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INTRODUCTION

Nonlincar dynamics has been applicd to chemistry in a variety of ways, for
example, in the analysis of spatial and temporal oscillations in chemical reactions. The
equations for the reaction ratc at various regions of spacc are nonlinear in such cases.
Several other papers in this volume touch upon this subject. Nonlinear dynamics has
also been used to treat collisions between molecules by solving Hamilton's equations
for their motion. Many recent experimental data that have become available on
collisions and reaction dynamics have been treated in this way.

In earlier years, dynamical information about chemical reactions was obtained
only from chemical reaction rates and their dependence on temperature. Particularly
since the carly 1960s, the introduction of new technology, such as molecular beams
and lasers, has permitted researchers to acquirc much more detailed dynamical
information on reactive and nonreactive collisions, information such as quantum
state-to—quantum state chemistry in some instances and the measurement of the
distribution of final vibrational-rotational-translational quantum states in others, as
well as various degrees of averaging of similar information. The theoretical studies in
the ficld of collisions have been classical, semiclassical, and quantum in nature.

Information has also become available on topics rclated to vibrational energy
redistribution within a moleccule, from, e.g., studies of unimolecular reactions,
chemical activation, infrared multiphoton dissociation of molecules, and widths of
high overtone spectra of local vibrational modes in molccules. (Some references are
given in Reference 1.) The detailed interpretation of many of these cases is still being
resolved; the entire field of intramolecular relaxation is a particularly active one at this
time. One expects that the isolated molecule will behave largely “ergodically” at high
enough vibrational cnergies, reaching most parts of the vibrational phase space
available at those energics. A statistical theory of unimolecular reactions, RRKM,
which assumes this form of behavior, is commonly used for treating high vibrational
energy data. Onc current interpretation of the infrared multiphoton absorption of
energy by molecules is that initially, at low vibrational energies, the molecule does not
behave “ergodically,” but rather absorbs the laser infrared radiation coherently; at
higher vibrational energics, it docs behave “ergodically.” In the case of high overtone
spectra of local modes, it is not yet known whether the spectral width is duc to an
cnergy loss Lo the other modes or to a “vibrational dephasing”; each arises from
anharmonic coupling with the other modes.

We consider below, in the application of nonlinear dynamics to chemistry, the
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problem of the intramolecular behavior of molecules both classically and quantum
mechanically.

The classical Hamiltonian for the motion of atoms in a molecule has much in
common with those extensively investigated in the literature of astronomy and related
subjects. Thus, the results in astronomy have implications for the chemical problems.
For example, the largely quasi-periodic behavior found in numerical experiments for
the former at low energies and the largely stochastic (‘“‘chaotic”), but still determin-
istic, behavior found at high energies is expected to prevail for classical mechanicat
molecules, too. While molecules obey quantum mechanical laws rather than classical,
the quantum behavior should be reasonably similar to the classical at high enough
energies. Nevertheless, the role played by quantum restrictions is an important one
and must be included in estimates for the onset of “stochastic” behavior in a
molecule.

In the present paper, we indicate how classical results in the quasi-periodic regime
provide direct information about the corresponding quantum mechanical behavior
when semiclassical methods are introduced. While the corresponding treatment for
the stochastic regime in quantum mechanics is much less developed, a criterion for
conditions under which a quantum stochastic regime occurs will be proposed. A
criterion for quantum stochasticity is of interest, since, in some experiments, the
behavior of a molecule can differ, depending upon which regime it is in.'

Quasi-PErIODIC REGIME

Einstein pointed out that a system can be quantized for the quasi-periodic regime
by finding the N independent canonical invariants f p - dr (N for N degrees of
freedom) and setting them equal to n,h, or nowadays (n; + '%)h for an oscillator,
where n,, . . . ny are sets of integers.? The KAM theorem ensures that invariant tori,
and with them these action integrals, exist in the phase space for almost all initial
conditions if the perturbation from an integrable system is sufficiently small.? Using
such concepts on quantization, derived now from multidimensional semiclassical
arguments,** good agreement has been obtained with cigenvalues calculated quantum
mechanically from a large variational basis set.>? Semiclassical eigenvalues were
calculated for the first time for systems with smoothly varying potentials by
integrating Hamilton’s equations of motion,® using a familiar Hamiltonian,'

H =%(p? + p} + wix® + wly?) + Ax(p* + 9x?), )

with coordinates x and y, momenta p, and p,, and with w, and w, incommensurable. A
typical classical trajectory obtained in this way is given in FIGURE 1. On the “ellipse,”
the’ potential energy equals the total energy. The trajectory must lie within this
boundary, but it clearly occupies a much more confined region. Within the region
ABCD, the corresponding quantum mechanical wave function is large and oscillatory,
while, outside it, it dies away exponentially with distance.*® The boundary lines 48,
BC, CD, and DA serve as caustics for the wave function. By calculating § p - dralong
the curve AB and back and along the curve BC and back, setting them equal to
(n, + %)k and (n, + 'h)h, respectively, and adjusting the initial .conditions and,
thereby, the energy E so that n, and n, were integers, semiclassical eigenvalues were
calculated.® They agreed well with the quantum mechanical eigenvalues.
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FIGURE 2. A trajectory for the Hamiltonian (1) with w, = w,.

A second method was then found by using the trajectory to generate two Poincaré
surfaces of scction: a plot of p, versus x at y = 0 and p, > 0, and a plot of p, versus y at
x = 0and p, > 0. Each of these consisted of a series of dots on an ellipse-like figure.
The area of cach figure can readily be evaluated, and equals the corresponding value
of f p - dr for that trajectory. The initial conditions were chosen so that the areas
were (n, + '2)h and (n, + ‘h)h, respectively, where 1, and n, are integers. Once again,
good agreement between quantum mechanical and semiclassical cigenvalues was
obtained.’

Perturbative and perturbative-iterative methods were subsequently developed.'™"?
They provide a useful complement to the trajectory method described above; they can
be computationally fast when the integrals can be evaluated analytically, but can
break down (do not converge) when the distortion of the tori is large enough, under
conditions where the trajectory method can still be used.

The trajectory method' has also been used to treat systems where w, and w, are
commensurable,?’ e.g., when they arc 1:1 and when they are 2:1 (Fermi resonance). In
these cases, the trajectory patterns were no longer box-like, as in FIGURE 1, but tended
rather to be circular in the I:1 case (FIGURE 2) and parabolic in the 2:1 case (FIGURE
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3), reflecting extensive energy exchange between the x and y degrees of freedom.*’
For these systems, the idea of a curvilinear surface of section was introduced by
employing polar coordinates (r, 8) for the 1:1 case and plotting p, versus r at some o
(pe > 0) and p, versus 0 at some 7 (p, > 0)." Once again, arcas were cvaluated and
cigenvalues were obtained, the quantization procedure having allowed for the caustics
touched by the trajectory.”

Similarly for the ww, = 2:1 case, parabolic coordinates (£, ) were introduced,
curvilinear surfaces of section, e.g., p; vs £ at constant  and p, > 0, were plotted, the
areas were evaluated, and, thereby, the eigenvalucs were obtained.” The trajectories
consisted of three types, those shown in FIGURE 3, those curved in the opposite sense,
and trajectories representing a transition between the two (e.g., Figure 10 of
Reference 9), in which the trajectory passes through a focus in addition to touching
the caustics. In cach casc, allowance for the effect on the phase of the semiclassical
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FIGURE 3. A trajectory for the Hamiltonian (1) with w, = 2w,.
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wave function of a trajectory touching a caustic or passing through a focus was
made.*

Recently, eigenvalues have been obtained quantum mechanically for a Hamilton-
ian whose classical version is given by equation 2 (cf. equation 1.7 and Figure 2 of
Reference 19),"”

H=%(p: + pl + x* + y*) + x* + 2ex?p? + )~ (2)

The system becomes degenerate, and also separable and, hence, integrable, at ¢ = 0, 1,
and 3. Thereby, plots of the energy eigenvalues versus ¢ show actual crossings.
Systems near these crossings have much in common with the nearly degenerate (1:1
and 2:1) systems mentioned above and so can presumably be treated by the Poincaré
surface of section method in the quasi-periodic regime.

The surface of section method has recently been extended from two to three
dimensions.” The perturbative and perturbative-iterative methods are readily applied
to three dimensions, as well as two, and applications to actual molecules (H,0, OCS)
with added approximations, e.g., neglect or separate treatment of Coriolis forces, have
been made.'*'>'¢

We have not mentioned, thus far, an earlier method, one which quantizes only
periodic trajectories.”’* This method would be applicable to fully degenerate systems,
but has been shown to lead to spurious eigenvalues in other applications.” A
modification has been given,” based on an expansion about the periodic trajectory,
and represents an approximation to the trajectory method of References 6-9. Periodic
trajectories have been used to obtain useful information about the density of
states.?*?

The surface of section method has also been recently applied to a resonant
scattering system to locate the positions of the scattering resonances.? It yielded good
agreement with the quantum mechanical results.” Interestingly enough, resonances in
the system studied that were not located accurately in the quantum mechancal
calculations corresponded classically to trajectories that were not quasi-periodic.?
They displayed a thin stochastic layer behavior that permitted them to escape.

A rapid way to obtain information from a trajectory about differences of
eigenvalues in the quasi-periodic regime has also been found, namely to calculate an
autocorrelation function and, thence, a Fourier transform.”® Several spectral lines
were obtained. Their positions agreed well with quantum mechanical lines calculated
variationally from a large basis set.”® Because the positions of the lines vary only
slightly with initial conditions in the quasi-periodic energy regime, it was possible to
use, for the calculation of the spectrum from the trajectory, initial conditions
corresponding to appropriate zeroth order values for the action variables. The spectral
method has been subsequently used in other investigations;®*® Noid et al. recently
have applied it to molecules such as OCS with Coriolis and other terms present in the
Hamiltonian,*' and it has also been used to calculate intensities.*?

STOCHASTIC REGIME

In the stochastic regime, most trajectories yield Poincaré surfaces of section that
resemble shotgun patterns.” The patterns sometimes tend to avoid certain areas, those
which are pre-empted by those invariant tori which remain even in the high energy
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regime. For example, in the Hénon-Heiles Hamiltonian system, namely, equation 1
with w, = w, and 7 = —!, there are, at the highest energies, preserved tori
corresponding to high “angular momentum” in the xy plane in FIGURE 2. It was
possible 1o quantize those tori semiclassically using the Poincaré surface of section
method described in the preceding section.®*

In the case of the destroyed tori region, two methods have been suggested for
computing the energy cigenvalues in this stochastic regime. One is to note that the tori
persist in perturbation theory even when they do not in the actual system and to
quantize these perturbatively-calculated tori.'*!” A second method is to calculate the
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FIGURE 4. A plot of both the classical and the quantum number of states versus energy for the
Hénon-Heiles system with A = 0.11180 (Reference 32).

classical number of states as a function of energy using a microcanonical ensem-
ble,*

No(E) - [ O(E - H)Hd"'d”‘. )

for a system with NV degrees of freedom. Here, 8 is the unit step function. Ny(E) is a
smooth function, while the quantum mechanical function rises in steps at each
eigenvalue, as shown in FIGURE 4. For the system studied, equation 3 located the
quantum states to an accuracy of about one state.’> The first method yielded good
results." It does leave uncertain the order of perturbation to be used, unless some form
of convergence can be proved, and may encounter difficulties such as that described in
FIGURE 6. '

In a recent study of the quantum mechanical energy levels of the Hénon-Heiles
system, a surprising result was obtained: the sequence of the energy levels (levels
characterized by principal and pseudo angular momentum quantum numbers, n and /,
respectively) in the classically quasi-periodic regime continued smoothly into the
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TABLE 1
DIFFERENCES OF EIGENVALUES FOR VARIOUS SEQUENCES

Transition Transition
nl -~ nl AE nl — nl AE
Low / Intermediate /
(6,0) (7.1 0.92 (4,0) (5,1) 0.95
(7.1 (8,0) 0.89 (5.1) (6,2) 0.94
(8,0) 9,1) 0.89 (6,2) (7,3) 0.95
9.,1) (10,0) 0.87 (7,3) (8.4) 0.96
(10,0) (11,1) 0.84 (8,4) (9,5) 0.95
(1L (12,0) 0.82 (9,5) (10,6) 0.95
(12,0) (13,1) 0.79 (10,6) (11,7) 0.95
(1L7) (12,8) 0.95
High /

(1,1) (2,2) 1.00 (7,7 (8,8) 1.01
(2,2) (3.3) 1.00 (8.8) (9,9) 1.01
3,3) 4.4) 1.01 9.9) (10,10) 1.01
(4,4) (5.5) 1.01 (10,10) (11,11) 1.02
(5,5) (6,6) 1.01 (11,11) (12,12) 1.01

NoOTE: The energy levels of the (7, +3), (10, £6), (3, £3), (6 £6), (9, £9), and (12, £12)
states are split. The transitions involve the means for the +/states, and so introduce uncertainties
in the relevant AE column of +0.02, +0.01, +0.00, and +0.005, respectively, whenever these
states are involved. For notational brevity, the = symbol is omitted in the value of / in the table.
This table is taken from Reference 32.

classically stochastic regime.”> Examples of these sequences were those for low
angular momentum (n, 1) to (n + 1, 0) and (n, 0) to (n + 1, =1) for odd and
even n, respectively, those of intermediate angular momentum (n, =[n — 4]) to
(n + 1, £[n — 3]), and those of high angular momenta (n, +n) to (n + 1, x[n + 1])
(TasLE 1). This result of regular eigenvalue sequences was expected for the high /
(= n) region, since semiclassically such quantum states corresponded to invariant tori
even in the classically largely “stochastic” regime, but it was surprising for the low
and intermediate Is: these states correspond semiclassically, at high energies, to
destroyed tori. If one assumes that regular sequences of eigenvalues indicate that the
relevant eigenfunctions are not “statistical” in character, i.e., not quantum mechani-
cally “stochastic,” then one concludes that nonstochastic quantum mechanical states
occur, even in an energy regime that is classically largely stochastic. That is, classical
stochasticity does not imply quantum stochasticity. To further develop an understand-
ing of this possibility is an aim of this paper. We have commented elsewhere on the
relation of “stochastic”” wavefunctions to the problems mentioned in the Introduc-
tion.!

A statistical (“stochastic™) wavefunction is described as one that yields averages
for dynamical quantities that are approximately equal to their microcanonical
averages at that energy: when the states are sufficiently dense, a *“‘microcanonical”
average can be computed by averaging over all quantum states in a small interval
(E,E + BE). For large enough quantum numbers, the classical microcanonical
average could also be used for comparison. A nonstatistical wavefunction corresponds
semiclassically to an invariant torus when the latter exists, and would yield, instead, an
average approximately equal to the classical average over that torus.



Marcus: Quasi-Periodic and Stochastic Molecular Behavior 177

A statistical wavefunction could arise in the following way. We assume (but shall
need to test this in later work) that, in the absence of avoided crossings, the principal
effect of the perturbation A is to distort the shape and extent of the region largely
occupied by the wavefunction (the shaded regions in FIGURES 1 to 3), but not to
otherwise change it drastically. In that case, if one plots the eivenvalues versus some
perturbation parameter (e.g., A in equation 1) and there is no avoided crossing, then
each state would have a nonstatistical eigenfunction. If, however, two such eigenvalues
approach each other and then repel as the perturbation parameter is increased, one
has an avoided crossing (FIGURE 5).t Such an avoided crossing of two energy levels

/

13.101
\ 12,02,
12,32,
13,051
L (1325

12.801

|‘3"‘1

12.70
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t]‘2":|0-
-0002 0 0.002
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FIGURE 5. An cxample of an avoided crossing of two pairs of quantum states of the same
symmetry, (13, £1), (12, £10), in a plot of eigenvalue E versus changes in a parameter X for the
Hénon-Heiles system, taken from Reference 32. Also given is an actual crossing of states

(12, +12) (split) with (13, £5)—an allowed crossing, since these two pairs of states are of
different symmetry.

V4

TTo be sure, there is no sharp line differentiating such avoided crossings from more distant
ones; only the former is relatively important in the mixing process.
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does not yet convey a statistical character on each of the two wavefunctions. Rather, in
the vicinity of the avoided crossing, each wavefunction has some of the characteristics
of the two wavefunctions that would have arisen had the avoided crossing not
occurred."”? An avoided crossing is an analogue of an isolated classical resonance: a
vibrational frequency, which corresponds semiclassically to a difference of eigen-
values, becomes nearly zero in the vicinity of the avoided crossing, as it does in the
classical case. In the Hénon-Heiles system for the range of parameters studied in

15.20 T , I

P
——

p—
—_—

15.00 —

14.80 —
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-0.16 -0.44 -012 -0.10
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FIGURE 6. An example of overlapping avoided crossings. A plot of eigenvalues versus a
parameter k,, in the Hamiltonian H,

H =h(p} + p} + pi + wix? + w}y? + wiz2?)
+ kipxy? + kyyyx + kysyz® + kyx* + kiny* + kunxty* + kzzal}’lzz.

where w,:w,:w, = 2:1:1. Only eigenvalues for eigenfunctions even in y are plotted. The absence of
hidden symmetries (producing actual crossings) was assumed in joining the points (not
shown).

Reference 2, we found, in fact, only one avoided crossing (FIGURE 5) and 99 bound
states for the value of the parameter A used in equation 1, so the regular sequences we
observed for the eigenvalues become more understandable.

A way of obtaining a statistical wavefunction is to have many ‘“overlapping
avoided crossings,”? an analogue of overlapping resonances in the classical case. We
are now making a number of quantum mechanical studies of this behavior for various
systems,** with a view toward distinguishing isolated avoided crossings from
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overlapping ones and examining the behavior of the corresponding wavefunctions.
Nondegenerate perturbative methods are not expected to accurately calculate the
eigenvalues involved in overlapping avoided crossings (i.e., not better than the
“splitting™). Thus, the real test for any method that aims to calculate semiclassical
eigenvalues in the stochastic regime is a system involving many overlapping avoided
crossings. An example of such a system is given in FIGURE 6.

One treatment of overlapping resonances for classical systems is Chirikov’s.” It
appears to be less applicable, or less readily applied, to the Hénon-Heiles system than
to some others; however, it serves as a vehicle for seeing how the onset of classical
stochasticity implies quantum stochasticity only when additional criteria are also
fulfilled. We first briefly recall some of its features, in order to place a proposed
criterion for the onset of quantum stochasticity in context.

The Hamiltonian in action-angle variables (J, w) is written as

H(J,w) = Hy(J) + € )_ V,(J)e"™, (4)

after expressing the term V(J, w) in terms of its Fourier components. H, is the
integrable part of H. J, n, and w are collective variables denoting J,, ... Jy, n,, . . . ny,
and w,, ... wy, and n - w represents Z;n;w;. Since H is real, V, equals V*,.

A resonance occurs when there is some value of J, J", such that there is a
commensurability among the w;s (/" denotes JI, ... J}):

m-wlJ) = mwJ)=0 (5)
i

The resonance is an isolated resonance when one need consider only one set of integers
m; for which (5) holds. In this case, one also recalls that the Hamiltonian (4) is
integrable (even when multiples of m are included); a canonical transformation to new
variables (/, w) is introduced such that Zm,w; equals a new angle variable w,, e.g., via
a generating function S(/, w),

S=5L(m-w)y+L{--) 4D+ (6)

The (- - -) symbols denote other linear combinations of the ws. If the new angle
variables are denoted by w;, then J; equals dS/dw; and w; equals 35/dl;, whence

W) = Z m;w;. )]

H then becomes a function of the /s and of this single W, variable. All the /s except /,
are constants and so are good action variables (f, = 9H /dw; = 0,i # 1). By equating
H with E, I, is expressed in terms of / and w,. Defining a new action variable, 7, =
¢ I, dw,, N action variables have been defined and are constants of the motion, and so
the Hamiltonian is integrable.

To formulate and illustrate a quantum mechanical analogue of an isolated
resonance, we consider only the #n = m term in (4). H can be written in terms of cos 2
w), since any sin 2z w, can be incorporated in a cosine term by redefining the zero of
w,. The coefficient of this term will be denoted by ¢V, (7). The value of /, i.e., of 1,, .
Iy, at the resonance (5) is denoted by F. Because of the smallness of ¢, one can
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approximate this /-dependent V,,(7) by V, (I"). The Ho(J(I)) will be written simply as
Hy(I) for notational brevity, and (5) now becomes

H = Hy(I) + ¢V, cos 2xw,. 8)
A frequency ©; is defined as dH,/dl,, where Q, is

oH, H,\ (dJ,
-0 il N Bt S , 9
%= (aJ,.)(al.) - N

on noting that 8/,/8l, = ¢’S/dw,d!, and using (6). From (5), Q, vanishes at
1| “3";,...1”‘——-1;,'.

If Hy is expanded in powers of /, - I, retaining terms up to the second power, one
has

H=HyI, I, ... Iy) + Q}l)(ll -1+ VZQ;(I)(II _ 1:)2

(10)
+ fVm COS ZTW’ = E,

where Q{" and ;" denote , and dQ, /d1,, each evaluated at I, I, ... 1. %" vanishes
at I, I3, ... I',. To the extent that it depends on the I;s and that /, departs from I/
(i # 1), the Q, in (10) will be nonzero and the resonance may be destroyed. However,
this effect is frequently neglected and one can then write H as

H=Hy(I\, I, ... Iy) + '@, - I5)? + ¢V, cos 2xw, = E, (1

where @, is evaluated at 14, . . . %, If Hy + |eV,,| — E > 0, then the variable 27w, is
confined to an interval less than 27, and, thereby, the motion of the w;s is highly
“correlated.” At Hy + |¢V,,| — E = 0, I, fluctuates during the motion by an amount
Al the width of the Chirikov resonance,

V. \1/2

Alf =2 (;T"'"’) : (12)

This region lies between the two hyperplanes, /, = I{ —~ Al and I, = 17 + KAl in

J-space. At any energy, the resonant region in J-space is the intersection of the energy

shell with the laminar region, and so occupies an (N — 1)-dimensional volume. The

resonant region increases in size with increasing energy, since V,, typically increases

with increasing values of the Js. Its extension in J-space is, at any energy, really

somewhat more limited than is indicated by (12), since Q4" may depart from zero when
one or more of the I, — I3, ..., I, — I becomes appreciable in magnitude.

If there is some other resonance, e.g., for other integers nr',

> miw, =0 (13)
i

at some point J = J”, one can make a similar treatment, define a new /| related to the
new integers (8.J;/3/7 = m}), and obtain a resonance width AlY". These two resonant
regions are quantum mechanically significant only when they contain at least one
quantum state, i.e., when Al/h > 1 and Al /h > 1.

The onset of stochasticity begins when two or more such resonance regions overlap.
At some energy E, let the overlap volume, an (N — 1)-dimensional phase space
volume, be v(E), calculated by means of the above considerations. For the onset of
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quantum mechanical stochasticity we require that there be at least several quantum
states in v(E), and so, in order of magnitude, that

v(E

7"7,-_—?>1 (14)
in order that there be a near statistical character to the wavefunctions of each of these
quantum states. We also require that the point 7 = /" be reasonably close to a quantum
state, so that the difference between /" and the value of 7 for the nearest quantum state
¥ should be such that the resonance is not destroyed at that quantum state, e.g.,
roughly, for the given I3, ... I, that

[ = 1T < eV, ). (15)

Tests of the validity of conditions for quantum stochasticity are now in progress. Other
views of quantum stochasticity have also been proposed.®

An approximate quantum mechanical version of equation 10 is obtained by
replacing each J; by (% /i)d/dw; or, better, by this quantity plus 8,4, where §; depends
on the nature of the i"th degree of freedom;* §; is ' for an oscillator. The existence of
the cosine term in (12) causes, in a two-state approximation, an avoided crossing when
2, = 0, if the quantum numbers corresponding to J,, J,, . . . J for the two states differ
by m,, m,, . . . my. This analogue of an isolated classical resonance can also involve the
coupling of more than two states at a time, each differing from the next by the changes
in quantum numbers, An,, . . . Any, equal to m,, . . . my, rather than only two quantum
states. In a sense, therefore, if V,, is large enough, it can cause a “local” quantum
mechanical stochasticity. If V,, is small enough, it will only mix two eigenstates at a
time.

SUMMARY

We illustrated how some of the results in nonlinear classical dynamics, particu-
larly those in the quasi-periodic regime, can be related to quantum mechanical results.
Evidence that classical “stochasticity” does not imply “quantum stochasticity” was
given, and a relation of quantum mechanical stochasticity to overlapping avoided
crossings was proposed. A possible condition for the occurrence of quantum stochas-
ticity was suggested and is now being tested, using a criterion for quantum
stochasticity.
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