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In plots of eigenvalues of the Schrodinger equation versus a perturbation parameter, many avoided crossings are found
in the classically stochastic regime for the system studied. None were observed in the classically quasi-periodic regime. Over-
lapping avoided crossings are suggested as a mechanism for making the vibrational wavefunction a *‘statistical” one.

In recent years there have been numerous investiga-
tions, both nurherical and analytical, of classical
hamiltonian systems [1] . Typically, they behave quasi-
periodically at low energies and stochastically (*‘chaoti-
cally”) but deterministically at high energies [1]. We
have pointed out that in the corresponding quantum-
mechanical systems, plots of energy eigenvalues versus
a perturbation parameter should be very useful in pro-
viding an analysis independent of basis set and of
choice of coordinates. We suggested that a regime of
many overlapping avoided crossings (anti-crossings)
would provide a mechanism for “quantum-mechanical
stochasticity” [2,3]. As discussed there, in this vein,
isolated avoided crossings do not imply “stochasticity”
[2,3].

In the present paper, we illustrate this behavior for
a system of three coupled anharmonic oscillators with
a hamiltonian

* Contribution No. 6188 from the California Institute of
Technology.
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with parameters given in table 1. Thereby, we have a
1:1 zeroth order resonance and a 1 : 2 (Fermi) reso-
nance. The hamiltonian was diagonalized using the
program EISPAC *, with a harmonic oscillator basis
set consisting of product functions

¥ EISPAC is a package developed by National Activity to test
software. See, for example, ref. {4].

Table 1
Parameters for hamiltonian (1)
Wy =2 Klll = -0.01
wy =1 K222 = -0.01
Wz =1 Kq32 =—=0.10 — -0.16
K192 =0.05 K133 =-0.10
K3233 = (.05 K233 = -0.10
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summed over the quantum numbers.

The hamiltonian (1) is even in z and eigenvalues
were only calculated with a basis set with even func-
tionsof z;ie., n, =0,2,4, ... For this calculation ten
n, functions, fourteen n, and n, functions were used.
Because w, is larger, a fewer number of x functions
were nceded than y and z ones. Calculations for which
v(x,»,2)= —¥(x,y, —z) were not made.

In figs. 1-3, the eigenvalues £ are plotted versus
K4 for three ranges of energy. In the lower range,
fig, 1, no avoided crossings are observed. Above a cer-
tain energy there are an increasing number of overlap-
ping avoided crossings, as in figs. 2 and 3. These figures
were drawn through points at =K, =0.10,0.11,

..., 0.16, and hidden symmetries were assumed absent.
In that case there are no curve crossings, since curve
crossings would then correspond to a conical intersec-
tion in a energy versus multidimensional parameter
space, and such crossings would be of “measurc zero™.
As a test, an “avoided crossing” in the vicinity of an
(E, Kyqp) value (15.1, -0.1 3) was examincd using a
fine grid of K5 values, and found to be an “avoided”
crossing. The results are given in table 2. The crossing
would have occurred at K59 = —0.131.

We estimated the energy region for the onset of
classical stochasticity, using classical trajectory spectra
as a guide [5]. The spectrum has numerous “banded
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Fig. 1. A correlation diagram for E versus Ky22 in the quasi-
periodic regime.
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Fig. 2. Asin fig. 1, but in an energy range near the classical
quasi-periodic stochastic boundary.

regions” in the stochastic regime and relatively few
lines in the quasi-periodic regime [2,5]. By this criteri:
on for classical stochasticity, the trajectories for
hamiltonian (1) were found to be stochastic commenc
ing at an energy of about 11.0. At £'= 13, many trajec
tories of a random sample produced stochastic type
motion. In a random sample of 200 trajectories at £

= 20.0, no escape was observed. Escape occurs at E

= 25, and probably at a somewhat smaller E. Since

E, . =~ 20and Eggepastic ™ 12, the system has a large
1520
15.00 - -
. i |
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Fig. 3. Asin fig. 1, but at a higher energy range.
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Table 2
Energy of two states versus a parameter K near an avoided
crossing

K12 Eq E142

0.120 15.094 15.126
0.128 15.100 15.108
0.130 15.100 15.105
0.132 15.099 15.104
0.140 15.086 15.109

classically stochastic regime, and many quantum states
in it for study,

The behavior in figs. 2 and 3 contrasts markedly
with that which we found [2] for the Hénon—-Heiles
system [6], namely eq. (1) with p, and x absent,
K3y33 = 0,and with Ky9y = — +K,53. There, even in
the classical “stochastic” regime [5] regular eigenvalue
sequences and only one isolated avoided crossing were
found for the parameter employed [2]. By sucha
spectral criterion for lack of stochasticity, one would
judge that classical stochasticity does not in itself im-
ply quantum stochasticity. It depends on the size of h.
One would anticipate a correspondence when & > 0.
(Evidence in this point is given later in the paper.)

One difference between systems of three or more
coordinates, with smoothly varying potentials, com-
pared with two-coordinate ones, apart from the fact
that they can represent molecules more realistically,
lies in a difference in their classical transition behavior
from the classical quasi-periodic to stochastic regime.
In the two-coordinate case, ‘‘chaotic trajectories” are
confined between residual invariant tori and so cannot
explore all of phase space at the given energy.

We suggested [7] that in a quantum-mechanical
stochastic region the average of any dynamical quantity
X(q, p) should begin to approximately equal the corre-
sponding classical phase-space microcanonical average
of X at that energy, provided X does not heavily weight
the classically forbidden regions. At a sufficiently high
density of states, one would also expect, as a criterion
of quantum stochasticity, that the average of X(q, p)
over a quantum-mechanical state of energy £ would
approximate the microcanonical average over the
states in a small interval (£, E + 6£) [3] . In the quasi-
periodic case it will approximate instead the phase-
space average on the torus which corresponds, semi-
classically, to the given quantum state. Tests of this
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expectation are being undertaken using the wavefunc-
tions obtained for the present system. We are also cur-
rently studying the relation between classical and quan-
tum stochasticity for the hamiltonian (1).

Finally, we would like to comment on the relation
of the present idea of avoided crossings to some other
work in the literature related to quantum stochasticity,
and also to provide preliminary evidence for the expec-
tation that as 4 = 0, overlapping avoided crossings cor-
respond to classical chaos. We have seen [2] that
avoided crossings produce large second differences in
plots of eigenvalues versus perturbation parameter.
Pomphrey [8] studied second differences for the
Hénon—Heiles [6] potential using a value of 4 smaller
than ours [2] and found many more cases of large sec-
ond differences. In quantum-mechanical perturbation
theory calculations we also observed [9] many more
“zeroth-order crossings” (which yield avoided crossings
upon use of degenerate perturbation theory near the
crossing) for Pomphrey’s 4 than for ours. Similarly, in
classical perturbation theory calculations for the
Barbanis potential [10] we have found [9], using a
grid of action variables, an onset of “zeroth-order cross-
ings” roughly at an energy where classical “‘chaos” be-
gins.

Stratt et al. [11] in their investigation of the
Barbanis potential [10] studied nodal patterns of quan-
tum-mechanical wavefunctions and found for some
states major changes of nodal patterns. We believe,
and are currently testing this possibility, that these
changes are each associated with avoided crossings. In
this study it will be interesting to see whether the lat-
ter are isolated avoided crossings or overlapping ones.
(Only the latter may prove to be associated with a
“stochasticity™.)

Nordholm and Rice [12] studied the wavefunc-
tions ¥ for the Hénon—Heiles [6] potential and ex-
amined their projections on those of the unperturbed
(harmonic oscillator) basis set. When a {y was substan-
tially distributed over a number of the latter states it
was termed “‘global”’, and was termed local otherwise,
A state can appear to be global (a) not only when its
wavefunction is “statistical” (sometimes labeled “sto-
chastic”, “ergodic”, “chaotic’) but also (b) when its
shape is considerably distorted from the corresponding
one of the unperturbed system. Indeed, we were able
to find [13] classical invariant tori each of which cor-
responded individually semiclassically to many of the
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“global” states, so that all of these particular global
states certainly are of case (b). Even though globality
is, therefore, not necessarily or even primarily due to
stochastic behavior, it is very interesting in its own
right, It provides information on the nature of the
wavefunction relative to that of some unperturbed sys-
tem. Because of the basis set dependence [12;13, sec-
tion 6] of global versus local states, similar calcula-
tions were made [11] using natural orbitals as the
basis set. The comparison is still a coordinate depen-
dent one [14].

We plan to investigate in more detail the relation
between the present concept of “avoided crossings”,
as a mechanism for quantum stochasticity, and these
and the many other interesting related results ¥ on the
behavior of eigenfunctions and eigenvalues.

The research was sponsored by the US Department
of Energy under contract W-7405-eng-26 with the
Union Carbide Corp. (at Oak Ridge), the National
Science Foundation (at California Institute of
Technology) and the DOE (at Sandia National
Laboratories). We also wish to thank Dr. J. Sullivan
and R. Lenius for their help in using the IBM 3033.

t Oneof us (RAM) is indebted to W.H. Miller for a discussion
of this point.
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