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Results of a fully three-dimensional classical trajectory calculation of vibrational energy transfer are
presented for the collision of HF(v = 1) with HF(v = 1) and its deuterium analog. A cross-correlation
method, together with quasiclassical trajectories, is introduced to relate the changes in vibrational states of the
two molecules to probabilities and rate constants. Multiple collisions are found to make an important
contribution to the vibrational energy transfer cross-sections for the present potential surface. Vibrational
anharmonicity is shown to decrease the energy transfer rate constant by a factor of ten, by causing the process
to be further from exact resonance. Excellent agreement with experiment is obtained for the HF-HF and

DF-DF systems.

. INTRODUCTION

In this paper a quasiclassical trajectory study of the
very efficient vibration-to-vibration (V-V) collisional
energy transfer for hydrogen fluoride (HF -HF) and
deuterium fluoride (DF~DF) is presented. The calcu-
lation is fully three dimensional, i.e., with each mole-
cule having three translational, two rotational, and one
vibrational degrees of freedom. A cross-correlation
method is used to extract state-to-state cross sections
and rate const'ants.

For the past decade or two, there has been increasing
use of the quasiclassical trajectory appioach for calcu-
lating properties of molecular collisions. The classical
trajectory method has been reviewed in detail'*? and is
the subject of much current interest. 3 Quasiclassical
trajectories are used in many circumstances where a’
quantum mechanical approach would be prohibitively
lengthy and therefore costly.

There have been a few “exact” numerical quantum
mechanical calculations of vibration-vibration energy
transfer, =7 all thus far limited to the collinear geome-
try because of the very large number of open channels
that must be included when the molecules are allowed to
rotate. Several excellent review articles on the develop-
ment of vibrational energy transfer calculations are
available, *!° Even for the classical trajectory ap-
proach, only a limited number of studies of vibration-
vibration energy transfer in systems involving four or
more atoms have been attempted for other than a col-
linear geometry. 11-18 por comparison we recall two re-
cent and extensive studies of diatom-diatom colli-
sions, 141
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Bass and Thompson'! studied the vibrational relaxa-
tion of Cl, by HCl and DCI1 over the temperature range
800-2100 K and the self-relaxation of HC1 over the tem-
perature range 1600-2600 K. Their calculation is a fully
three-dimensional quasiclassical study employing a
semiempirical valence-bond potential energy surface.
They were interested in vibrational relaxation due to the
V-R, T mechanism and did not try to extract V-~V rate
constants,

Wilkins!® in his recently published classical trajectory
study of mechanisms of vibrational deactivation in HF
calculates both the V-V and V=R, T rates. In later sec-
tions of the present paper we discuss the similarities
and differences between our calculations and those of
Wilkins, 5 )

There has also been recent work on vibrational re-
laxation in the HF -HF system using a “classical path”
approach. '*-?' This approach involves treating the.
translational and rotational degrees of freedom classi-
cally (by performing rigid-rotor trajectories). The vi-
brational degrees of freedom are then treated quantum
mechanically by solving the time-dependent “forced os-
cillator” Schrodinger equation: ' The intermolecular po-
tential experienced by the vibrations of each HF mole-
cule during the trajectories (of rigid rotors) is used as
a time-dependent perturbation on the vibrating mole-
cules. A comparison with these previous results is
given later.

The rate of vibrational deactivation of HF has been
the subject of considerable experimental study, *~% due
to its relevance to the performance of HF chemical la-
sers. In an HF chemical laser, vibrationally excited
HF molecules can be produced by the highly exothermic

reactions?~2% .

F +Hy— H+ HF* (1.1)
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or

H+Fy~F+HF*. 1.2)
For Reaction (1.1) there is encugh energy to populate
vibrational states up to level three, with level two being
experimentally the most probable. Reaction (1. 2) is ob-
served to populate HF vibrational levels up to nine, with
five and six being most probable, The distribution of
product HF vibrational states is, of course, a nonther-
mal distribution and the resultant population inversion
gives rise to the lasing process. The main source of
power loss of the HF laser is due to collisional deactiva-
tion of the upper vibrational levels. For this reason
there has been much recent interest in the experimental
and theoretical study of the rates of these collisional
relaxation processes, The experimental work on HF re-
laxation is described in Refs. 15 and 22-24.

In the present paper, V-V energy transfer is studied
for the reaction

HF(v=1)+HF(v=1)- HF(v=2)+ HF (v=0) (1.3)

and for its deuterium analog. The V-V cross sections
and rate constants are calculated using quasiclassical
trajectories and a cross-correlation method of analysis.
In this analysis method, correlations in the changes in
vibrational state of the two molecules are related to
quantum mechanical probabilities. The method is simi-
lar in spirit to the moment method of analysis. *+%% A
justification for relating quasiclassical averages to quan-
tum mechanical probabilities has been given?' using
semiclassical arguments.

In Sec. II the intermolecular potential in the HF -HF
system is discussed. Section III gives a few details for
the quasiclassical trajectories and the method used here
for calculating vibrational action-angle variables is de-
scribed. The cross-correlation method of analysis em-
ployed in the present work is presented in Sec. IV, the
results of our calculations of V-V energy transfer are
given in Sec. V, and a summary is given in Sec. VL.

The Appendix gives details of one of the two potential en-
ergy surfaces employed here.

Il. INTERMOLECULAR POTENTIAL FOR THE HF-HF
SYSTEM

Except where otherwise stated, the potential energy
surface we have used is an analytical fit by Poulsen et
al.'® to an ab initio SCF surface of Yarkony et al.?® plus
a correction!? for dispersion terms. The fit is based on
atom-atom interactions plus the dipole-dipole term.
(An alternative fit* to the SCF surface based on an ex-
pansion in Legendre polynomials with no vibrational
dependence of the short range repulsions is less suitable
for our purposes, for integrating the classical equations
of motion.) The dispersion term was taken!'® as - C¢/R®
with Cg=46.5x10°% erg em®.

We also investigated an alternative, more approxi-
mate, surface based on a Stockmayer potential, 3 We
used the surface of Ref. 31 for a pair of rigid rotors,
but with a dependence of the dipole-dipole term on vi-
brational distances.¥ The details of the surface, in-
cluding the method of obtaining the parameters, are
given in the Appendix.
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FIG. 1. Comparison of SCF ab initio points of Yarkony et al.®

(large dots), the fit of Poulsen et al. 94 SCF data (curve of small
dots), the curve of Poulsenetal. 19 with addition of the spherically
symmetric dispersion term (solid curve), the Stockmeyer poten-
tial (dashed curve), and the potential of Wilkins'® (long dash—
short dashed curve). The molecules are in the attractive col-
linear arrangement with dipoles parallel, ‘Equation (A.2) de-
seribes the angles of orientation.

One notable difference between these two surfaces is
in the depth of the well in the attractive configuration
(6.9 kealmol™! in Ref. 19 vs 8.9 kcalmolI'! in the Ap-
pendix). Thus, the surface in Ref. 19 is expected to
give more trajectories forming quasibound intermediates
than the surface in the Appendix, an expectation which is
confirmed by results given later.

We conclude this section with a description of the po-
tential energy surface of Wilkins. ! Wilkins has used
an atom -atom LEPS (London-Eyring-Polanyi-Sato)
potential energy surface to describe the short-range in-
teractions in EF-HF. The atom-atom LEPS parameters
are those derived from previous work on three-body in-
teractions involving hydrogen and fluorine atoms. The
long-range Coulombic interactions are described by
placing a fractional point charge on each atom. Plots
of cuts of each potential energy surface discussed here
are given in Figs. 1-4. The orientation angles vy, 7,
and p are described by Eq. (A2). A distinctive feature
seen in Fig. 1 is the shallowness of the attractive well
predicted by the surface in Ref. 15 (2.7kcalmol™').
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FIG. 2. Same as Fig. 1, but with the orientation v, =v,=x/2,
$=0. .

111, SELECTION OF INITIAL CONDITIONS AND
QUASICLASSICAL TRAJECTORIES

The initial conditions for our quasiclassical trajec-
tories were chosen using the Monte Carlo technique, 3
The rotational angular momentum of each molecule and
the initial relative velocity are chosen at random from
the appropriate Maxwell-Boltzmann distributions at a
given temperature. 3% The “angle” variables that are
conjugate to the classical “action” variables and which
specify relative orientations, rotational phases, and.

L1t lLill

[
Y
LB IBERAL ]

103

T llllllll
1t

2
1 l|l|‘|||
FERINNEERTI]

E (kcal/mole)

8

1 ITllllIl
(AR EEET|

’
TTTT

1078 ] ] | ! 1
3

FIG. 3. Same as Fig. 1, but with the orientation v,=0, 7, =7,
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FIG. 4. Same as Fig. 1, but with the orientation y, =7, v,=0.

vibrational phases are chosen as random numbers from
uniform distributions lying between 0 and 1.% The
method used here for selection of all initial conditions,
with the exception of those associated with the vibrations
and the impact parameter, is the same as that explained
in detail elsewhere, 3%

The problem of assigning action-angle variables for
the vibrational motion merits further consideration.
Porter, Raff, and Miller have considered the problem
of a rotating-vibrating Morse oscillator, 37 Because of
the coupling between the rotation and vibration, one
cannot obtain an analytical solution for the vibrational
action-angle variables. Porter ef al.3 expanded the 2
term that appears in the classical Hamiltonian ina
Taylor’s series about r=7,, where 7, is the equilibrium
internuclear separation. By truncating their expansion
after three terms, they obtained expressions that could
be solved analytically for the action-angle variables,
Expressions were then obtained for calculating the vi-
brational action, angle, turning points, and radial prob-
ability density function. These expressions were easy
to evaluate and use. Of course, because they are based
on a truncated expansion, the formulas obtained are
only approximate and caution is needed in their use.
The approximation becomes better the smaller the am-
plitude » —7,. In using the method of Porter et al.’’
care is needed in selecting the initial conditions such -
that »=7,. (To obtain the proper distribution of oscil-
lator separations one appropriately adjusts R, the ini-
tial intermolecular separation.) Also, as noted in Ref.
317, the approximation becomes worse as the rotational
energy becomes greater, due to increased centrifugal
distortion. While the method of Ref, 37 is very useful

- for the system where a lesser degree of accuracy in

handling the vibrations can be tolerated, for many sys-
tems the average amount of vibrational energy change
due to collisions is as small as the error incurred by

_ the truncation. (An example of a small probability is

that of collisional deactivation of vibrationally excited
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TABLE I. Comparison of methods for calculat.ing vibrational
quantum numbers for typical final trajectory conditions.

Numerically Porter, Raff
Energy* J° exact® and Miller? Muckerman®
0,814839 4.2495 1. 054285 1. 054228 1, 054691
0, 658043 0.9074 0, 816340 0, 816338 0.816167
0, 746866 4,0464 0. 920860 0. 920806 0.921155
0.874404 2.4538 1.241653 1.241631 1,241644
0.651257 0,7156 0.803811 0,803910 0.303730
0. 7798958 6.0707 0,941917 0.941843 0.942517
0.781826 1.8702 1, 060071 1. 060061 1.059965
0.536309 0.8729 0.566367 0, 566366 0.566225
0.751015 2,2275 0.988167 0.988153 0.988113
0.533887 2.28M 0.538544 0, 538538 0.583505

Mpotal internal energy of the molecule in eV.

bClassical angular momentum of the molecule in units of F=1.
See Sec. I.

“Reference 37.

*Reference 39.

HCl by ground state HCI, found experimentally to be®®
1.27%10°%.) The numerical procedure involves an itera-
tive solution of the usual semiclassical quantization con-
dition for a vibrational motion, No approximation in-
volving neglect of vibration—rotation coupling was made

- (either here or in Ref. 37).

In Table I we present a comparison of typical trajec-
tory results for the final vibrational quantum number
using the numerical method used here (column 3) and
the approximate method of Ref. 37 (column 4). It is
readily seen that the approximate method gives good re--
sults, typically affording at least four figures of accu-
racy. For the HF -HF system, where {ransition proba-
bilities are rather large, this degree of accuracy is sui-
ficient. Also, for other applications of classical trajec-
tories such as three-body reactive scattering calcula-
tions where final vibrational states can be distributed
over a wide range, the approximate formulas of Ref. 37
provide quite adequate accuracy and are easier to use
than the numerical method. However, in making our
four-body trajectory program as general as possible,
we have used the more accurate numerical evaluation of
the vibrational action-angle variables to enable us to
study other systems where changes in vibrational quan-
tum number are very small. 3% The added computational
time in the numerical method is negligible.

Another, more approximate method of calculating the
initial and final vibrational quantum numbers has been
given by Muckerman [Ref. 39, Eqs. (5a)-(5g)]. In Table
I we compare typical vibrational quantum numbers cal-
culated using the method of Ref. 39 (column 5) and the
other two methods described above.

Analysis of the results of the three methods illustrated
in Table 1 shows that the root mean squared (rms) devia-
tion of the method of Porter et al.3! from the numerically
exact method of this Appendix is 5x10°°, while the rms
deviation of the more approximate formulas® is 4x10¢,
Thus, the method of Ref. 37 typically yields four to five
digits of accuracy and the method of Ref. 39 about one
digit less. Keeping these figures in mind, one can
choose the method of analyzing the vibrational quantum
numbers according to the degree of accuracy needed.

Coltrin, Koszykowski, and Marcus: V-V energy transfer in HF-HF

The impact parameter was selected by Monte Carlo
sampling using a stratified sampling technique. ¥ In
this stratified sampling technique, one samples more
extensively from the impact parameters which contribute
most to the inelastic cross section for energy exchange.!
One also can do the sampling by another technique (im-
portance sampling®) as in Ref. 42. In general, it was
necessary in the present case to consider impact pa-
rameters of 6 to 8 A before contributions to the inelastic
cross section became negligible.

The initial separation between the centers of mass of
the two molecules (R) was 10 A for each trajectory.
This R was large enough to ensure a negligible interac-
tion at the beginning of each trajectory (~0.1k5T).

After the initial conditions for a trajectory were se-
lected in the above coordinates, they were converted to
nine Cartesian coordinates-and their nine conjugate mo-
menta, % namely, to the three relative coordinates for
each molecule and three relative coordinates for the
separation of the centers of mass of the two molecules.
The classical trajectory was computed by numerically
integrating the 18 Hamilton equations of motion. For the
integration of the collision trajectory and the integration
required in evaluating the vibrational action-angle vari-
ables the subroutine DERCOT*® was used. The trajectory
was integrated until the final separation of collision part-
ners was again 10 A,

The trajectory calculations were performed on a
CDC-175 computer. On the average, each trajectory
required 45 s computation time.

IV. CALCULATION OF FINAL STATES, CROSS
SECTIONS, AND RATE CONSTANTS

A. Method for determining final vibrational states

The final rotational angular momentum and energy of
each molecule and relative velocity of the collision part-
ners are readily calculated from the final Cartesian co-
ordinates of the trajectory. The final action-angle vari-
ables can be obtained via the transformations in Ref, 38
for all of the degrees of freedom except the vibrations,
and the latter are treated as follows:

The final classical vibrational quantum number is, in
general, not an integer. From each molecule’s final
total energy and angular momentum, its final vibrational
state can be calculated by a numerical integration over
one cycle of the motion (i.e., the usual semiclassical
specification of vibrational state).

B. Cross-correlation method for the HF(v= 1) + HF(v=1)
system

In calculating the rate constants for vibrational en-
ergy transfer we introduce a cross-correlation method
of analysis. We then assume that the quasiclassical and
quantum mechanical moments, *%¢ and the cross corre-
lations of the distribution of final averages of internal
energies, quantum numbers, etc., are equal. We then
relate the correlation in changes of vibrational state of
each molecule to probabilities and rate constants,

One can formally write an expression for the quantum

J. Chem. Phys,, Vol. 73, No. 8, 15 October 1980
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mechanical expectation value of the following cross cor-
relation between the change in vibrational state of mole-
cules 1 and 2 for a given value of the orbital angular mo-
mentum and the relative velocity:

(Avl. A"»ou =P2°'“ (+ l)(—' 1) +P02.“(— 1)(+ 1)
+ Py, 11 (= 1)0) + Py, (0)(-1) , (4.1)
4.2)

where Py, ;, is the probability for the vibrational transi-
tions i~k and j —! of molecules 1 and 2, respectively.
Both terms Py ¢y and Pyp |y contribute to V-V vibra-
tional change of molecule 1, the probability of which is
denoted Py_y. Multiquantum transitions have been ne-
glected in writing Eq. (4.1),

The probability for V-R, T suffered by molecule 1 is
Pyy,11. To obtain it we consider

(Av, . (Av +80;3)) o
=Py, (+1)(+1=1)+ Py gy (-1)(+1~1)
+ Py, 1~ 1)(-1+0) +P10,1|(0)(0 -1),

==Pyy 1y =Py, 11==-Py_y ,

4.3)
4.4)

The advantage of considering the cross correlations
such as in Eqs, (4.2) and (4. 4) is that one obtains di-
rectly the quantities of interest Py_y and Py_g r. An-
other way of obtaining Py_y and Py_g ¢ is from the first
and second moments of Avy. However, this method
yields linear combinations of Py_y and Py_z, r and their
values must be obtained by additions and subtractions of
the two moments, This was found to lead to large
standard errors, particularly for the small quantity
Py_g,r, where use of the first and second moments gave
a standard error ten times larger than obtained via the
cross correlations.

=Py, 11=Py_r,r .

The above probabilities depend on the impact parame-
ter b via a dependence on the orbital angular momentum
and on the initial relative velocity Vx.

On making the assumption that the quantum mechani-
cal expectation values equal those determined from a
quasiclassical trajectory calculation, %27 one obtains

PV—V(bl VR)= "( Avl . AUz)-“(b, VR) (4. 5)
and
4. 86)

where the subscript ga denotes “quasiclassical aver-
age.” The b and V; above indicate that these probabili-
ties are for a given impact parameter and relative ve-
locity, respectively.

Py_g, (b, V) =(Av,. (Avy+ Avs)a(d, V),

The theoretical V-V cross section is found by inte-
grating over impact parameters
Uv_v(VR)= 21['{‘ PV—V(b) Vg)bdb . (4. 7)
The impact parameter integral is evaluated using the
Monte Carlo stratified sampling technique. 334041 The
theoretical V-V rate constant is related to the cross
section as

ky_y (T)=(Vy UV-V(VB»(T) . 4.8)

3647

The average in Eq. (4.8) is over a Maxwell-Boltzmann
distribution of relative velocities at temperature 7. Ex-
pressions analogous to Eqs. (4.7) and (4. 8) are used to
calculate the V-R, T cross section and rate constant,
respectively.

Experimentally, the observed rate of formation of
HF(»=2) in Reaction (1. 3) is determined and related to
the observed V-V rate constant

d[HF (v = 2))/dt=k3RS[HF 0 = 1),
=3ky_y[HF w=1)],

(4.10)

where ky_y would be the rate constant if the molecules
were distinguishable. It is given by Eq, (4.8). The
factor of 3 used to relate the rate constants of Eqs. (4.8)
and (4. 9) is necessary to account for the indistinguish-
ability of the two molecules.

V. RESULTS

A. HF{v=1)+HF(v = 1) system using Morse vibrational
potentials

In this section the results of our quasiclassical tra-
jectory investigation of vibrational energy transfer are
presented for the collision (1, 3) at 300 K, using the in-
termolecular potential of Ref. 19, For the intramolecu-
lar vibrational potential energy of each molecule a Morse
potential was used, the parameters for which were de-
termined from spectroscopic constants. (In Ref. 19 a
harmonic oscillator potential was used instead. )

Using the method of selecting initial conditions and of
calculating final results described earlier, the rate
constant for V-V energy transfer for HF -HF as given
in Eq. (1.3) is calculated to be 9,0x10' ccmol™'s™!,
The standard error in this rate constant is 1.2x10"?
cemol™!s!,

The V=R, T rate constant for this set of collision part-
ners is 4.8x10" ccmol™'s™!, with standard error of 7.2
x10® ccmol ' s”!. Although the standard error for the
V-RT rate constant is large, it appears that the V-R, T
process is at least 100 times slower than the V-V,

The theoretical V-V rate constant can be compared
with an experimental one determined by Cohen and
Bott! using a laser-induced fluorescence technique.
They found the value to be 10, 5x10'? ccmol"!s™! at 300
K, while our theoretical rate constant is 9 x10'2
ccmol!s"!. The agreement is remarkably close, noting
that no adjustable parameters have been used.

B. Correlation coefficients of energy disposal

To illustrate further that in the present study the
V-~V energy transfer really dominates the collision, we
look at the correlation coefficient for the change in vi-

" brational state of one molecule and the change in the

other. An estimate of the population correlation coef-
ficient between two variables, say x and y, is given by

r=[Ze-010-9] / [ e -7 [T 00-57]

(5.1)

J. Chem. Phys., Vol. 73, No. 8, 156 October 1980
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TABLE II. Correlation coefficient for
changes in dynamic variables for the
HF;=1) +HF{v,=1) system.®

Correlation

x y coefficient®
Av, Av, -0.9957
Ay ath) 0.0197
an aph 0. 0601
Ay, aJ, -0.0059
Avq A} -0.0160
" Ay AJ, -0,4248
awd) awd) —0.4722
AEyme  AWI+JD)  -0.9317

%potential energy surface from Ref.
19, Morse vibrational potential,
300 K.

bsee Eq. (5. 1).

By application of Schwarz’s inequality one can deter-
mine that -1<7=<1, If r=1, then x and y show a per-
fect, positive linear correlation; if »=-1, x and y have
a perfect, negative linear correlation; and if »=0, there
is no linear correlation between x and y.

In Table II the correlation coefficient is given for
transfer of vibrational quanta (really, of classical ac-
tion v) from one molecule to the other. For a pure V-V
process, r for correlation between Avy and Ay, would be
-1. From Table II one sees that our trajectory data
yield »= - 0.9957 for the V-V process. From the data
in Table II one can also look for evidence of V-R, T en-
ergy transfer in this system. One sees that there is
essentially no linear correlation between the change in
vibrational quantum number (v, the vibrational action
variable) of one molecule and the change in the rota-
tional quantum number (/;, rotational action variable) of
the same molecule, or in the ¢hange in approximate ro-
tational energy of the same molecule (proportional to Jf),
or in the change in rotational quantum number /,) of the
other molecule, or in the change in approximate rota-
tional energy of the other molecule (proportional to J3).
Thus, one concludes that for this HF (1) + HF (1} system,
neither intermolecular nor collision-induced intramolec-
ular vibration-to-rotation energy transfer are important.
There is, however, an appreciable correlation between
the change in rotational quantum number of one molecule
and the change of rotational quantum number of the other
(aJy vs AJ,), reflecting some tendency to a statistical
distribution among the R and T coordinates. A similar
correlation is seen in the “rotational energy” changes of
each molecule [AW}) vs AQ2)]. Finally, the change in
total rotational energy (proportional to J3 +J3) is seen to
have a strbng linear, negative correlation with the
change in translational energy (E,.,,,) of relative motion,
a result which also follows from the Avq — Av, correla-
tion.

In summary, using the potential energy surface of
Poulsen et al., '® our theoretical V-V rate constant is

Coltrin, Koszykowski, and Marcus: V-V energy transfer in HF-HF

found to agree closely with the experimental value, The
vibrational relaxation for an individual molecule occurs
almost exclusively via the V-V mechanism. The rota-
tional relaxation is primarily due to a R-R, T process.

As discussed in Sec. II of this pé.per, this potential
energy surface for the HF ~HF system has an attractive
well of approximately 6.9 kcal mol™!; One would predict
the formation of long-lived, quasibound complexes, i.e.,
trajectories in which orbiting occurs. In our trajectory
program we recorded the number of times that the prod-
uct R+ (dR/di) changes sign. For a simple collision,
where the two molecules approach, reach some mini-
mum distance, and then separate, this function changes
sign once. If N,,,, is the number of times that R- @R/
dt) changes sign for a given trajectory, then (N, -1)/2
is taken to be the number of repeated encounters for that
trajectory. We shall call this encounter a multiple col-
lision,

We find that for the system studied here muitiple col-
lisions occur in 30% of the trajectories, However, the
trajectories that have multiple collisions accounted for
60% of the V-V rate constant. The trajectories that ex-
hibit these multiple collisions are thereby computed to
be about a factor of 3.5 more efficient in transferring
vibrational energy. [The relative efficiency of the mul-
tiple collision trajectories is (0. 6/0.3)x(1-0. 3)/(1
-0.8), i.e., 3.5.] This behavior is not surprising:
Each encounter in the multiple collision is able to con-
tribute to vibrational energy transfer. The average
number of encounters within a multiple collision was
five, but sometimes was as great as 100,

C. HF(V=1)+HF(V=1) system using harmonic
oscillator vibrational potentials

In the preceding calculation 2 Morse oscillator poten-
tial was used for the vibrational potential of each mole-
cule, However, harr_nonlc,oscillator potentials are fre-
guently used in collision problems. To investigate the
effect of the anharmonicity on the above V-V rate con-
stant a comparison with harmonic oscillator resuits is
given. In the absence of rotations, the V-V process of
Reaction (1. 3) is exactly resonant for the case of a har-
monic potential but not for a Morse potential, i.e., the
total vibrational energy of the reactants equals that of
the products in the harmonic case. For the Morse os-
cillator potential there is an energy mismatch and the
process is off resonance due to this vibrational anhar-
monicity.

On repeating the above calculation for Reaction (1. 3)
but using a harmonic oscillator vibrational potential (ob-
tained from the quadratic term of a series expansion of
the Morse potential), the V-V rate constant was calcu-
lated to be 9.4x10' ccmol's™! (standard error 1.2
%x10'S cemol'!s™!). This rate constant can be compared
with 9. 0x10'? ccmol'!s™!, the rate constant calculated
for the Morse oscillator case. Thus, classical reso-
nance of the V-V process has yielded a rate constant 10
times higher for the harmonic oscillator case over the
anharmonic one,

In the harmonic oscillator case the V-R, T rate con-
stant was again found to be negligibly small.
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D. HF{v=1)+HF(v=1) system using the Stockmayer
intermolecular potentiat

Following the same procedure as before, but using
the Stockmayer potential described in the Appendix, the
rate constant for V-V energy transfer was calculated to
be 2.1x10® cemol'!'s™! (standard error 3x10"
ccmol™!s™!). This rate constant is compared with the
value of 9.0%10' ccmol?s™! calculated above using the
surface in Sec. II. '

We have noted earlier that the difference in the two -
calculations is in the form of the intermolecular poten-
tial, such that the well depth was substantially smaller
(3.9 vs 6.9 kcalmol™') for the surface in the Appendix,
One would thus expect fewer multiple-collision trajec-
tories in the case of the Stockmayer potential, an ex-
pectation confirmed by the present calculations: Mul-
tiple collisions were found to occur in only 9% of the tra-
jectories using the modified Stockmayer potential, com-
pared to 30% in the case of the surface in Sec. II.'® As
noted earlier, the multiple collisions contributed very
significantly to the V-V cross section for the surface in
Sec. II.

One reason for the rate constant obtained with the
Stockmayer potential being a factor of 4 times less than
the one calculated using the surface in Sec. I is the
sparsity of multiple collisions. However, the difference
in multiple collisions (associated with the attractive por-.
tion of the intermolecular potential) does not account for
all of the factor of 4. We calculated the contribution to
the V-V rate constant of the trajectories that are not
multiple-collision type to be 1.9x10' and 3. 6x10'?
cemol™ &”! for the modified Stockmayer and Sec. II sur-
faces, respectively. (Recall that the rate constants in-
cluding all trajectories were 2.1x10'? and 9.0x10"
ccmol™ 57!, respectively.) The fact that even when the
multiple-collision trajectories are excluded the V-V
rate constant is still roughly a factor of 2 smaller for
the Stockmayer case may be due to differences in the
short-range repulsive terms in the potentials: The
short-range repulsive part of the Sec. II surface de-
pended on the vibrational coordinates while that based
on the simpler Stockmayer did not, and so only the
former could contribute to vibrational energy transfer.

€. DF(v=1)+DF(v=1) system

We have also studied vibration-to-vibration energy
transfer for the reaction

DF(v=1)+DF(v=1)-DF(v=2)+DF(v=0) (5. 2)

at 300 K. The intermolecular potential in Sec. II** was
used, but with the Morse oscillator intramolecular vi-
brational potential determined from spectroscopic mea-
surements® as before. The same methods as for the
HF —HF case were used for sampling initial conditions,
integrating trajectories, and determining cross sections
and rate constants. For the DF-DF reaction in Reac-
tion (5. 2) the V-V rate constant was calculated to be
1.7x10' cemol'! s°! (standard error 2.5x10'

cemol ' s™!), This result compares well with the exper-
imental value of Bott*® 1.9x10'® ccmol™!s™! at 295 K.

As one would expect, the dynamics of the V-V trans-
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TABLE III. Correlationcoefficient
for changes in dynamical variables for
the DF{v 4= 1) + DF(v, =1) system. *

Correlation
x ¥ - coefficlent®
Ay, Av, —0.9981
Ay, Ay -0.0643
Ay awh —0.0895
Avy AJ, 0.0592
Ay, INAL) 0, 0295
Ay Ad, —0.5822
awd) ad) —0.6289
AE 124 AR +ID -0.9525

3potential energy surface from Ref.
19, Morse vibrational potential,
300 K.

See Eq. (5.1).

fer in DF -DF are very similar to that in the HF -HF
case, Again, multiple collisions contributed substan-
tially to the V-V rate constant. Multiple collisions
were observed in 37% of the trajectories and accounted
for 70% of the V-V rate constant,

In Table III the calculated correlation coefficients are
listed for changes in dynamical variables in the DF -DF
system. These correlation coefficients are seen to be
very similar to those calculated for the HF -HF case
(Table II). There is again a strong negative correlation
between the change in vibrational state of one molecule
and the change in vibrational state of the other. As in
the HF -HF system, there is no evidence for either a
collision-induced intramolecular or an intermolecular
vibration-to-rotation energy transfer mechanism under
these conditions,

F. Comparisons with other work

Some of the findings in this section can be compared
to those of Wilkins, '* who studied vibrational relaxation
in HF systems using the quasiclassical trajectory ap-
proach,

The present calculations differ in many aspects from
those of Ref. 15, e.g., in the potential energy surface
used. A major difference between the LEPS surface'
and that of Sec. II'® lies in the well depth of 2.7
kealmol™! compared to 6.9 kecalmol™, It is not surpris-
ing that Wilkins’ trajectory study indicates that multiple
collisions do not occur for the typical HF -HF collisions
at 300 K, '® in contrast to our findings using the potential
energy surface in Sec. IL.™®

Other differences were in the initial conditions for the
trajectories, namely, in the initial separation of the
centers of mass of the two molecules (8 A in Ref. 15 vs
10 A here) and in the maximum impact parameter con-
sidered (2.5 A vs 6-8 A here). Another difference was

. in‘the method of determining the V-V probability from
the trajectory data, We have used the cross-correlation
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TABLE IV. Compariscn of calculated V-~V rate constants using
Methods I and II.

Rate constant (10" ccmol™!s™")

System Method 1 Method I
HF~-HF—Morse oscitlators 0.9 6.2
HF~HF—Harmonic oscillators 9.4 23.0
HF~HF—Stockmayer potential 0.2 3.4
DF-DF 1.7 9.7

analysis method (hereafter denoted “method I”), In Ref.
15 the method used was one sometimes employed in
quasiclassical studies (hereafter denoted “method II”").
In this method II, one calculates a quantity such as®
n

(aE) = (I/N)‘ElAE‘, , (5.3)
where N is the total number of trajectories, the »" indi-
cates that one sums only the trajectories that have lost
vibrational energy, and AE; is the change in vibrational
energy of the ith trajectory that has lost vibrational en-
ergy [the vibrational energy is calculated using Egs.
(5a)-(5g) of Ref. 39]. The probability for the internal
state j— k transition (where j>2) is found by

Py, Vg)=(aE) (b, Vg)/ (hy,.,) . (5.4)

The cross section and rate constant are then calculated
using Eqs. (4.7) and (4. 8), respectively.

As a means of comparing method I with method I, in
Table IV the V-V rate constants for the four systems
discussed earlier in this section were calculated using
both methods. (In each case the same trajectory data
were used for the two methods.) It is quite evident
from Table IV that use of method II yields a much larger
V-V rate constant than does the cross-correlation
method. Method II has previously been seen‘’ to give
substantially higher probabilities when compared with
exact quantum mechanical results. A semiclassical )
justification has been given® only for method I: The mo-
ments used in our method I are analytic functions and are
included in the class of operators whose expectation val-
ues have heen equated quasiclassically and quantum me-
chanically via semiclassical arguments“ but the expec-
tation value calculated for method II [Eq. (5.3)] is not
based on an analytic function. The semiclassical argu-
ments used to relate the quasiclassical and quantum
mechanical moments cannot be applied to this operator
or to method II.

In summary, in comparing Wilkins’!® calculated rate
constant of 9x10'2 cc mol™! s} there are two major dif-
ferences compared with the present calculations, one of

“which (the potential energy surface) leads to reduced
rate constants and the other (the method of calculating
cross sections) which leads to enhanced values, The re-
sulting agreement between the two calculations, due to
cancelation, is thereby accidental.

VI. SUMMARY

In the present study of vibrational energy transfer, a
quasiclagsical cross-correlation has been used torelate

Coltrin, Koszykowski, and Marcus: V-V energy transfer in HF-HF

the correlation in changes in vibrational state of each
molecule calculated via quasiclassical trajectories to
probabilities and thereby to rate constants for V'~V and
V-R, T energy transfer.

Using the potential energy surface in Sec. II, '° the
V-V rate constant was calculated for Reaction (1.3),
yielding a theoretical rate constant which agreed well
with experiment with no adjustable parameters. Multipl
collisions were found to contribute substantially to the
V-V cross section. The V-R, T mechanism was found
to be unimportant for this surface.

When a harmonic oscillator potential was used in place
of the Morse potential in our study of Reaction (1. 3), the:
rate constant was found to increase by a factor of 10. '
This increase is due to the fact that Reaction (1.3) is
more nearly resonant for a harmonic oscillator potential
than for the Morse potential case.

It was also found in this study that the calculated rate |
constant for Reaction (1. 3) was about a factor of 4
smaller when using the Stockmayer potential of the Ap-
pendix, a potential which had (i) a shallower potential
well and thereby fewer multiple collisions and (ii) had no'
vibrational coordinate short-range contribution,

The V-V rate constant calculated for the analogous
DF reaction (5. 2) was also in good agreement with ex-
periment.

A comparison was made of calculated rate constants
using the present cross-correlation method vs using one
common (but not justified) quasiclassical one. The two
methods showed a large disagreement, with the usual
quasiclassical method consistently yielding rate con-
stants from 2,5 to 17 times larger. This finding is in
accord with the results of Muckerman et al.*’ In Ref.
47, method II was found to give transition probabilities
that were consistently too high when compared with nu-
merically exact quantum mechanics,
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APPENDIX: STOCKMAYER INTERMOLECULAR
POTENTIAL

We have performed one calculation of V-V energy
transfer using a simpler potential eénergy surface sug-
gested by Turfa et al.! but modified to include a depen-
dence on vibrational coordinate. It is essentially a mod
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ified Stockmayer potential. ® The usual Stockmayer po-
tential is

4¢[(6/R)' - (a/R)*] + 1 125 (cOs ¥ - 3 cosy, cosy,)/RY, (A1)

where the angles are defined as follows: If R is a vector
denoting the line joining the center of mass of the two
molecules, and ry and r, denote their internuclear sepa-
ration distances and orientations, respectively, the in-
termolecular angles vy, v;, and ¥ are defined by

71°R=cosy,, 7' R=cosy,, 7+ 7y=cos¥, (A2)
where 7, and R denote unit vectors. '

The functional form of the intermolecular potential
used here has been given in Ref. 31, Eqs. (2.1)-(2.7).
However, the potential of Ref. 31 is given with each
molecule constrained to its equilibrium bond length.
Thus, a Morse oscillator intramolecular vibrational
potential has been added to the potential of Ref. 30. In
addition, the dipole moment of each molecule has been
made a function of its intramolecular bond length  as

(A3)

where the subscript eq denotes values at the equilibrium
bond length,

wr)= o + (lém/ar),.q clr-va),

All of constants needed for this potential energy sur-
face are readily obtainable from experimental measure-
ments and are listed in Table V, with the exception of
the Stockmayer parameters € and ¢, Stockmayer pa-
rameters can be determined from experimental studies
of the temperature dependence of the molecule’s bulk
viscosity®® and have been tabulated for many mole-
cules. ** However, such Stockmayer parameters are
not found for HF. One cannot fit reasonable Stockmayer
parameters to HF viscosity data!’ according to the pre-
scription given in Ref. 48. The following alternate
method to estimate € and ¢ has been used.

As discussed by Turfa, ¥ some workers®*-5? have taken

TABLE V. Parameters for the HF—HF Stock-
mayer potential.

Parameter Value Footnote
Yeq (A) 0.9171 a
u (D) 1.82 b
ou/or (D/R) - 1.51 c
a" (cm?) 9,6% 107 d
o* (cm®) 7.2x 10°% d
e/k (K) 74 e
oA 3.05 e

3G. Herzberg, Spectra of Diatomic Molecules
(Van Nostrand, New York, 1950), 2nd edition,
YR. Weiss, Phys. Rev. 131, 659 (1963).

‘R. E. Meridith, J. Quant. Spectrosc. Radiat.
Transfer 12, 485 (1972).

Y, Landolt and R. Bornsteln, Zahlenwerte und
Funktionen (Springer, Berlin, 1950), Vol. I,
Chap. 3, p. 510, '

*This work.
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FIG. 5. Plot used to determine an estimate of €o® for HF.
Here I represents an ionization potential, and a is the bulk
polarizability. .

. the C’ coefficient of the dispersion term in the potential

Eq. (2.5) of Ref. 31 to be
C'=-31L/L+1), (A4)

where Il and I, are ionization potentials, The coefficient
has also been taken to be®

C' =2ec%/ (@) ; (a5)

where « is a bulk polarizability, While these two coef~
ficlents are not equal, they are used to describe the
same effect, and so are expected to be somewhat simi-
lar. Indeed, the plot of In€o® vs In[3/(a)?/16] shown in
Fig. 5 for the other hydrogen halides and the rare gases
that are isoelectronic with them is strikingly linear.
Using the experimental value of 3/(x)*/16 for HF and the
data from the plot in Fig. 5, from a linear least-squares
analysis we estimate that, for HF,

€®~5.92x10' KA® .

An independent estimate of either €'or o to solve for the
two unknowns is needed and was obtained as follows:

Dyke, Howard, and Klemperer® have determined the
F-F distance in the HF -HF dimer to be 2.79:0.05 4,
with one HF bent 60°-70° from the F~F axis. The
dimerization energy has been experimentally deter-
mined®% to be 6.0x1.5 kcalmol™, Although the simple
form that we are using for the potential cannot predict
the nonlinear structure of the dimer, it does allow for
an attractive well in the linear arrangement, We chose
€/k 80 as to yield the correct dimer F~F bond distance
(2.79 A). For €/k=T4 K and 0=3.05 A, the resulting
well depth of our potential was 3. 91 kcalmol™!. We have
used these values for €/k and o in our calculation. How-
ever, this well depth is too small by 0.6 to 3.6
keal mol™,

If one tried to adjust €/k and ¢ so as to match the ex-
perimental well depth, the dimer F-F bond distance
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