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ABSTRACT

Similarities and differences between quantum, semiclassical and classical treat-
ments of electron transfer reactions are described. All of these methods can be
described as “vibrationally assisted electron-tunneling." A simple approximate
expression is given for an infinite sum of Bessel functions which appears in the
nonadiabatic quantum description. The condition of its validity is also obtained.
The expression has been tested for some systems when the frequencies contain those
in the range of the usual metal - ligand frequencies (V450 cm ) and of the low

frequencies of the environment.

The nonadiabatic classical expression provides a useful lower bound, because it

has no nuclear tunneling, to the nonadiabatic quantum result. The quantum cor-
rection is calculated for some actual systems. The "semiclassical” approximation

is sometimes larger and sometimes smaller (in the "normal" and "inverted" regions,
respectively) than the quantum result. This behavior is readily understood in terms
of WKB theory.

The quantum correction to the classical cross-relation of rate constants was
calculated for a case of interest and found to be minor. A symmetric form of

(lnkr, AG%) plots is described, even for the usually skewed quantum plots.
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INTRODUCTION

During an electron transfer reaction there can be a readjustment of bond lengths
and angles of the reactants and of reorientational and other structural changes in

the surrounding polar environment, both before and after the electron transfer act.

+
In many compounds, such as Ru(NHB)gz' 3, Ru(bpy);2'+3 (bpy = bipyridyl), and
Mno_l'—z, the change in bond lengths appears to be very small, the change then be-

ing4largely in the orientations of molecules in the surrounding environment.1
Typically, one expects a similar situation for other metal-ligand complexes, having
phenanthrolinone and bipyridyl ligands. 1In contrast, in ions such as Fe(H20)22'+3,
as well as other aquo ions, appreciable changes in bond lengths can occur (V0.14 A
in the case cited), and so both the types of contributions (intramolecular vibra-

tional and environmental) then contribute.

CLASSICAL EXPRESSION FOR RATE CONSTANT2

One commonly used theory of electron transfer treats the motion of the nuclei in
a classical manner.2 The reaction may be "adiabatic" or "nonadiabatic" and this

24,2e,3 For a

aspect was treated via the Landau-Zener theoxy of curve crossing.
qualitative description of the phenomenon, use can be made of the profiles of
potential energy plots in many-dimensional space, for the reactants plus environ-
ment (R) and for the products plus environment (P), such as those in Fig. 1 and,
in the case of sufficiently highly exothermic reactions, those in Fig. 2.2b In
Fig. 1 reaction occurs when the system initially on the lower R curve ends up on
the lower P curve, either by surmounting the energy barrier in Fig. 1l or by a

nuclear tunneling through it.

In Fig. 1 when the splitting of the R and P surfaces is large enough at the inter-
section of these surfaces, a system initially on the R surface tends to end up, in
a motion from left to right, on the P surface, and the reaction is adiabatic.

[The K in Eq. (24) of ref. 24 is then unity.] 1In reactions where the splitting is
small, a reacting system passing through the intersection region of Fig. 1 has
little probability of ending up as products, K is thereby small and the reaction
is nonadiabatic (cf Eq. 25, ref. 2d; footnote 3, ref. 3).

In highly exothermic reactions such as those in Fig. 2, an increase in exothermici-

ty, i.e., a vertical lowering of the P curve relative to the R one results in an
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Fig. 1. Plot of profiles of potential Fig. 2. Legend in Fig. 1 but for the
energy surface of reactants (R) "jnverted" region.
and products (P) in many-
dimensional coordinate

2b,c
space.

intersection which occurs at a higher potential energy than before, and the reac-
tion is then expected to be slower. This region was termed the "inverted"
region2b and this phenomenon of decreased rate with increased exothermicity, at
sufficiently high exothermicities, has its analog in radiationless transitions, in
the form of the enexgy gap 1aw.4 It may have application to the back reaction in

bacterial photosynthesis.5b

The form found for a first order rate constant kr (reactants in fixed sites) at

temperature T, is2

k, =K v exp[—(AG0 + A)2/4A kxT1, (1)

where AGO is the standard free energy of reaction of that step, A is a nuclear
reorganization parameter and V is a typical frequency for motion in this reaction
across the transition state (i.e., across the intersection in Figs..l or 2)
(m10135-1). For a bimolecular reaction between two species free to move in a

solvent, the rate constant is given instead by2
b o 0 2
kr = g 2 exp(-w /kT) exp[—(AGR + A)“/4X KT) (2)

where Z is the collision frequency in solution (mlollﬁ mole-ls-l). w. is the work
(both coulombic and noncoulombic) to bring the reactants from « to a separation

distance r, AGg is AGO +w - wr, W being the work required to bring the products
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from ® to r. X is the sum of two terms, one due to the intramolecular changes
(Xi) and the other to changes in environment (AO):

A= Ai + AO (3)

Contributions to A. arise from changes in geometry and force constants. When A
is mainly due to changes in bond lengths Aq in the reacting species with a force

constant k, Ai is essent.lally2

1 2
A, ==L k, (A 4
i T34k (Bay (4)
where the sum is over the vibrations of the reactants and where k. is related

to the k (reactants) and k? (products) by being equal to 2 k k?/kj+kp) 2e

Using a general expression for Ao,ze one finds Eq. (5) for the case2a where the
reactants are, in their polar interactions with the environment, treated as two
spheres (radii a,, a ) separated by a distance r in a medium of static dielectric
constant es and optlcal dielectric constant € op’ The reorganization described by

l is that in the dielectric polarization of the environment.

_ 211 1 1 1 1
AO = (de) 2a. ' Z7a. " r|le € (3)
1l 2 op s
where Ae is the charge transferred from one reactant to the other. Various tests
2,3,5

of Eq. (5) have been described.“’”’ A significant contrast between (4) and (5)
may be noted. Eq. (4) has a sum of terms, one set from one reactant and one set
from the other. The 1/r term prevents such characterization in Eq. (5). Instead
of the reorganization being the sum of that of the reactants it is the reorganiza-
tion of the entire environment.

In the limit of a nonadiabatic reaction, use of the Landau-Zener formula for K

converts (1) to3

k =+ ¢ —————l——i75 exp[(AGO + A)2/4A kT] (6)
(4TA kT)

where € is the electron transfer integral. Similarly the Kk in (2) is found to be
replaced by (2me2/av)/(4mA kT) /2,

The dependence of rate on separation distance r occurs via the 1l/r term in (5),
the w* and w* terms in (2) and, in the nonadiabatic case, the € term in (6).

The decay of € with r in (6) is exponential-like.

In the case of reactions at a metal-solution interface Eq. (2) is again obtained
for the case where the reactant is not specifically bound to the interface, with
Z now being the collision frequency of the reactant with unit area of the elec-

trode, the 1/2a2 terms now being absent from (5), r being the distance of the re-

actant from its dielectric image (i.e., twice the reactant-interface separation
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distance), and AGO now being replaced by ne(E - EO). E is the electrode-solution
potential difference and EO is the "standard" potential for this half-cell (in
the prevailing environment).

Applications of these equations to various types of experimental data are de-

scribed elsewhere.2'3'5'6

QUANTUM ASPECTS OF THE NUCLEAR MOTION

(a) Multiphonon Expression

The quantum theory for the nuclear rearrangement in electron transfer reactions
was introduced by Levich and Dogonadze,6 who assumed the reaction to be a non-
adiabatic one. Such an assumption permitted them to use Fermi's Golden Rule for a

first-order rate constant for reactants in fixed sites:

2
_ 2me 2
k, = N iZg [l 178 (g - Eppy M

where pi is the Boltzmann population of systems in an initial vibrational state i.
The wi and wf are the vibrational wave functions of the entire system in its re-
actants' and its products' form, respectively. 8 is the Dirac delta function,
which ensures energy conservation in the electron transfer reaction. Ei and Ef are
initial and final energies.

Levich and Dogonadze treated the vibrations of the polar solvent as harmonic of a
given frequency, omitting any damping and the intramolecular vibrations, and then
evaluated the double sum. A similar sum occurs in optical transitions in solids,9
and it was possible for these authors to make extensive use, they noted, of the
techniques and results which had been obtained in these earlier solved spectral

problems. The result for the first order rate constant was

2
k_ = 2TE_ p(-ac?), (8)
L2
where F(-AG?) is the Franck-Condon factor; it depends on -AG?, on the vibration
frequency V and on the temperature T:

F(-0G°) = %\T I,(x) exp(-x coshy - (AG°/2kT) ) (9)

x = (A\/hv)/sinhy, Y = hv/2kT, p = -A6°/hv (10)



Ip(x) is the modified Bessel function of order p and argument x. A is given by
1/2 2
/ explx - (p /2x)l.6b

is introduced and when one lets hv/2kT * 0, Eq. (8) reduces to its classical limit

(5). When the asymptotic expression for Ip(x), (1/2 mx)

given by Eq. (6). To obtain Eq. (8) from Eq. (7), Ei was written as a vibrational
energy (n + %)hv, and Ef was written as a vibrational energy (m + %ohv plus AU",
the potential energy difference between the minima of the R and P curves in

Figs. 1 or 2. The resulting expression would violate microscopic reversibility
when AU® is different from AG?, and so we replaced the potential energy change of
ref. 6 by AG’. In this way, the correct classical limit, given by (6), is ob-

tained.

This defect of multiphonon theory occurs when AU? # AG®. It arises since the
initial and final states of the environment were treated quantum mechanically in a
simplified way which ignores any As® of reorientational effects of the solvent

molecules. As® is large, for example, in the second reaction in Table I.

2,43

. + +2 +
Table I. Comparison of Results for Fe and Fe - R.u(bpy)3 3

Reaction F (Exact) F(Eq. 19) F(Class.) F(Semiclass.)
ret2-ret3 3.14% 3.14 0.94 47.8
Fe+2-Ru(bpy);3 1.85° 1.84 1.16 2.61
a . . e ae 12

All results in this row were multiplied by 107 ".

bAll results in this row were multiplied by 104.

Eqs. (8)-(10) assume there is only one frequency, and so apply either when there is
a Aq or a change in dielectric polarization (subject to the caveat noted earlier)
but not both. The treatment leading to (8)-(10) was extended by several groups to

7.8 In some

include both intramolecular vibrations and environmental changes.

treatments the infinite sums (or the integrals) were evaluated by a saddle point
. 7 . . .

{Gaussian) method, while in other cases the sum was evaluated numerlcally.8 We

describe this case where there are two or more frequencies next.

When there are two vibration frequencies the initial wave function wi can be
written as a product, wl wl , for states n, and n2 of the two vibrations. Simi-
. £ _f |
larly, wf can be wrltte% a% wm wm . The Py becomes p: p; , and so Eq. (7) be-

12 12
comes
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i
where the Ei‘s and En's now denote vibrational and/or solvent polarization energy.

The distribution of final states in (7) and (10) is continuous. Introducing a &-

function G(Ef - Ei -y,
m n
1 1
o
1= ) (Ei - E; - y)dy
1 1
- GO

and correspondingly replacing the E; - E; in (10) by y leads to a convolution

. 1 1
expression:

oo

ZNEZ

= “AcO _
kr =3 I Fl( AG y)Fz(y)dy Q1)

- 00

When changes in frequency and anharmonicities are minor, Fl(—AG° - y) and Pz(y) are

given by (9), with -AG?, X and V replaced by -AG°-y, kl and Vv, and by vy, lz and Vv

1
respectively. Here, Ak (k = 1,2) is the A given by (4) for intramolecular vibra-

2'

tions or by (5) (or some analogous expression for different geometries) for en-
vironmental dielectric polarization changes. Remembering that in Eq. {10') the
distribution of final states is assumed to form a continuum, the integral over y

will be replaced by a sum over p (p = y/hv), where V is some appropriate fre-

quency, €.9., vl or vz.
ame? 1 T
- — - o—
k. = v z Fl( AG phv)Fz(phv) (12)
r -00

Similarly, for three different frequencies, one would obtain a convolution with

the third Franck-Condon factor:
2 ] (-]

=2 1 5 5 Fl(-AG° - phV) ¥, (phV -shV)F, (shv) (13)

r r hv pP==0 gz~

and so on, for higher numbers of different frequencies. These sums are readily

calculated on the computer, including those where frequency shifts and anharmoni-
cities may also occur.

Once again when the asymptotic expressions are introduced for Fl and F2' and Yl

and 72 are made small, one again obtains a classical expression.



10
10

(b) semiclassical Expression
We consider first a one-dimensional case with a coordinate qg. The G(Ef - Ei) in
(7) can be introduced into the integral <wf|wi>, i.e., into ¢§widq. When the com-
mutator of the initial and final Hamiltonians Hf and Hi is neglected this 6(Ef -
Ei) becomes G(Hf - Hi), which in turn is G(Vf - Vi) since the kinetic energy terms
in Hf - Hi cancel. vf and Vi are the potential energies of the products P and re-
actants R, respectively, in Figs. 1 and 2. One can now write Ef|f><f| as unity and

note that in the integral which remains,n'12

J w;(q)G(Vf - Vi)wi(q)dq,

the presence of the delta function requires that wi(q) be replaced by its value
at the intersection point of the two curves in Fig. 1 (or in Fig. 2). One can
then readily evaluate the sum in Eq. (7) and find (and again replacing Au® by AG°
to avoid breakdown of microscopic reversibility when As® # 0),

2
k=2 5 (-AG") (14)
r sc
v
where the semiclassical Franck-Condon term Fsc(-Aco) is

(Ac+A) 2 ]

1
172 *¥P "[?Ahv cothy

(2mAhv cothy)

Fsc(-AGu) = (15)

Here, A is given by (4) for intramolecular changes or by (5) for changes in di-
electric polarization. Eq. (15) was obtained by Hopfield for intramolecular
changes (with AG® replaced by AU”).10 When there are two frequencies one may again
use (10') and hence (12) and (13). The convolution of two Gaussians is a Gaussian,
and one again obtains (15) but with (in the case of two or more frequencies) Ahv

coth ¥ and A replaced by Zikihvi cotth, and Eli, respec'cively.10

i
When compared with the exact result, we found the semiclassical results to be

sometimes too high (low exothermicities) and sometimes too low (quite high exo-
thermicities). The results and the origin of these discrepancies are described

later.

(c) A simplified Multiphonon Expression

We have already noted that when As® is quite different from zero, it is incorrect
to use the multiphonon (or the semiclassical) theory to treat the relevant reor-
ganizational changes. When the AS? arises largely from the environmental changes,
as it frequently does, one can use, instead, the classical expression derived

earlier for those changes and use a quantum treatment for the intramolecular vib-
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rations. For example, the classical value of F (phV) is the coefflclent of
2mne /h in (6), with A0 + replaced by -phv + l Eq. (12) then ylelds (16), on

choosing V to be V., and denoting it by vi. the 1ntram01ecu1ar vibration frequency,

1
ome? % 0
k, = 5~ I F (-6 ~ phv)) 1 73
2
X exp[-(ph\)i - Xo) /4X0kT] (16)
where

Fl(—AG - phv ) = I (A /hv sinh Yi)

(17)
X exp[({-AGO - phv, }/2kT) ~ (X,/hv,)coth ¥,]
and i i i

p = (-AGO/hvi) (18)

where Ai is given by (4).

Typically, an intramolecular vibration whose equilibrium position changes only
relatively slightly (rather than becoming, say, a free rotation) contributes neg-
ligibly to Aso, and in fact makes a zero contribution when vi for reactants and

that for products are the same.

The sum in (16) can readily be calculated on a computer. An approximate value for
it can be obtained13 by rewriting the Gaussian function in the form of the
asymptotic expansion of a Bessel function of order p and then using the addition

theorem14 for modified Bessel functions. One finds

2 A, A
_ 2mE i 0 0
ke = I hv, sinhy, * hv.Y, exp [} 4G"/2kT)
A i i il

(19)

AO Yi ]
(li/hvi) cothy, - hViYi (1 + _3)}

When li is small, Eq. (19) reduces to (6).

The approximation in (19) was in replacing an “asymptotic expansion” by Ip(x) for
the case that x = lo/hviYi . (No asymptotic expansion was made for the IP_p in
Eq. (17)). When the most important p's in the sum are around p = 0, this asymp-
totic expansion.is good even at x v 1. However, larger x's are needed for

larger ]pl's. For example, for a p = 6 and x = 4 the error of the asymptotic
expansion is 20%. The value of p for 'the maximum term in (16) is roughly esti-

mated (using an asymptotic expansion for I ) to be
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Py = B/[L+ (A/A ) (sinhy /Y,)] (20)

(The equation is only as accurate as the asymptotic expansion of IP_p.) Thus,
when lo "~ Y, and sinh y, Yir P MaX = ps2, i.e., half of the exothermicity then
goes into excitation of the intramolecular vibrations and half into environmental

dielectric polarization changes, as expected.

The condition for validity of (19) is that Prax be less than, or at least not much

greater than, the argument of Ip(ko/hviyi), i.e,

Prax Mo/MV;Y3 (21)

where Prax is given by (20).

An analogous equation can be derived for the case where both coordinates are

. . . 3
treated in a quantum manner, but the results are omitted here for brev1ty.1

SUMMARY OF NUMERICAL RESULTS

A comparison of the various approximations with the exact result for the values of
the parameters below is given in Table I for two actual systems. The A's were
taken from Ref. 1. The Ai/4 and A, /4 in Ref. 1 for Fe +2,+3 were 8.4 and 6.4 kcal

0
*2,43 ca 0 and 3.2. The Ai/4 and X0/4 for

mol l, respectively, and for Ru(bpy)
the Fe *2 Ru(bpy) +3 were then estlmated from the additivity rule2 to be 4.2 and
4.8, respectlvely. The frequency v was estimated to be 435 cm -1 from the v

for reactants and products used in ref 1, on employing the rule for effectlve
force constant k, = 2kik§/(ki + kg).

Results are given for various other values of the parameters in Table II. The

\f} of 1.044 was chosen to correspond to the intramolecular frequency of 435 cm—l
and a temperature of 300° K. From the perspective of electron transfer rates in
solution where one is trying to understand reaction rates which can differ by
twelve orders of magnitude at room temperature, the quantum corrections factors of
3 and 1.5 in Table I are minor.15 More importantly, the effect on the classical

cross-relation2 is also small. In this relation, the rate constant k12 of

Al(ox) + Az(red) —_— Al(red) + Az(ox) (22)

is related to those (kll'k22) of the self-exchange reactions

Al(ox) + Al(red) —— Al(red) + Al(ox) (23)
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Table II. Results for Various A's and AG"'s (y, = 1.044)°

- S

hvg hvi hvi Exact Eq. (19) Class. Semiclass.

13.5 15.4 3.95 3.96 2.13 15.6

0 23.8 5.1 6.35 6.36 2,13 50.8

0 27.0 20.6 3.14 3.14 0.94 47.8

" 10 13.5 15.4 1.85 1.84 1.16 2.61

10 13.5 5.1 1.57 1.57 1.19 1.60

10 3 3 4.51 7.30 4,14 4.68

15 3 3 8.06 40.0 1.45 3.72
20 3 3 1.90 46.3 6.5 10—3 7.2 10-2

®1n the third and fourth rows, the A's used are actually 27.0337 and 20.5971 (xow
3) and 13.5168 and 15.4478 (row 4). The results for rows 1 to 8 should be mul-

tiplied by 10‘8, 10'8, 10712, 1074, 1072, 10"2, 1074, ana 10'6, respectively.
Az(ox) + A2(red) —~—»—A2(red) + Az(ox) (24)
. 2
via
~ 1/2
kya = (eakpoKyofi) 7 e (25)

where Kl2 is the equilibrium constant of reaction (22) and fl2 is a known function
of k

11’ kzz, a 12° From the results of Table I, one can see that the quantum

effect is found to be only a factor of 1.5//3, i.e., about unity.

nd K

Eg. (19) is seen in Table II to be very accurate in the region for which Egq. (21)
is fulfilled. The beginnings of breakdown when Eg. (21) is no longer fulfilled
are seen in row 6 of Table II, and the breakdown continues with increasing P in

rows 7 and 8, as anticipated.

The breakdown of the semiclassical approximation, Egq. (15), has been pointed out
previously8d for » = 0, i.e., for -AGY = 0, a breakdown also seen in Tables I and
I1I. The discrepancy is less at small enough Xi/hvi (in results not shown here).
The semiclassical approximation (15) first improves with increasing P, i.e., with
increasingly negative -AG°, as seen in a comparison of the first and fourth rows
in Table II. However, when P becomes guite large the semiclassical approximation

again breaks down, as in the last row of Table II and in other results.
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The reasons for this behavior are considered next. In the "normal case," repre-~
sented by Fig. 1, the square of the overlap of the vibrational wave functions wi
and wf for an energy below that of the intersection of the R and P curves, is
represented in WKB theory16 for the wave functions approximately by a nuclear

tunneling factor

c | b
P, |dq fp.ldq
| 22 o ZE£7
fr h
a C
n
Ti+f = e e (22)

Here, a and b are two classical turning points of the motions on the R and P
curves at this energy (Fig. 3) and the intersection occurs at q = c; Py and p. are
the (imaginary) momenta, calculated as a function of the coordinate g for the
given total energy and for vibrational potential energies Vi and Vf. Instead of
(22), one calculates in the semiclassical method Iwi|2 at g = ¢, and so instead
of (22) one has
c

"2[ Ipilgﬂ.

a

r

SC 2o i (23)

Tise

ne

Clearly (23) can be much larger than (22), because the second factor in (22) is
now missing, and so result in a considerable error when c and b are far apart.
I.e., here the "semiclassical" approximation given by (23) and hence by (15)
yields too high a result - too much nuclear tunneling. This effect is the greater
the greater the relevant barrier for tunneling, Ri/4 for P = 0, in Fig. 3.

In the case of Fig. 4, replacing the vibrational wave functions by their WKB
counterparts and evaluating the overlap integral by contour integration yields17

a b
-2

. J lpildq - J |Pf|dq
e ¢ ¢ (24)

0e

Tire
Instead, in the "semiclassical" approach in (15) one evaluates Iwi|2 at the inter-

section @ = ¢. Thereby, the semiclassical value of Tr+f is, instead of (24),

a
-2

' !: lpildq
TSC ~

ioE = e (25)
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This resulting tunneling rate predicted by (25) and hence by (15) is now too small
because of the absence of the second term in the exponent of (24). The ensuing
breakdown is seen in the last row of Table II. If the P curve were almost ver-
tical near the intersection, the integral over Ipfl in (22) and (24) from c to b

would be negligible and so the two results would then again agree.

In summary, when nuclear tunneling occurs in the exact results the semiclassical
equation (15) can only be relied upon when the P curve in Figs. 3 and 4 inter-
sects the R curve sufficiently steeply. Otherwise, it predicts too much tun-
neling at low IAG°|'s and too little tunneling at moderate to high |ac°%| 's. when

nuclear tunneling is unimportant, the classical expression can be used instead.
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Fig. 3. Projection of Fig. 1 onto the Fig. 4. Legend as in Fig. 3, but for
V versus vibrational coordinate the "inverted region."
plane. Two of the classical
turning-points of motion at a
given vibrational energy E are

labeled a and b.

Under the condition given by (21), Eq. (19) is a useful approximation when a

simple expression is desired.

In the present paper attention has been focussed on quantum effects, using a
nonadiabatic formulation. A discussion of other data is given elsewherez'a's'6
(cf Ref. 18 for a recent reevaluation of some biological data). By evaluating

the K in Ref. 2 in a way which includes nuclear tunneling, one can treat both the



nonadiabatic and adiabatic limits. (Use is made of the present ‘equations (22) and
(24).) The treatment of the intermediate ("partially nonadiabatic") case is
readily given for the "normal region" (Fig. 3), but in the inverted region only

numerical results are presently available.19

One final topic which will be considered here is the question of 1ln kr versus
AG? plots. These plots are highly symmetrical (parabolic) in the classical or
semiclassical approximation but are highly skewed6-8 when quantum effects become
important. However, the result can be replotted in a different way which once
again restores their symmetry. In the quantum approximation the rate constant is
given by Eq. (26) which we shall write as
2ﬂ€2
k_(AG%) = =—— F(-AG") (26)
x
r
We now consider a reaction which, instead of being thermoneutral or downhill, is
uphill, with a free energy of reaction AGg. For the rate constant k; for the

reverse of this new reaction we have

2
k' (A% = 2T p(-AGY) (27)
r 2 B 2

when AG; = -AG° the Franck-Condon factor F(—AGg) equals that in F(-AG%), as one
can see by a term-by-term comparison. The forward rate constant kr is obtained

from k; by the equilibrium constant, whence

2TE 2
b2

A0
AGz/kT (28)

0. _AQD
kr (AG2> F( AG2)e
Thus, for this case of AG; = -AG? we have, since F(-AG;) = F(-AG°),

ame?
h-

0
F(-AG )elC /KT (29)

-AG®) =
k. (-86")

Comparing (26) and (29) we see that

“Ac? 0
AG”/2kT - AGY/2KkT (30)

k_ (-Ac%) e k, (8G%) e

Thus a plot of 1n(kr exp AG°/2kT) is a symmetric function of AGY.
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DISCUSSION .

SOLOMON: What are the important normal modes which must be considered for the
biological electron transfer proteins in the configurational coordination diagram
you present. As the different possibilities might have very different vibrational
frequencies, could a reasonable assignment be reached through an experiment sen-

sitive to tw, for example, a temperature dependence?

MARCUS: The most important modes depend upon the specific electron transfer re-
action. In some reactions, such as those between metal-phenanthrolines involving
metal bipyridyl complexes, the important modes appear to be those of the dielec-
tric polarization in the environment outside the complex ions. In other reactions
such as those involving iron acquo ions, both metal ligand modes and environmental
modes contribute roughly equal amounts. In the case of the cytochrome c -
cytochrome a reaction, the answer is not yet known but may involve environmental
modes and, perhaps, a metal-axial ligand stretching mode (depending upon how much
the metal-axial ligand bond length changes upon change of redox state. When one
can measure the rate constant kr at sufficiently low temperatures T so that the

1ln kr vs 1/T plot becomes curved (and eventually flat at low enough T), the tem-
perature where the curvature sets in is related to the characteristic frequency

of the predominant vibrational reaction mode. At least it does when the curvature

is not due to some new mechanism occurring, of course.

JORTNER: You have discussed the electronic coupling responsible for electron
transfer in terms of a tunneling formula which contains the electron mass in the
exponential. The low temperature tunneling in the electron transfer processes

involves tunneling between nuclear potential surfaces. This can be nicely

demonstrated by showing that for exothermic processes, the nuclear Franck-Condon
vibrational over;ap, which determines the rate, can be recast in the form of the
Gamov tunnelling formula. The concept of nuclear tunnelling prevails not only for
electron transfer but also for group transfer, such as the low temperature re-
combination of CO with hemoglobin. Thus a variety of processes can be described
from a unified point of view. I would recommend to retain the notion of
"tunnelling” for the nuclear part as here it is an experimentally meaningful

concept.

MARCUS: On the nonadiabatic theory for electron transfer rates, an overlap
integral for the vibrational wave function occurs (the Franck-Condon factor), as
does an electronic matrix element €. When WKB theory is used for the vibrational

wave functions, the nuclear overlap integral becomes equivalent to a nuclear-
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tunnelling formula, as in my paper, when the vibrational enexgy is below the

energy of the intersection (Figures 3, 4). While it is best to evaiuate the
electronic matrix element € with the full electronic wave functions and Hamil-
tonian as I argued much as you do many years ago, one can obtain a rough estimate
for it by approximating the Hamiltonian, yieldiﬁg an overlap integral of elec-
tronic wave functions. Use of WKB theory for the latter then yields an electron-
tunnelling expression analogous to Hopfield's and serves to relate £ to the earlier

calculation by Chance and DeVault.
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