” of the solvent attached to the jons,
and that this would involve an increase in entropy.
To explain the observed entropy of activation there
would have to be a larger, negative term. It was sug-
gested that this term was due to the low probability of
an electron tunnelling® through a solvation barrier,
from one reactant to the other in the intermediate state.
However, several aspects of this interesting treatment
are open to question.® In fact, using the values given

3 Marcus (Rudolph J.), Zwolinski, and Eyring, J. Phys. Chem. 58,
432 (1954). These authors summarize some of these data in their
Table I. In Table I, reactions are given having ap: t positive
entropies of activation. However, in at least all but one of the
reactions in Table II the mechanism is complex and the concen-
trations of the actual reactants are unknown. Accordingly, the
so-called entropies of activation of such reactions have no im-
mediate theoretical significance. The lone icl)(ssible exception,
incidentally, does not involve reacting ions of like sign.

4 J. Weiss, Proc. Roy. Soc. (London) A222, 128 (1954), has also
discussed the electronic jump process. Unlike reference 3 the’
necessity for the reorganization of the solvent occurring prior
to the electronic transition was not considered tlgere.

¥ The mechanism used there was incomplete in that only one
fate of the intermediate state in the reaction was considered.
It was tacitly assumed that this state involving the reorganized
solvent could only produce products, but not reform the reactants,
(The former would occur by an electron jump process, the latter
by a disorganizing motion of the solvent.) It is shown later that
this omission can significantly affect the role played by the
electronic jump process. .

The number of times per second that the electron in one of the
reactants struck the barrier was not included in the over-all calcu-
lation. Effectively, this made electron tunnelling appear about one
thousax;cgfold less frequent than would otherwise have been
estimated.

966



967

there for the probability of electron tunnelling and
using the detailed treatment given in the present paper,
- a different conclusion will be drawn about the origin
of the observed cntropy of activation,

An object of the present paper is to devise a method
of calculating the free energy of reorganization of the
solvent molecules about the reactants prior to the
electronic jump process, and from this to develop a
quantitative theory of electron transfer reactions.

THEORETICAL
Ceneral

In most bimolecular reactions, appreciable changes in
various interatomic distances within each molecule
generally occur during the course of a collision. The
potential energy of this system, arising from the stretch-

ing and compression of various chemical bonds, usually

passes through a maximum in the collision. The con-
figuration of the atoms at the maximum is the well-
known activated complex, and a detailed knowledge
of it permits an a priori calculation of the reaction rate.

In most reactions there usually is a transfer of atoms
or groups of atoms between the reactants, and a rear-
rangement of atoms within each reactant. In order for
this to occur, there presumably must be a strong inter-
action of the clectronic structures of the two reactants
in the activated complex. That is, there would be a
considerable spatial overlap of the electronic orbitals of
the two reacting molecules in this complex.

In contrast to such reactions, some reactions may
merely involve the transfer of an electron between the
reacting molecules. For such reactions to occur, only
a slight overlap of the electronic orbitals is perhaps
necessary. Only a slight electronic interaction may be
sufficient to electronically couple the two molecules and
permit the electron transfer to occur. If this is indeed
the case, then its consequences are far-reaching. In
the present paper a quantitative theory for electron
transfer reactions will be developed. on the basis of the
assumption that there is little overlap of the electronic
orbitals of the two reacting particles in the activated
complex. The final formula of this paper is therefore not
applicable to any electron transfer reaction having a
large-overlap activated complex.

- Electronic Configuration of the Activated Complex

Just before a collision the electronic configuration of
the reacting pair of molecules is the same as that of
reactants. Just after a successful collision, their elec-
tronic configuration is the same as that of the products.
The electronic configuration of the intermediate stage
© in the reaction, i.e., of the activated complex, is pre-
sumably of an intermediate nature. We may readily
determine it for activated complexes in which there is
but slight overlap of the electronic orbitals of the two
reacting particles.

OXIDATION-REDUCTION THEORY

One may write down Schrédinger’s wave equation,
describing the wave function ¢ of the electrons of the
reacting particles in the activated complex, taking into
account their interactions with each other and with all
the solvent molecules. Let us consider first any given
configuration of all the atoms in the system, i.c., of
the atoms of the two reacting particles and of the sol-
vent. If there were no overlap of the electronic orbitals
of the two reacting particles there would be no elec-
tronic interaction of the two molecules. Therefore an
exact solution of the wave equation would then simply
be that wave function which characterizes the electronic
configuration of the two reactants when they are far
apart in the solvent. For the given atomic configura-
tion of the reacting particles, let us denote this wave
function by ¢.+. Again, an equally valid solution to
the wave equation would be that which characterizes
the electronic configuration of the two products when
they are far apart in the solvent. For. the given atomic
configuration of the reacting particles, let this function
be ¢.. In the case of weakly interacting electronic
orbitals of the two reacting particles the linear com-

bination (¢,+cé.+), where ¢ is a constant, would be the

appropriate wave function for the activated complex,
but not ¢ or ¢+ alone. It can be shown® that this is the
appropriate solution for weakly interacting orbitals
only if the fofal energy of the system is the same for each
of electronic configurations ¢. and ¢.* in any given
atomic configuration.
~ Presumably; in our activated complex the two elec-
tronic configurations, ¢, and ¢.+, make equal contribu-
tions to the total wave function. The important thing,
however, is that for every atomic configuration of the
activated complex the fofal energy of a hypothetical
system having the electronic configuration of the
reactants (¢.*) must be the same as that of a hypo-
thetical system having the electronic configuration of
the products (¢.). Since this is a thermodynamic sys-
tem, there will be many atomic configurations of all the
solvent molecules and of the reacting pair of molecules
in the activated complex which will conform to this
energy restriction. Thus, the energy in a thermo-
dynamic sense, which is the average of the energies
of all the suitable atomic configurations, must be the
same for both electronic configurations. These two
hypothetical thermodynamic states of the system will
be called the intermediate states, X* and X.

¢ The Schrodinger equation can be written as H¢=E¢; E is the
energy of an atomic configuration. The Hamiltonian operator H
includes terms expressing the interaction of the electrons and
nuclei of the reacting particles with each other and with the solvent
molecules. In the case of no overlap, ¢. and ¢:* were shown to be
solutions to this wave equation. Let their corresponding energies
be E. and E.e, respectively, so that we have: H¢,=E,¢. and

H¢»=E_+¢.+. If ¢ is any constant, a linear combination of ¢
and ¢* is (¢z+cé.*). When introduced into the wave equation

this yields: H (¢.+c¢:*) =E:¢:+Esoch:s. Only when E. equals
E_+ is the right-hand side equal to E;(¢:+c.*). That is, only
under these conditions does (¢:+cp.*) satisfy the equation
Hp=Egp. It is also seen that for such a linear combination, the

total energy E equals E: and therefore E;e,
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These considerations of the energy restriction are
amplified later in an application of the uncertainty
principle to a discussion of the validity of assuming a
- small-overlap activated complex.

The total energy condition can readily be shown to
place a severe restraint upon the solvation of the
activated complex. The degree of orientation of the
solvent molecules about any ion will strongly depend
on its charge. Accordingly, the equilibrium set of con-
figurations of all the atoms of the solvent in the neigh-
borhood of the reacting particles will greatly depend on
whether these part1cles have the ionic charges of the
reactants or of the products. Now the average conﬁrrura-
tion of the solvent was seen to be the same in the two
states, X* and X. These states differ in the charges of
the reacting particles. Therefore, the average configura-
tion of the solvent in the activated complex cannot be
an equilibrium one. (In this respect it differs from the
large-overlap complex, as discussed in 4 later section.)
The average configuration-of the solvent in thcactivated
complex must also be such as to satisfy the energy
restriction noted earlier. That is, in the activated com-
plex the solvent configuration must be such that the
total energy of the system, solvent plus reacting par-
ticles, must be the same, regardless of whether these
particles are the reactants or the products.

It is of interest that the foregoing discussion can be
rephrased in terms of the Franck-Condon principle:
When one electron configuration is formed from the
other by an electronic transition, the electronic motion
is so rapid that the solvent molecules do not have time
to move during the electronic jump. That is, the reac-
tion proceeds by way of two successive intermediate
states, X* and X, which have the same atomic con-
- figurations but different electronic configurations. Con-
servation of energy leads to the requirement that the
total energy of these two states must be the same.

The electronic wave function of the activated com-
plex derived previously, a linear combination of ¢,
and ¢, admits of a simple interpretation. The function
is a function of the position coordinates of all the elec-
trons of the two reacting particles. It can be plotted in a
many-dimensional space as a function of all these co-

. ordinates. In such a plot ¢.+ will be large in certain

regions of this many-dimensional coordinate space,
and ¢. will be large in other regions. The function
¢ .+ will be large when the coordinates of all the electrons
are such that the number of electrons in the vicinity
of each of the reacting particles is the same as when these
particles are reactants. Since the electrons are indis-
tinguishable there will be a number of such regions in
the many-dimensional space. Similarly, ¢ will be large
when the number of electrons in the vicinity of each
of the reacting particles is the same as when these
particles are products. Again there will be a number of
such regions. The wave function for the activated
complex, being a linear combination of these two wave
functions, is large in all these regions. The reaction
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ultimately involves going from the regions character-
istic of ¢.+ to those characteristic of ¢..

Since the wave function is the sum of two wave func-
tions, each corresponding to a different electronic con-
figuration, we can also interpret the wave function as
representing a quantum-mechanical resonance of two
electron configurations, one being the electronic con-
figuration of the reactants, the other that of the
products.

Inasmuch as there will be some overlap of the elec-
tronic orbitals of the two reactants, the description of

the activated complex given in this section is but a first

approximation, which is the better the less the overlap.

Reaction Scheme -

The occurrence of a small overlap in the actlvated";'?‘

complex introduces another consideration which is
normally not present in the usual large- overla.p acti-
vated complexes. Since the electronic interaction be-
tween the reacting particles in a small-overlap complex
is weak, the rate at which this electrenic interaction can
effect any change of electronic configuration may be-
come a slow step in the over-all process. We can envisage
the over-all reaction as occurring in the following way.
As the two reactants approach each other there is a
certain probability that a suitable fluctuation of the
solvent molecules \vhlch satisfies the restriction de-
scribed in the previous section will occur, such that
an activated complex coitld be formed. An electronic
interaction of the reacting particles could then result
in the correct electronic configuration of the activated
complex. A theoretical treatment of this aspect of the
problem could involve the use of several quantum-
mechanical methods including the use of time-dependent
perturbation theory®® or electron tunneling formulas.’-4
We shall return to this later. We can suppose, then,
that when the reactants are near each other a suitable
solvent fluctuation can result in the formation of the
state, X*, whose atomic configuration of the reacting

pair and of the solvent is l:Zat of the activated complex, -~ '
guration is that of the.re;
actants. This state X* can either reform the reactants’

and whose electronic co

by disorganization of some of the oriented solvent

molecules, or it can form the state X by an eléctrqnic

transition, this new state having an atomic configura-
tion which is the same as that of X* but having an
eléctronic configuration which is that of the products.
The state X can either reform X* by an electronic

i

transition, or alternatively, the products in this state

can merely move apart, say.

The pair of states X* and X constitute the activated
complex. If the electronic interaction between them
were large, the formation of one from the other would
be very rapid and one need then not speak of them

s L. Pauling and E. B. \\'ilson; Introduction lo Quantum Me-
chanics (McGraw-Hill Book Company, Inc., New York, 1935).
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separately. An analogous situation also arises in very
different reactions, such as some cis-frans-isomerizations
in which spin-conservation requirements can cause the
effective electronic interaction to be very weak.’

It may also be remarked that the term activated com-
plex was defined earlier in the usual way as the atomic
configuration at the potential energy maximum along
the reaction coordinate. This does not mean, however,
that the reaction rate can be calculated in the usual
way simply by calculating the free energy of formation
of the activated complex from the reactants and intro-
ducing this into the well-known absolute reaction rate
theory formula’ for the rate constant. Instead, the
present reaction has been shown to consist of several
elementary steps, several of which may be slow. In
such cases the rate constants of all the elementary steps
must be evaluated individually, and for this purpose,
too, the absolute rate theory formulas will not be used
as such.

The reaction scheme described above can be written
as the sequence Egs. (1) to (3). In this treatment it is
not necessary that all of the reactants or products have
charges. In this reaction sequence .4 and B will denote
the reactants involved in the electronic transition.

k1

A4B=X* : 1
k—y
k2
X*=X (2)
k-
k3
X—products. (3)

‘The reverse step of (3) does not have to be consid-
ered, even though it may occur when the concentration
of products is appreciable, since we are only interested
here-in calculating the rate constant of the over-all

- forward reaction. The rate constant for the over-all
. backward reaction could then be calculated from this
with the aid of the equilibrium constant for the over-all
reaction.

The sequence (1) to (3) will in many cases represent
the complete reaction. In more complex systems, how-
ever, A and B may not be the actual compounds intro-
duced into the reaction system, but would be the active
entities formed from them. The over-all rate of this
reaction sequence will be written as Epicac, where
¢’s denote concentrations and ks is the-observed rate
constant of this reaction sequence. According to Eq.

(3), the rate is also given by k.. 'We may therefore
write

kyicaCr= kac.. (4)

? Glasstone, Laidler, and Eyring, The Theory of Rate Processes
(McGraw-Hill Book Company, Inc., New York, 1941),
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The steady-state equations for the concentrations of
X* and of X, ¢.* and c., are given by Egs. (3) and (0).

dcze
p =0=~k1caCo— (k_1FR2)Cor+k_sc, (5)
L
des
&l =0=k263‘— (k_2+k3)6,. (6)

Introducing into Eq. (4) the value obtained for ¢,
by solving these simultaneous equations, we find

koi=k1/[1+ (1+k-z/ka)k_i/k:]. (7)

The various rate constants appearing in this expres-
sion for the over-all rate constant, k;, will be esti-
mated in the present paper. It is shown later that
when the forward step in reaction (2) is more probable,
or about as probable, as the reverse step in reaction (1),
Egq. (7) reduces to a particularly simple form (neglect-
ing factor of about two, which is of minor importance):

kyi2ky. (8)

Otherwise, Eq. (7) would be used. Equation (8) will
be used extensively in correlating observed and calcu-
lated rates of oxidation-reduction reactions.

We proceed now to estimate the properties of the
intermediate states X* and X, in order to be able to
calculate their rate of formation.

Solvation of Activated Complexes

As noted earlier, in the activated complex all the
solvent molecules are oriented in some nonequilibrium
configuration. This is in marked contrast to what is
usually assumed for large-overlap activated complexes.
In the latter, the solvent configuration is assumed to be
in equilibrium with the ionic charges of the activated
complex. For example, it is generally assumed that the
electrical polarization of the solvent at any point can
be calculated from the dielectric constant and the ionic
charge and radius of the complex, by standard electro-
static procedures. It is usually assumed, for example,
for purposes of calculating the free energy of solvation
of the complex, that the complex can be treated as a
sphere having a charge equal to the sum of the charges
of the reactants.” This theory has proved very useful
in interpréting the effect of dielectric constant on the
reaction rate. However, we have seen that such a
description would ;be quite inapplicable to electron
transier reactions in which the overlap of the electronic
orbitals of the two reacting particles is small in the
activated complex.

In order to calculate the thermodynamic properties,
such as the energy, of the intermediate states X* and X
1t is necessary to use expressions which do not assume
that the solvent molecules are oriented toward the ions
in an equilibrium manner. More explicitly, the electrical
polarization of the solvent at each point is not in elec-
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trostatic equilibrium with the electrical field produced
by ionic charges. That is, it cannot be predicted from
the known ionie charge distribution by standard meth-
ods. Recently, however, a method for caleulating the
thermodynamic function of such systems was devised®
and will be used to caleulate the free energy of forma-
tion of the intermediate states X* and X from the
rcactants. A

There arc an infinite number of pairs of (thermo-
dynamic) intermediate states, X* and X, just as there
are an infinite number of thermodynamic states of any
system, cach pair satisfying the cnergy restriction
described earlicr. Actually it is the most probable pair
of intermediate states which constitutes the activated
complex. The most probable pair of intermediate states
can be determined with the aid of the calculus of varia-
tions by minimizing the free energy of formation of \'*
from the rcactants subject to the encrgy restriction
found earlicr, that is, subject to the restriction that
X and X* have the same total energy. This mini-
mization procedure serves to determine the electrical
polarization of the solvent at each point of the system
in the intermediate state. This can be used to calcu-
late the free encrgy of formation and rate of formation
of the intermediate state from the isolated reactants
in the medium.

A Model for the Reactants

The model which will be used for the structure of the
reactants will be closely akin to that which is generally
employed in the treatment of ionic interactions. It will
be assumed that each reactant may be treated as a
sphere, which in turn may be surrounded by a concen-
tric spherical region of saturated dielectric,? outside of
which the medium is diclectrically unsaturated.

We let the sphere bounding the saturated region
have a radius a. The radii, a, and a, for the two reac-
tants could change somewhat when the two ions
approach each other though this effect is invariably
ignored in the treatment of ionic interactions and will
be ignored here. For a given clement of the Periodic
Table it will also depend to some extent on the valence
of the ion. In the case of monatomic ions, however, a is
generally assumed to equal the sum of the crystal-
lographic radius and the diameter of u solvent molecule,
since only the innermost luyer of solvent molecules is
usually assumed to be saturated.® However, since the
crystallographic radius varies relatively little with the
valence of the ion," ¢ would be expected to vary but
little with the ion’ valence. A refinement of the present

8 R. A. Marcus, J. Chem. Phys. 24, 979 (1956).

* Numerous theoretical treatménts of the free energy of solva-
tion which have assumed this model include: (1) J. D. Bernal and
R. H. Fowler, J. Chem. Phys. 1, 515 (1933); (1) D. D. Eley and
M. G. Evans, Trans. Faraday Soc. 34, 1093 (1938); (c) E. J. W.
Verwey, Rec. trav. chim. G‘i, 127 (1942); (d) R. W. Attree,
Dissertation Abstr. 13, 481 (1953).

¥ This is especially true when the valence of the ion before and

after the reaction differs by only one unit. This will be shown to
be the case of greatest interest, in later applications of this paper.
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treatment would take this variation into consideration.
In general when « is slightly different before and after
the clectron transfer reaction a mean value for it will
be adopted. To sum up we shall suppose that the region
inside a sphere of radius a about a reactant is rigid,
all groups within ¢ being fully oriented (saturated
diclectric). A refinement of this assumption of constant
a will be described in a later paper of this series.

The usual treatment of ionic interactions assumes
that the free energy of interaction of two ions of
charges ¢, and ¢» a distance R apart in a medium of
dielectric constant D) is ¢igo/DR. This implies several
assumptions'® and we shall make analogous ones in
the present treatment. We shall treat an ion plus its
rigid, saturated dielectric region as a conducting sphere
of radius . Now the free energy of the entire system is
the sum of several contributions; one is the free energy
of interaction of all the atoms within one sphere with
each other and with the central ionic charge in that
sphere. A sccond is the free energy of interaction of all
the atoms within the sphere about the second reactant
with each other and with the central ionic charge of the
second reactant. A third is the free energy of interaction
of all the molecules outside of the two spheres with
each other and with the charges of the spheres. A fourth
is the interaction of the two ionic spheres with each
other. As in the treatment of ionic reactions which
employs the ¢iy.'DR law, we observe that if, as as-
sumed, the atoms in the spheres are not to change their
average positions during the mutual approach of the
ions, the first two contributions to the free energy will
remain fixed and, therefore, not contribute to the free
energy of formation of the state X* from the reactants,
and similarly will not contribute to the free energy of
formation of the products from the state X. The re-
maining two contributions to the free energy are calcu-
lated, as previously observed, by treating each ion plus
saturated sphere as a conducting sphere of radius a.

We proceed to consider the properties of the dielectric,
assumed unsaturated,® outside of these saturated spheres.

Electrostatic Characteristics of the Activated
Complex

As noted previously, cach of the intermediate states
X* and X, can bLe treated as a macroscopic system
having a definite value of the electrical polarization of
the medium at each point of the system. The primary
problem then becomes one of determining this polariza-
tion function in these two intermediate ‘states, in the
volume outside of that occupied by the two reactants
plus saturated spheres.

The polarization of any dielectric medium is generally
regarded as consisting of electronic, atomic, and orienta-
tion contributions. As observed previously, the two
intermediate states X* and X have similar configura-
tions of all atomic nuclei in the system. Since the atomic

1 See R. Platzman and J. Franck, Z. Physik 138, 411 (1954).
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and orientation polarization are associated with the
polarized motion of the nuclei, the first being associated
with the relative positions of the atoms within a mole-
cule and the second with the orientation of the molecule
as a whole, we see that cach of these two contributions
will be the same in both intermediate states, X* and X
The electronic polarization, on the other hand, is asso-
ciated with the electronic motion of the solvent’s
molecules. Just as the electronic structure of either
reacting particle differs in states X* and X, the elec-
tronic polarization can differ, and is presumably that
which is produced by the electric field generated by
the ionic charges plus the atomic and orientation
polarization.

It is seen that in the intecrmediate states X* and X,
the electrical polarization of the medium can be classi-
fied into two types. One type, which is the electronic
polarization in the present case, varies with position
in a way dictated by the local electric field strength.
That is, it is in “electrostatic” equilibrium with the
field. The other type, which is atomic plus orientation
polarization in the present case, is independent of the
local electrical field strength, i.e., it is not in electro-
static equilibrium with it. These two types of polariza-
tion were termed® £-type and U-type, respectively. At
any point in the system outside of the two spheres
occupied by the saturated dielectric let these types of
polarization have a magnitude and direction given by
the vectors P.(r) and P.(r), respectively, where the
coordinates of the point are indicated by the vector r
drawn from any arbitrary origin to the point. As ob-
served previously the intermediate states X* and X
have the same vector point function, P,(r), but will
have different values of the function P.(r). The total
polarization P(r) at any point is the vector sum of these.

P(r)=P.(r)+P.(r). )

As observed previously, the medium outside of the
two saturated spheres is assumed to be unsaturated.
Accordingly outside of these spheres P,(r) is at each
point proportional to the electric field strength E(r).
On the other hand P.(r) is unrelated to E(r) in these
nonequilibrium states. We shall let

P.(r)=a.E(r) (10)

where a. is the polarizability associated with the E-type
polarization.

In treating the electrostatic behavior of states in
which all or part of the polarization is not in equilibrium
with the electric field produced by the charges in the
system, a vector E, was dcfined.® ‘This is the electric
field strength which the spheres would exert if they
were in a vacuum rather than in a polarized medium.
It is given by Eq. (11).

av
By ==, [ otV |

lr—r'|

o(r)dS

lr—v|

]. (11)
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where p(r) and o(r) denote the volume and surface
charge densities in the system, and where the subscript
r' on the gradient operator V,. indicates differentiation
with respect to the coordinates of r’. The first integral
is over the entire volume of the system, and the second
integral is over every surface present. An ion, for ex-
ample, is generally treated as a sphere bearing a uniform
surface charge density.

In any system, equilibrium or not, it was observed®
that the potential ¢ (r’) at any point r’ in the system
depended on the polarization, P, and the vector, E.,
according to Eq. (12).

o) = f (P—E./4n)-¥ v (12)

lr—r'

where only in an equilibrium system can P be im-
mediately expressed in terms of the electric field
strength, E. In the absence of dielectric saturation
(outside the region occupied by the two spheres) the
relation between P and E is given by Eq. (13), since

E(r) is — Vy.
P(r)=aE=—aW (13)

where a is the total polarizability of the medium. The
values of E;, P., P,, P, and E which obtain in the
intermediate state X* will be designated by an asterisk,
while those characteristic of state X will bear no
asterisk. Since the U-type polarization is the same in
both states, P,* equals P,.

The electrostatic free energy of any state is generally
defined as the reversible work required to charge up
that state. Expressions have been derived elsewhere®
for the electrostatic free energy of nonequilibrium
systems of the type discussed here. Using the results
given by Eq. (25) of reference 8 we have for the electro-
static free energy of states X* and X.

1 E * P.
F*=-f{——P*-Ec*+Pu° (——E*)]dV (14)
2. dar

Qy

1 -(E2 P,
1"=5f{-——P-E,+P,,-(——E

41T Ay

}dV (15)

where the dot, -, denotes the dot product of two vectors
and where a, is the polarizability for the U-type polar-
ization. This can be expressed® in terms of the static
dielectric constants D, and optical dielectric constant
Dy, (i.e., the square of the refractive index in the
visible region of the spectrum, say):

41rau=D‘_Dop. (16)

For water as solvent, D, and Dy, equal 78.5 and about
1.8, respectively, at 25°C. The electrostatic contribution
AF* to the free energy of formation of the intermediate
state X* from the reactants may be found by sub-
tracting from F* the reversible work, W..*”, say,
required to charge up the spheres when they are iso-
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lated (i.e., far apart) in the dielectric medium.

AF*=F¥*—11";,,*". (17)

Similarly, the electrostatic contribution to the free
energy of formation of X from the products is F minus
the work Wi,* required to charge up the isolated
products in the medium.

Before applying these considerations to the de-
termination of the solvent polarization in the inter-
mediate state, the restraint imposed by the fact that the
states X* and X have the same total energy and the
same P,(r) will be examined in greater detail.

Restraint Imposed upon the Activated Complex

As observed previously, the intermediate states X*
and X will have the same total energy. Again, two
states which have the same set of atomic configurations
will also have the same entropy term arising from their
atomic motions. (The magnitude of this entropy term
has been discussed elsewhere.’) In fact, their only
difference in entropy will arise from a possible dif-
ference in the electronic degeneracy between the
products and the reactants, and will be denoted by
AS,, say. If the product of the electronic degeneracies
of each of the reactants is @* and if that of the product
is Q, then AS., is given by Eq. (18).

AS.=F InQ/Q*, (18)

Generally, AS, will be equal to or.essentially equal
to zero.

Since the energies of the states X* and X are the
same and since their entropies only differ by an amount
of AS., it is seen that the free energy difference between
the two states is —TAS,.

A common type of electron transfer reaction is one
in which no valence bonds are broken in the reaction
sequence (1) to (3). In many reactions of this nature
corresponding valence bonds in the products and in the
reactants are probably not appreciably different in
length, so that they do not have to be stretched or
compressed in the formation of the intermediate state.
This rephrases in part what was previously stated,
namely that in the present paper we will consider a
reactant in which all atoms within the sphere of radius
¢ maintain their same relative positions throughout the
reaction. It is reactions of this type which will be
treated in the present paper. A treatment of reactions
which also involve bond ruptures or other changes in
bond lengths will be described later.

Because of this restriction the over-all standard free
energy of formation of the products from the reactants
can be written simply as the sum of three terms: the
contribution (F*—W,,*") to the free energy of forma-
tion of the state X* from the reactants, the free energy
change accompanying the formation of X from X*
which we have seen to be — T'AS,, and the contribution
to the free energy of formation of the products from the
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state X, — (F—W.*). There is one other term in-
volved in the free energy of formation of X* from the
reactants, which is associated with the fact that in the
state X*, unlike the initial state in which the reactants
are far apart, the relative motion of the centers of
gravity of the two reactants is restricted. However, the
corresponding free energy term, which is discussed
later, is exactly canceled by a similar term in the free
energy of formation of the products from the state X.

It may be concluded that the standard free cnergy
of reaction AF? is given by Eq. (19).

AF= (F*—W ") — TAS . — (F—W,.%). (19)

The derivation of this equation is seen to include,
and in fact to summarize quantitatively, the restraints
imposed upon the two intermediate states.

Minimization of tkte Free Energy Subject to the
Free Energy Restriction, Eq. (19)

It was observed in an earlier section that there are an
infinite number of intermediate states X* and X which
could satisfy the free energy restriction given by Eq.
(19), each pair having the previously stated charge dis-
tributions but a different vector point function, P,(r).
The problem is to determine that pair which has the
maximum probability of formation from the reactants,
i.e., to determine the pair (X* and X) with minimum
free energy, subject to the restraint on P,(r) imposed
by Eq. (19). To do this the variation of the free energy
of the state X* corresponding to a variation in the
function Py(r) is first computed. The computation is
made at fixed charge distribution, so that the variation
in E;*, 8E.*, equals zero. The temperature is also held
fixed. The only contribution to the free energy of forma-
tion of the state X* from the reactants which can vary
under these conditions is seen from Eq. (17) to be F*.
Computing 6F* from Eq. (14) we obtain

2P,

1
6F*=5f{—6P*-Ec*+ )

Ay

—P,.6E*—E*.5P, }dV. (20)

The quantity 6P* which appears in Eq. (20) may be
expressed in terms of 6P, and 8E* by introducing into
this equation the analog of Egs. (9) and (10) which
obtains for state X*, '

P*(r)=P.(r)+a.E*(r).

We obtain in this manner,

1 l ZPu
8F*=—f (—E..*—l- —E*)-&P,,
2 1 ay

— (e E*+P,)-5E* }d[". (22)

(21)
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The variations in P, and E* in this equation are not
independent since the variation in P, throughout the
medium will affect the variation in E* at any point.
A relation between the integrals involving 6P, and SE*
has been developed elsewhere.® Using this relation it
has been shown in Eq. (40) of reference 8 that Eq. (22)
of the present paper is equivalent to

P"
51 = f (———E*)-aPu(r)dV.
Oy .

The U-type polarization P,(r) in the most probable
pair of intermediate states X* and X, is to be deter-
mined by setting 8F* equal to zero. Accordingly, this
P..(r) satisfies the relation,

f( i l7'*)'5Pn(r)d’l~"=0.

@y,

(23)

(24)

In passing it is observed that if there were no re-
straints on 8P.(r) the quantity in parentheses in Eq.
(24) would be everywhere equal to zero, since the
integral itself must equal zero for all arbitrary varia-
tions, 8P, (r). That is, we would obtain, as expected,
P.(r)=a.E*, the cquilibrium relation. However, in the
present problem the variation 6P, (r) is to be performed
subject to the restraint on P, (r) expressed by Eq. (19).
Since AF®, W,..,**, AS., and 1 ;. of that equation are
unaffected by a variation in P,(r), the equation of

restraint is also given by Eq. (25), obtained by taking

variations of the terms in Eq. (19),
OF*—6F=0, (25)
‘The variation 6F* is given by Eq. (23), and 82 is given

by a similar equation without the asterisks. Accordingly, -

we obtain

SF*—8F = f (E—E®-6P.dV=0. .} (20):

Equzftibns (2;4) and (26) are to be salisﬁc'd_. simul-
taneously. Multiplying the latter equation by a con-

stant, the Lagrangian multiplier, m say, and adding

these equations we have

P.
f{—-E*-l—(E—E*)m]-5]’,.rll'='-‘). (27)

My

This is an identity for all- arbitrary variations of
P. in each volume element. Accordingly the expression
in brackets is everywhere equal to zero and we have
in cach volume element,

P.=au{E*+ (E*—E)m). - (28)

It is now desirable to express the ficld strengths E*
and E in terms of the quantities E.* and E, since the
latter can very easily be calculated from the known
charge distributions. In the appendix it is shown that

OXIDATION-REDUCTION THEORY
B,

using the usual assumptions made in treatment of ionic
interactions we obtain for the present case

E*~E= (Ec*_ Ec)/Dop (29)

and

E* 1 1
E*:-D——‘m (Ec*—EC) ('D—-—E) (30)
] 0p 8

where the dielectric constants Dy, and D, have been
defined previously. With the aid of these equations,
Eq. (28) for P, becomes '

E* 1 1
Po(r) ~au] ~——m(E*—E,) ———)
])x DOp Da

E*_E,
+u]. 31)

0p

Introducing these equations for E*, E, and P, into
Eq. (14) for the electrostatic free energy of state X*,
and into Egs. (14) and (15) for (F*—F) we obtain

1 E* 1 1
F¥=—_ f{ +mE(E.,*—Ec)2(———) }dV (32)
. D D0p Da

R

, 1 1
—Qm+1)(E*— E.,)Q(———) ]dV, :
DOp Da

=AFHTAS A Wio™ — Wi (33)

where in the' latter equation we have also introduced
Eq.” (19). Equation (33) serves to determine the
Lagrangian multiplier, .

In passing we observe that a special case of this equa-
tion obtains when the reacting ions differ only in their
valency and when the electronic jump simply effec-
tively exchanges the charges of these ions. In this case
it is readily verified that the solution of this equation

'is m=—}%: First, in the case AF® and AS, are zero.

Moreover W,,,* and W,,** are equal, since the over-all
reaction produces no net change in the numbers of each
ionic species. For the same reason and by symmetry the
integral involving E.*?equals that involving E 2. Further,
the integral in Eq. (33) involving (E.—E.*)? must be
positive. Introducing these results into Eq. (33) we
see that m equals — 2.

These equations for the electrostatic free energy F*
of the intermediate state X*, and for the Lagrangian
multiplier, m, will now be expressed in terms of the
ionic charges and radii. We let the charges of the first
reactant be e,* and e, in states X* and X, respectively,
and the corresponding charges of the second reactant
will be denoted by e,* and e,. The radii of the saturated
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dielectric spheres about these reactants, 6, and a,, are,
as previously stated, taken to be essentially unchanged
by the reaction.

The vector E.* is the negative gradient of the poten-
tial which the reacting ions in state X* would exert if
they were in a vacuum rather than in a polarized me-
dium. In a discussion elsewhere® it has been observed
that the potential tacitly used in the usual treatment of
ionic interactions between ions of charges ¢; and ¢; in a
vacuum is given by the following equations:

4,( ) el+82 S d S
r=—14+— r1-ay an o2 Q9

141 fz’ ) ~ z (34)
¥(r)=constant, r<a;, or r.<a

where 7, and r, are the distances of the field point r
-to the centers of these ions. The vector E. is simply
— W, ¢ being given by these equations. Thus, we have

1 1
E.=—e\V——e,YV—, n2a, and r.2a.
4] 4]

(35)

E.=0, n<a  or r:<a:
The vector E.* is obtained from E, simply by replacing
e: by er* and e; by e,*.

These expressions for E, and E.* are introduced into
Eq. (32) for F* and into Eq. (33) for the Lagrangian
multiplier m, and the integrations are performed. The
following integrals which are readily verified are used

for this purpose:

1 1 47
fV-——-V—dV=—

ry 7 R

1 1 4r
[v—v—av==

r{ r; a;

(36)

where R is the distance between the centers of the ions,
and where the integration volume excludes the volume
physically occupied by the two ionic spheres (i.e.,
we have 7,2 a; and r.2 a., simultaneously).

The work required to charge up conducting sphere of
radius @ in a dielectric medium is given by the well-
known expression,* ¢2/2¢D,, where e is the ionic
charge. Accordingly Wy, and W,,* are given by

12 E.g., if during some point of the charging process the ion has
a charge g, then the potential at any point in the dielectric medium
distant r from the center of the ion is g/D,r. The potential at the
surface of the sphere is ¢/D,s. The work required to add an
infinitesimal charge dg to the ion is therefore (g/D,a)dg. Upon
integrating this from ¢=0 to g=e, the total work required to
charge up the ion is seen to be e!/2aD,. In passing it is observed
that when one subtracts from this the work, ¢*/2a, required to
charge up the sphere in 2 vacuum (D,=1), one obtains the usual
expression for the contribution to free energy of solvation of an ion,
—(¢*/2a)(1—1/D,), arising from the dielectric outside of the
sphere. See reference 9.
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Eq. (37). - -
€ €2
H’s‘ no,. = + y
201D r] ZGZD I’}
(37)
e? e9?
I'Vt'an. = + .
2a:D, 2a.D,

With the aid of Egs. (17), (32), (35), (36), and (37),
we obtain for the contribution, AF*, to the free energy
of formation of the intermediate state X™* from the
isolated reactants in the dielectric medium,

AF*=F*—W,.*"

81*82* i 1 1 1 1
- +m2(Ae)2( ; —)( —) (38)
RD 2(11 202 R DOp Ds

where we have introduced the conservation of charge
relation,
er*—e;= — (es*—e3) = Aeg, say. (39)

Similarly, with the aid of Egs. (33), (35), (36), and
(37), we obtain as the equation for m

1 1 1 1 1
— (2m+1)(Ae) —+_-E) (——-—

20»1 2(12 D0p Da
e1e2—er*es*
—AF'TAS;+———  (40)
D,R

where AS, is given by Eq. (18).

The standard free energy of formation of the inter-
mediate state X* from the isolated reactants in the
dielectric medium is the sum of AF* and of a term
describing the motion and positions of the centers of
gravity of each of the two reactants in the initial
state and in the state of the system, X*. This contribu-
tion is evaluated in a later section.

Rate Constants of the Elementary Steps
(a) Estimation of k_, and ks

The rate constant k_; is associated with the disap-
pearance of the state of the system X* to reform the
reactants. There are several possible modes of de-
composition and each of these will be considered.

The first mode involves an escape from the solvent
cage. In the intermediate state, as in any collision
complex in solution, the reactants may be considered to
be in a solvent cage. Within this cage they vibrate with
respect to each other, striking the cage walls about 101
times a second. The chance that one of them will escape
from the cage is a per collision with the walls of the cage.
Accordingly, the unimolecular rate constant for this
mode of dissociation would be about 10*%a sec™! where o
is less than one.

Another mechanism for the dissociation of X* to
reform the reactants is a disorganizing motion of the
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solvent, destroying the polarization appropriate to the
intermediate state. This state was treated as a macro-
scopic state in which the polarization was not in equi-
librium with the charge distribution. Once this state
' is formed, it seems reasonable to suppose that a time
of the order of magnitude of the relaxation time would
be required for the system to assume some other,
almost certainly unsuitable, value of the polarization
function P.(r). The relaxation time for atomic polariza-
tion is of the order of 10 sec and that for orientation
polarization is about 10~ sec. The atomic polarization
is associated with the polarized motion of the atoms in
each solvent molecule and constitutes an appreciable
fraction of the U-type polarization. If it reverts to an
unsuitable value, the state X* can be considered to
be destroyed. The unimolecular rate constant for this
mode of dissociation would therefore be about 10
sec™. This is seen to be not less than that for the
solvent cage escape mechanism, and therefore to corre-
spond to a prevalent mode of decomposition.

Similar remarks apply to the rate constant k; for the
dissociation of the other intermediate state, X, to
products. Accordingly, we may write approximately

k_y=ky=10" sec—t., (41)
(b) Estimation of k,

The equilibrium constant of reaction (1) is kl/k_l.v

The rate
k1 .
A+B=Xx* (1)
k=1
constant &y will be calculated by estimating this equi-
librium constant and using the value of k_, determined
in the previous section.

OXIDATION-REDUCTION THEORY

Each of the two reactants have three translational
degrees of freedom. In the intermediate state X*, these
six coordinates become three translational degrees of
freedom of the center of gravity of the two reactants,
two rotational degrees of freedom about this center of
gravity, and one degree of freedom involving the vibra-
tion of the reactants with respect to each other in the
solvent cage. The partition function for the three trans-
lational degrees of freedom of the first reactant in the
solution is generally written on the basis of the free
volume theory as '

(27rm1kT/h2)*(V,/NI),"

where ¥V, is the free volume and ¥, is the number of
molecules or moles (depending on the units of the
equilibrium constant) of reactant 1. The corresponding
factors for reactant 2 and for the state X* are obtained
by replacing m, and ', by m, and V5, and by (my+m,)
and Nx-, respectively. Actually to calculate the equi-
librium constant, the values of the translational parti-
tion functions when- the species are in their standard
states are needed. That is, in these partition functions
we set Ny/V'=1, No/V=1, and Nx+/V =1, the units
determining those of the equilibrium constant. The
rotational partition function is 87°%uR?ET/ 2, u being the
reduced mass mmy/ (my4m,) and R being the distance
between the centers of gravity. of the two reactants.
The vibrational partition function for motion within
the cage equals unity, within a factor of about three, say.

The remaining contribution to the standard free
energy of formation of the intermediate state X* from
the reactants is AF*, given by Eq. (38). Introducing
these results into an expression for the equilibrium
constant, we obtain

k N(27r(ml+m2).\.kT/h”)3(V,/V) (87*uR*kT/1?) exp(—AF*/kT) ‘
QEmik TRV ,/V) Qamok TRV, V) '

by

Now k_, is approximately equal to T/, since each is
about ‘equal to 10" sec!. Introducing this into Eg.
- (42) we obtain after some cancellation . o

" b= GrET/WIRNV/V)) exp(—AFYRT)  (43)

* where AF* is given by Eq. (38). This expr_essigj_n for %,
is simply the collision number in solution,”® Z, multi-
plied by exp(—AF*/kT). That is,

ky=Z exp(—AF*/ET). - (44)

(¢) Estimation of k; and k_,

According to Eq. (2), the equilibrium constant for
the interconversion of the intermediate states, X* and
X, is ko/k_,. As noted earlier the free energy difference
of these states is —TAS., where AS, is given by Eq.
(18). Accordingly, the equilibrium constant for Eq. (2)

B E.g., A. A. Frost and R. G. Pearson, Kinetics and Mechanism
(John Wiley and Sons, Inc., New York, 1953), Chap. 7.

(42)

is given by : .
kz/k_z =€exp (ASc/k) = Q/Q*. (45)

In general this ratio will be approximately, or exactly,
equal to unity. ‘ : '
"The individual estimation of each of these constants
k2 and k_; can be made assuming some model for the
electronic jump process. This has been treated? as an
electron tunnelling process. On the basis of some ap-
proximate calculations the probability of an electron
tunnelling through a barrier from one reactant to the
other, k., was estimated® to depend exponentially,
essentially, on the tunnelling distance, 7,3, ie,
ke=exp(—prai). According to the calculations given
there, we find 8=1.23 A~ for the ferrous-ferric isotopic
exchange reaction in- water, for example. We would
expect this tunnelling distance to be about twice the
diameter of a water molecule, i.e., 5.5-A, since the small
cations, ferrous and ferric, each have water molecyles
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strongly bound to them, and the innermost layer of
them is presumably quite difficult to remove. We calcu-
late that &, is 103 for this distance. However, the
numerical value of 3 is to be regarded as quite tentative
pending a more detailed treatment of the tunnelling
process than is given in reference 3. For example, the
effect of the water molecules on the extension in space
of the electronic cloud of these ions is of particular
interest.

The rate constant k; is k. multiplied by the number of
times per second that the electron strikes the barrier.
This number is presumably the frequency of motion of
the valence electron in the ground state of the ferrous
ion. This is of the order of the frequency of excitation
of this electron to the next higher principal quantum
number. From some data on the energy levels of the
ferrous ion!* we estimate this to be about 2X 10! sec,
Multiplying this by the value of «., we obtain for &,

k22X 10" sec™. (46)

Comparison with Eq. (41) shows that this is of the
same order of magnitude of k_;, within the error of the
calculations.

Validity of the Assumed Smiall-Overlap
Activated Complex '

These calculations of k., k_., k3, and k_,, and hence
of the lifetimes of each of the intermediate states X*
and X, can be used to examine more closely the basic
assumption of this paper, namely, the assumption that
some ‘electron transfer reactions, at least, will have a
small-overlap activated complex. The calculations can
also be used to examine the relation of this complex
to the large-overlap one. s :

A consequence of the assumption of the small-overlap
activated complex was® the statement, that the energies
of the two states X* and X were equal. Any limitation
of this'statement is a limitation on the assumption of a
.small-overlap activated complex. A.limitation exists
in the form of the uncertainty principle. The energy of
- any state, X* is broadened by an.amount Ae which is
related to the lifetime 7 of that state according to the
uncertainty principle, Ae-r=h/4x. The greater the over-
lap Lhe shorter will be the lifetimes of X* and of X. The
lifetime of the state X*, for example, is about equal
to 1/(ks+k_1)7. (It is essentially, therefore, the same
as that of the state X.) If 7 is about 103 sec then Ae is
found to be about 0.075 kcal mole. Thus the energy
restriction; summarized by Eq. (19), would have to be
modified to state that the energies of the states X* and
X must be equal only within an amount prescribed by
the uncertainty principle. This amount would be 2Ae
or (.15 kcal mole™ if =101 sec. Thus, in Eq. (19)
which was derived on the basis of the exact equality
of energies of X* and X, we should really replace AFY,

¥ C. E. Moore, Alomic: Energy Levels (National Bureau of
Standards, 1952), circular: 467, Vol. 1I. i
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say, by AF*+0.15 kcal mole™. However, this is a neg-
ligible correction, and it is evident that this can readily
be verified to have a negligible effect on the calculated
value of AF*, Even if the lifetimes of the individual
states X* and X' were, as a result of large values of
ks and k_,, as small as 107 sec, 2A¢ would be only 1.5
kcal mole™ and this again would only have a relatively
small effect on the calculated value of AF*, On the other
hand in a large-overlap activated complex the fre-
quency with which one electronic configuration would
be formed from the other would be the order of the
electronic frequencies in molecules. These frequencies
are about 10'® sec™!. Thus » would be about 10~ sec
and 2Ae would have the large value of 15 kcal mole-!,
The restriction involved in Eq. (19) would no longer
be very strong, since AF® would have to be replaced by
AF°+15 kcal mole™, -~

In summary, if the overlap of the electronic orbitals
of the two reactants is such that the lifetimes of the two
intermediate states are greater than 10~ sec, say,
we have a small-overlap activated complex. On the
basis of the calculations of k3 and of &, given previously
we infer that a small-overlap activated complex may
well prevail for many electron transfer reactions.

The Over-All Bimolecular Rate Constant

We have seen that k_; is essentially equal to ks,
according to Eq. (41), and £, is essentially the same as
k_.. Therefore, when %, and k_; are of the same order of
magnitude, it follows from Eq. (7) for the over-all
bimolecular rate constant, ks, that

kyS2by=Z exp(—AF*/kT) (47)

- where we have introduced Eq. (44) for ky, Z being the

collision number in solution. If &, were appreciably
less than %_;, this approximation would tend to break
down, and the more exact expression for ks:, given by
Eq. (7), would have to be employed. The calculations

~of k; and %_; given previously tentatively support the

approximate equation, and some success has been
obtained in correlating experimental and theoretical
results on the basis of this equation.

* If k; were about five-fold smaller than k_,, say, then
according to Eq. (7) and the earlier discussion the ap-
proximate equation for ks, Eq. (47), should be divided
by a factor of seven. However, this constitutes a rela-
tively minor correction.

The Interionic Distance, R

The interionic distance, R, in the pair of intermediate
states, X*X, can affect the over-all reaction rate in
several ways. For example, the rate of the electronic
jump process, reaction (2), decreases exponentially
with increasing R. It was seen that when the rate con-
stant of this step, k,, was greater than or about equal
to 10%'sec™?, the over-all reaction rate was independent

.of ky. However, for larger R’s, &, will become small and
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L]
will then affect the magnitude of the over-all rate.
Accordingly, the exponential decrease of the rate of the
electronic jump process with increasing R is one of the
main factors tending to make R a minimum in the
intermediate states, \* and .

The size of the interionic distance will also affect

the over-all reaction rate through its effect on AF*.
For example when the ions come closer together, the
solvation atmospheres about each ion tend to overlap
and to become more similar. Accordingly when a major
barrier to reaction lies in the diffcrence of the solvation
atmospheres about the reactants, the reaction will occur
most readily when these atmospheres are most similar,
that is, when the interionic distance R is least. This may
also be verified from Eq. (38) for AF*; when the major
barrier to reaction lies in the difference of the solvation
atmospheres about the reactants, the second term in
that equation is greater than the first term, the Cou-
lombic repulsion. It is seen that the second term de-
creases as R decreases.

~ The most appropriate value of R is to be found, by
maximizing with respect to R Eq. (7) for the over-all
rate constant. However, the present limitations of our
quantitative knowledge of the electronic jump process
make this procedure have doubtful utility. For the
present it appears reasonable to suppose that the
most suitable value of R is the minimum value. A first
approximation to R is therefore the sum of the radii
of the two reactants, a,+a..

The Radius, a

The radius ¢ appears in the expression for AF* and
therefore in the rate constant &, for the formation of
the intermediate state X*. As previously stated, this
radius is that of a sphere about the reactant inside of
which the dielectric is saturated and outside of which
it is assumed to be unsaturated. In this section some
tentative suggestions for such radii will be discussed.

As a first approximation it has been assumed for
monatomic ions that the innermost layer of solvent is
dielectrically saturated.® Accordingly, for such ions the
radius ¢ is the sum of the crystallographic radius of the
ion plus the diameter of a water molecule.fb-ed A
similar assumption was also used in a recent theo-
retical treatment of the spectra of halide ions in water.!
Some recent work on the dielectric constant of aqueous
ionic salt solutions appears to indicate, however, that
the solvent is less saturated in the vicinity of anions's
than in the vicinity of cations and this should be taken
into account. An interesting explanation for this was
given in terms of the difference in freedom of a water
molecule, in the innermost solvation layer about an
ion, to rotate when the ion is a cation and when it is
an anion,!6.16

1 Hasted, Ritson, and Collie, J. Chem. Phys. 16, 1 (1948).
18 See D. H. Everett and C. A. Coulson, Trans. Faraday Soc. 36,
633 (1940). _

OXIDATION-REDUCTION THEORY

Some special circumstances which may occur when
a monatomic ion loses its charge completely during an
election transfer process will be discussed in Part III
of this series of papers.

The dielectric saturation in the vicinity of many
polyatomic ions would be expected to be much less
than that near monatomic ions, because of their larger
size: the orienting electric field arising from the ionic
charge is responsible for the saturation and varies
roughly as the inverse square of the distance from the
center of the ion. It seems reasonable to assume as a
first approximation for polyatomic ions such as MnO,-
and Fe(CN)¢=, that the radius a is simply equal to the
crystallographic radius of the ion in each case. In fact
this is consistent with the assumption that only the
first solvation layer of monatomic ions is saturated.
The size of a hydrated monatomic cation is about the
same as that of one of these polyatomic ions.

APPENDIX

In this appendix, Eqs. (29) and (30), expressing E
and E* in terms of E, and E.*, will be established.

As discussed previously,? the usual treatment of the
interaction of ions in a dielectric medium leads to an
especially simple relation between the electric field
strengths exerted by the ions in a dielectric medium,
E! and in a vacuum, E;. According to Eq. (53) of
reference 8 this relation is!?

Et(r)=E.(r)/ (1441a) (48)

where « is the polarizability of the dielectric medium
and where we have. used the superscript t, to avoid
possible confusion with later substitutions which will be
made in this equation. This relation will be used in order
to establish Egs. (29) and (30).

In Eq. (12) of the present paper an expression has
been given for the potential at any point in a medium
for any state whether it is in equilibrium or not. The
potential ¥*(r') at each point r’ in the state of the
system X* may be obtained from this equation simply
by adding an asterisk to each symbol. Subtracting the
resulting equation from Eq. (12), which incidentally
can be regarded as the potential in the intermediate
state X, we obtain as the difference of potential at the
point r’ in these two states,

¥ (r)—¢*(r)

_ E.—E* 1
=,f!P—P*—( )l-v av.
Ar r—r'|

Now, subtracting Eq. (9) for P from a corresponding
equation for P* we have

P—P*=P.+P,— (P;*—P.) (50)

17 Equation (48) of the present paper may be obtained from
Eq. (53) of reference 8 by observing that in that equation, (a)
E=—W, (b) D=144xe, (c) E. is the value of E when D=1
(vacuum). :

(49)



