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SIMILARITIES AND DIFFERENCES BETWEEN ELECTRON AN
PROTON TRANSFERS AT ELECTRODES AND IN SOLUTION.
THEORY OF A HYDROGEN EVOLUT1ON REACTION. *1
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Abstract

Depending on the initial energies, a proton transfer may
roceed either via a saddle-point in a potential energy sur-
ace or by crossing from the reactants' to the products'

valley before the saddle-point is reached. In the second
path the analogy to weak-overlap electron transfers is
pointed out. The present study is intended to unify pre-
viously divergent viewpoints, b showing how they are
special cases of a more gener picture. Expressions are
obtained for the reaction rate in terms of the properties of
the potential energy surface and of other properties of the
system, using a hydrogen evolutjon reaction as an
example.
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Introduction

In a proton transfer, for example in the hydrogen evolution
reaction (1) at an electrode M,

H,0" + M(e) — H,0 + H-M (1)

some dynamical effects result from the lightness of the H-particle,
and several questions arise: Cana conventional transition state
theory be used to calculate the reaction rate, with a transition state
near some saddle-point region of the °potentia1 energy surface? Does
the proton transfer occur so quickly that, as in weak-overlap elec-
tron transfers, a '"nonequilibrium' solvent dielectric polarization
arises?

Several authors!~? assume a conventional transition state for
reaction (1) and also an equilibrium solvent dielectric polarization.
Ot.hers‘5 assume, instead, concepts analogous to those used in a
weak-overlap electron transfer reaction, with its associated non-
equilibrium polarization. Recently a unified treatment was out-
lined, T and a quantitative description is given in the present paper.

Potential Energy Surface and Reaction Paths

We first consider the potential energy surface for reaction (1)
as a function of two of the coordinates, the H,O-H and the H-M dis-
tances, using the usual8 mass-weighted skewed axis coordinates
(Fig. 1). There are also the bending motions of the O-H-M, the
stretching motions of the other O-H stretches, and the coordinates of
the solvent environment. The actual potential energy is a function of
all of these coordinates. Path « in Fig. 1 is a path through the
saddle-point, and path g8 is a path at any fixed O- M distance.

In the highly exothermic case, caused by a very favorable
overpotential, a schematic diagram of the surface can resemble that
in Fig. 2. Paths a and 8 are again drawn,



Fig. 1. Potential energy contour plot (schematic) for the
three center reaction H,O-H-M at a fixed value of
the other coordinates and at a given metal-
solution potential difference, for the case where the
reaction is almost thermoneutral (symmetric). The
rotated axes are scaled H,O-HM and H- M distances
(between O and the center of mass of HM and between
H and M). 9 The configurations along the dashed line
form the conventional transition state, and X denotes
the saddle-point on the potential energy surface.
Reaction paths a and g are described in the text.

Fig. 2. Legend as in Fig. 1, but the reaction is now highly
exothermic., The dashed line denotes the conven-
tional transition state, passing through the saddle-
point of the potential energy surface.



One task will be to decide whether the system ever reaches
the saddle-point region as in path @ in Fig. 1 or 2, or whether, either
because the O-H vibrational energy is sufficiently high or because
tunneling of the H from the O to the M may be large, the system
moves from the reactants' valley to the products' valley before the
saddle-point region is reached, as in path 8 in Fig. 1 and as in the
B-path at a large O-M distance in Fig. 2.

Paths a and 8 can be competitive, conceivably one (a) pre-
vailing in very exothermic or very endothermic conditions and the
other (8) prevailing under more nearly thermoneutral conditions, A
prescription for estimating the relative importance of the two paths
is described in the present paper. Path g is agsumed in Ref. 6 (but
with a surface constructed from intersecting parabolas) and, in
effect, path & is used in the usual transition state theory.
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Energetics for Paths a and 8

We shall be interested in introducing a relatively simple for-
malism which allows for these different reaction paths, To illustrate
the approach, we use, for simplicity, a potential surface which
treats changes in the O-H-M potential energy due to changes in O-H
and H-M distances by a bond energy-bond order (BEBO) method, 4,11
and which treats the remaining motions largely (though not neces-
sarily entirely) in terms of their dielectric polarization behavior. In
an approximation to BEBO, quite adequate where tested, the BEBO
surface could be described by the expresslon12

Vo = n AV’ + AV [nfnn, + ngnn]/tn 2 , (2)

where n, and n, are the bond orders of the H,O-H and H-M bonds,
respectively. At any point along the minimum potential energy path
it 18 assumed’!’ 12 that the sum n, + n, remains constant, namely
unity. In Fig. 3 we have joined by a g-path any pair of points P and
P lying on the minimum potential energy path, but in the reactants’
and products' valleys, respectively. Eq. (2) can be replaced by a




more elaborate expression without changing the treatment below.

t
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Fig. 3. Legend as in Figs, 1 and 2. The curve denotes the
minimum potential energy path, which proceeds along
the reactants' valley, over a saddle-point, and along
the products' valley. The saddle-point may be situ-
ated as in Fig. 1 or as in Fig. 2 or, in the case of a
very endothermic reaction, in the products' valley.
Points P and P’ are corresponding pairs points which
lie at the intersection of a S-path with the minimum
potential energy path,

The difference of bond orders of the H-M bond at any pair of
points P and P’ in Fig. 3 will be denoted by An,

an = n(P) - n(P) . (3)

Along each PP path the potential energy in Figs. 1-3 is given by
Eq. (2) (with n, + n, = 1 at the points P and P) and, along PP/, by
Eq. (2) using bond length-band order relations,

The interaction of the solvent with the H,O-H*-M subsystem
along the various paths is also to be included, and, for brevity and
simplicity, we shall do so classically, (Various high frequency
medes, treated structurally, could also be included and treated
quantum mechanically.) We consider a particular value of the
orientation-vibration polarization of the remaining coordinates P (r)
at each point r of the solvent medium.



An expression for the free energy of solvation of the
reactants G- o] fOr any given P (r) function 1513

GEy=-(1-D )L fD"-Ddr- fP-D"dr+2sc [B-Pdr (4
where
P=P/D., c'=p-d, (5
2= E8/Pp: ¢ "Dy D, )

D, and D are the optical and static dielectric constants, and D' is
is the electric field directly due to the charges. Gs o] Varies as the
point P moves along the minimum potential energy curve in Fig. 3
since D¥ varies with position along that line. The first term in (4) is
the solvation term when there is no orientation-vibration polarization
Py the second term is a dipolar interaction of P, with the charges
in 2 medium of dielectric constant Dop’ and the last term is the
orientation-vibration polarization energy stored up in the polarized

dielectric; it vanishes when D equals D op’ as does

When the system in Fig. 3 is at the point P’ the solvation free
energy is that of the products Gg o for the H,0-H-M configuration P’.
For the same P _ it is given by the same expression as (4) but with r

subscripts replaced by p's.

In the vicinity of P in Fig. 3 we let the system have a local
H,0-H-M protonic vibrational state of energy E a solvation free
energy G, and an electronic energy V. The tree energy of the
system near P, G'(P), is then given by

CGN(P) = Gy + EY + Vg . (6)
Gsol includes the electrode potential term since the D in (4) includes

fields due to charges on the electrode and in the ion atmosphere
(double layer).

Energetics Alone a 8- Path (Proton Jump)
When the system proceeds along a path g8 in Figs. 1-3, from




point P to point P’ (Fig. 3), it does so by a protonic motion so rapid
that P is constant along the PP path. With energy conserved during
a protonic jump from the P to P’ valley, and with the entropy associ-
ated with the orientation-vibration polarizgtlon Bu also unchanged
during the transition at fixed P , we have

G'(p) = GR(P) . )

Thus far, the polarization P _ in Eqs. (4)-(7) is arbitrary. As
in electron transfer reactions we choose it so that G8 ol is a minimum
for a system at the point P, subject to the constraint imposed by (7).
Thereby, one finds

8G" = 0= - (D" -4xcP)- 6P dr (8)
6G'-8G® =0=- (D" -DP): 8P dr . (9)

Multiplying the second equation by a Lagrange multiplier m, adding

and setting the coefficient of 6P, equal to zero, as the most general

solution of (8) and (9), one finds at each point r in the medium that
47¢ Py/Dyy = (1+m) D° - mDP (10)

where D' and DP denote the electric fields for systems at P and at
P in Fig. 3, directly due to the charges. The similarity of the pro-
cedure embodied in Eqs. (4), (8)-(10) to that usedn for the transfer
of another light particle, the electron, may be noted.

Introduction of this P into (4) and into the corresponding
expression for GP so) Yields (11) and (14):

Gsol Ggoy (e0) + m™a (11)

where the first term is the equilibrium solvation for a system at
point P,

Ghoy(e0) = - - B) [ B+ BF ax/os 02



and m®x is the ﬂuctuation term due to P, 's being different from
its equilibrium value in G ol(eq) A8 given by (13).

= f(DP- D" - (D - DY) ar/Bac . (13)

The difference of charge distribution on the right hand side of (13) is
expected to be roughly proportional to the An in Eq. (3), and so to
depend on the point P. Similarly, the solvation for a system at point
PinFig. 3is

GP

sol

= Ggol(eq) +(m+1)% . (14)
The value of m is determined from (7), (11), and (14):
~(2m+1x = GB  (eq) - GL ;(eqd) + ED - E, + VR - Vg (15)

when the system near point P in a given vibrational state v of
energy E is transformed by the proton jump into a system near P/
ina proton vibrational state V' of energy EY).

Rate Expression for the g- Path

We denote by ks (E}) the probability of a reactive v— v’
protonic transition, when the initial translational energy along the
line of centers in Figs. 1-3 is E; and the initial protonic vibrational
energy is E°. The transition state expression for the reaction rate
is given by fé

-(E:,+ E: )/KT

K ate = VZ’)‘/ é:* oxw,(E‘{) e dE; #/Q, kT (16)

where

¢ kT (AGsol* m"2) /kT (2aukT) 1
) 3 2 34 /1.9
h* (27ukT)Y*/h

r kT
e (AG 1+mh)/ ‘ (am



AGL,; 18 the increment in equilibrium solvation free energy on going
trom « to P. In (17) the translational partition function for the three
translational degrees of freedom of the reactant, and that for a delo-
calized reactant on the surface were introduced. (Corrections for
localized adsorption can be added but are omitted in (16)-(17) for
brevity. ) Qv is the protonic vibrational partition function for the
reactant in Figs. 1-3, and Z is the collision frequency (kT/2zy) "/
for collisions with unit area of the electrode.

The calculation of Ko proceeds as follows: One first locates
the point P of deepest O-M penetration, namely where the transla-
tional energy along the O-M direction vanishes, i e., where, in the
reactants' valley we have, in this g8-path mechanism,

E‘:,+E:=E§+Av: (18)

ES and sz refer to the protonic vibrational energy and the incre-
ment in potential energy (from the H,0" moving from =) at point P

in Fig. 3. In calculating E§ the vibrational quantum number v is
taken as constant (v) within the reactants' valley (adiabatic treatment
for the H-vibration in the valley). E, differs from E,, only because of
changes in cross-sectional pratile (e.g., in vibration frequency)
during motion along that valley of the potential energy surface.

If the value of Ef; at P is sufficiently large to overcome any
Vo barrier from reactants to products along the g-path at that P,
the corresponding kx_ /s i8 set equal to unity, Otherwise, a tunneling
calculation for ks i used. Recently, a useful calculation which
includes tunneling along a g-path and, where neceasary, initially
along an O-M coordinate was given in Ref. 10 and could be used faor
the present purpose.

The barrier along this g-path is modified somewhat by the
presence of the Ga o] term for the cited P Thus, changes in V, +
GBol along this g-path serve as the effective barrier to proton motion



along that path (Appendix).

Thus far, the electrode-solution potential difference ¢ has
not been specifically introduced. It is implicitly present in each
Gg,) terms. By evallusgting these terms one obta‘i,ns ¢. As in elec-
tron transfer theory, = a "standard potential" ¢ for reaction (1) in
the prevailing medium can also be introduced by setting the free
energy of activation terms AGT and AGP equal at that ¢. One can
then express the rate of the forward reaction in terms of the dif-
ference ¢-¢'.

Decision as to Paths a and

If for any point P for any given E;, and E{ in Eq. (16) the
point P is closer to the origin than the saddle-point, then path o
will dominate rather than path g for that (E;, E{) pair. I point P,
in the case of Fig. 1, is quite close to the saddle-point, the An
_defined by (3) becomes very small and so the term D*-DP arising
from a difference in charge distributions at P and P’ also becomes
small, and so does, thereby, the A in Eq. (13). Thus, with this
approximate vanishing of the m*x in (17) one has again retrieved
the usual transition state theory result. On the other hand, when the
barrier along a 8~path can more easily be overcome, either by
excess vibrational energy in E: or by a sufficiently large value of
Ky One obtains a g-path mechanism rather than one proceeding
via the saddle-point in the potential energy surface.

The above remarks also serve to point out the similarities
and differences between proton transfers and weak-overlap electron
transfers. The weak-overlap electron transfer proceeds via the
counterpart of a f-path, and has the m®\ terms of the previous
section. The proton transfer can proceed via an a-path, wherein
the m”x is absent, or via a 8-path, depending on the initial con-
ditions. The remarks made earlier on the hydrogen evolution
reaction are also intended to apply to other (e.g., homogeneous

10



proton transfers.

Appendix: Variation in D Along a g-Path

D varies along a g-path, since the electronic structure of the
system varies along that path. 2(};) is equal to (ct Eq. (5. 4) of Ref.
13)

% _q dr; + C (A1)
L2 S\ I
where § is the electronic wavefunction for any nuclear configuration,
and is a function of the coordinates of all electrons § of the
reactants, and the sum is over all i, L e., over all electronic and
nuclear charges e, in positions r,. Thus, this B(r) can be calcu-
lated from an electronic structure calculation. The C in (A1) is the
contribution to D arising from the other charges on the electrode
and from the ion atmosphere (including double layer).

D = v, [ luepl" &
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