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A variety of correlation functions computed over a microcanonical ensemble for the Hénon-Heiles system
are investigated. We find the general trend is that of a gradual change to some form of decaying behavior as
the motion becomes predominantly chaotic. The decay of a mode energy correlation function indicates a time

scale for intramolecular energy redistribution.

1. INTRODUCTION

In unimolecular reactions, in chemical activation ex-
periments, and in infrared multiphoton dissociation a
bond or group of bonds is vibrationally excited, by col-

“lision in the first case, by a chemical reaction in the
second, and by an infrared laser in the third. The rate
of energy transfer to other bonds is 2 matter of much
current interest, It is often assumed at high energies,
in a statistical theory such as RRKM, that this energy
relaxes intramolecularly in a time short compared with
the mean time for the subsequent dissociation or iso-
merization of the molecule. In the present paper we in-
vestigate classical mechanical mode energy relaxation,
both in the so-called stochastic and quasi-periodic re-
gimes, These regimes in modern nonlinear dynamics
are briefly described first,

Hamiltonian systems are classified as integrable or
nonintegrable, the former being relatively rare and in--
cluding (but not limited to) those solvable by separation
of variables, Integrable Hamiltonian systems of N de-
grees of freedom are systems with N first integrals.
For such systems, all the trajectories in 2N-dimen-
sional phase space are actually confined to N-dimen-
sional manifolds, referred to as invariant tori, im.
bedded in the (2N-1)-dimensional energy shell, The
KAM theorem!® tells us that for a sufficiently weak non-
integrable perturbation most tori are still preserved.
However, as the perturbation strength is increased,
more and more tori are destroyed and the trajectories
" start to explore the energy shell in a chaotic manner,
(The term “stochastic” is sometimes used in this con-
text to imply a chaotic, randomlike behavior—the mo-
tion is still, of course, deterministic.)

Numerical studies of some simple Hamiltonian sys-
tems®® show that there is, in fact a rather rapid, al-
though not sharp, transition from predominantly inte-
grable motion to predominantly chaotic motion, These
results have led to the notion of a critical energy, or
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perturbation strength, that marks this transition, A
number of criteria for predicting this quantity have

been proposed® and among these is one due to Mo* that

is based on the use of the generalized Langevin equation
formalism, A particular correlation function is as-
sumed there to change from oscillatory to diverging be-
havior at the critical energy, and quite good agreement
was obtained with the observed behavior of a number of -
simple systems, Here we examine a number of corre-
lation functions and, although the behavior is not always
easy to characterize, the general trend is that of a
gradual change to some form of decaying ‘behavior as the
motion becomes predominantly stochastic, rather than

a relatively sharp transition. We also study a mode
energy correlation function that provides information

on the time scales for intramolecular energy transfer
processes,

. GENERALIZED LANGEVIN EQUATION AND
CORRELATION FUNCTIONS

For a Hamiltonian system the motion of some asso-
ciated dynamical variable a(t) is given by Liouville’s
equation

2 alty=iLatt) (2.1)

dt !
where iL is the Liouville operator of that system, This
motion can also be described by a generalized Langevin
equation®

¢

£ aw=igal)- [ drk@at-n+F®),  @.2)
N . o . .
provided the proper choice of the frequency Q, the
memory function K{(7), and random force F(¢) is made.
The correlation function of a(#) is defined as

c()=(a(0)*,ale)), (2.3)

where the asterisk denotes complex conjugate and the
brackets denote an inner product that depends on the en-
semble chosen. C(t) is related to the memory function
by the equation
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1
‘%C(t)=iﬂc(t)- fo dTK(t =TIC(T) . 2.4)
When K(7) is taken to be a delta function and the fre-
quency & set to zero, the generalized Langevin equation
reduces to the familiar equation for Brownian motion,
In this case the correlation function exhibits a pure ex-
ponential decay characteristic of a Gaussian Markov
process,® The introduction of certain projection oper-
ators® enables the systematic and random parts of af(¢)
to be separated and one can then deduce the form of the
random force F(¢) and the memory function K(¢). The
frequency 2 is related to the initial time derivative of
the correlation function; in what follows we shall take it
to be zero. This is the usual case.®

The Laplace transform of Eq. (2.4) yields the simple
relationship

- 1
Cls) = ey nk 2.5)
where the tildes denote the transformed functions and s
is the Laplace transform space variable, Mori”™® has
shown that K(s) can be represented in the form of a con-
tinued fraction involving functions of the moments of the
Liouville operator, i.e., of quantities of the form
Y,=((iLYa, GLYa). Substitution of that form of K(s)
into Eq. (2.5) gives a similar continued fraction repre-
sentation for C(s). A finite order truncation of this
representation leads to an expansion of C(¢) of the form
cl)= Z': ¢ cos(@yt) , (2.6)
where the ¢; are constant coefficients and the frequencies
) are fairly complicated functions of the moments of the
the Liouville operator; they should in no way be confused
with the classical frequencies of the motion,

In the work of Mo, ¢ the dynamical variable

N
alt)= ?:1 (P +¢d

was used, being taken to represent the distance of a
phase point (on a given trajectory) from the origin, The
correlation function of da(t)/dt, cast in a form analogous
to Eq, (2.6), was investigated. It was deduced that the
frequencies §; became complex, leading to a change
from oscillatory to diverging behavior, at energies in
quite good agreement with the observed “critical ener-
gy.” Ananalysis of Mo’s method is given by Tabor.’

(2.7

In analyzing the behavior of correlation functions the
choice of inner product, i,e,, ensemble average, is
crucial, This choice is motivated by.physical consid-
erations, For example, in the case of integrable motion
the trajectories lie on tori and any dynamical variable
can be expressed as a Fourier series of the form

a(t)=Y" an expli(m -wt +8)] (2.8)
m
where the a,, are certain coefficients [labeled by the
integers m=(m, -+ my)], w=(w, ** - wy) the vector of
classical frequencies associated with a given torus, and
8=(5, ***8y) a set of arbitrary initial phases, For a
certain class of line-shape functions® '® we have used the
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family of trajectories lying on a particular torus as the
ensemble, This results in the correlation function taking
the simple form

C(B)=(a(0)*, a(Mgorun = 2, |am |2 ™" . (2.9)
m

In the case of the frequencies w; being incommensurable,
it may be shown that the orbits cover the torus ergodic-
ally,!! We then take the ensemble average to equal the
time average; i.e., Eg. (2,9) can be computed with a
single trajectory.®

However, if we choose the microcanonical ensemble
{a suitable choice of ensemble for studying energy ran-
domization in unimolecular reactions), then for inte-
grable motion C(t) can no longer take the simple form of
Eq. (2.9). Rather, it will correspond to contributions
of the form of Eq. (2.9) averaged over all tori, The re-
sult will be some nontrivial behavior oscillating about
the mean value {[z(0}F). Typically the frequencies vary
slightly from torus to torus and so each line in the
power spectrum of C(¢) [as given by Eq. (2.9)] will now
become a band, '

In the chaotic regime, the majority of trajectories are
no longer confined to tori but explore most of the energy
shell, However, the behavior of the correlation function
in this regime can be entirely different from its behavior
in the integrable regime even when one also uses the
microcanonical ensemble. A characteristic of the
chaotic regime is the (exponential) divergence of nearby .
trajectories,’ This then means that the correlation be-
tween them decreases and hence the microcanonical en-
semble averaged correlation function must decay, albeit
in an oscillatory manner, with increasing time, This is
quite easy to see since

c(0)=(a(0)*,a(0)) ={[a(0) )
and '
C(« ={a(0)*, a(=)) = (a(0)) (a(x)) = a(0)) . (2.11)

Since mean square is greater than square mean, C(¢)
must decay as f approaches infinity, Note that we have
only been able to obtain the decomposition [Eq, (2,11)]
by assuming that the motion is stochastic (in the strict
sense of the word) and hence a(0) and a(») are uncor-
related, We cannot do this when a(t) is multiply periodic.
Generally speaking, in the chaotic regime, we cannot
assume that the trajectories are ergodic over the whole
energy shell. Hence the ensemble average must be ob-
tained by averaging over many trajectories rather than
from the time average of a single trajectory.

(2.10)

i1l. RESULTS

In order to illustrate these ideas we have performed
a numerical investigation of correlation functions of the
well-known Hénon-Heiles system

H=§(p+pi+d+ad+qg~%4i . - (3.1)

We first study the correlation function lnvesu@teq by
Mo, i.e., the (normalized correlation function of a(#),
where the dot denotes the time derivative, :

(a(0)*, a(e))

RCOTOR

(3.2)
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Tdp [dgilp.q)6(E — H(p, g
p,qh = [ Ldafts. ql0lE ~Hp0) (3.4)
fdp Tdqe(E —H(p.q))
The 2N dimensional integrals are reduced to (2N - 1)-
| ’[ dimensional integrals over the surface of constant ener-
T RTIIA y E=H(p,q). "
= i |;l’| I J’ Ih IlJi H“IM |'u‘l‘u:\yu‘!w B b1
ot ” |{ HIF” i ”lif’ IR W) In Fig. 1 we show D(f) computed at a series of ener-
m gies ranging from motion near the bottom of the poten-
tial right up to near dissociation (E =0,1667)."" At the
lowest energies, where the motion is predominantly in-
tegrable, D(#) shows a regular oscillatory structure
within o modulating envelope. As the energy is in-
creased the oscillations become more and more irregu-
1:04 lar and at E=0,1667, where the motion is almost entire-
ly chaotie there is a clearly decaying envelope to the
| oscillations. The change in behavior as the motion
changes from predominantly regular to predominantly
f chaotic can be seen more clearly by examining D{/) com-
2 1” i» 'J“ |I|I ",'f! 'IIM '|11*|,, puted over a longer time scale, Examples are shown
= in Fig. 2. Here the difference between the periodie
envelope of ascillations al low energies and the decaying
] envelope at high energies is quite clear,
i We have also investigated the correlation function of
i alt) [as given by Eq. (3.3}, i.e., the function
1.0+
; -
— \'.'l,\'ti“!nlt\{ A
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FIG, 1. Normalized auto correlation function D(T) [Eq. (3.2)] ] i‘ .
computed at energies (from top to bottom) 0, 0367, 0, 1167, = 0.0 | f‘ {\r\,\-\:‘ A rMva\vav\ N——
0, 1367, and 0.1667. = } f|
4
i
|
and where the dynamical variable a(f) is ‘
2 —1'0 tE X P L A ¢ | e e o e l“3’600
o 2 0 100.0 .0
alty= 2o (IpOF <l (0 . (3.3) 200
=1 TIME
The ensemble is the {(noralized) microcanonical ensem- FIG. 2. D{(T) computed for longer times at encrgies 0. 0067
ble, i.e., for any function f{},¢) the brackets denote (top) and 0, 1667,
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FIG. 3. Normalized auto correlation functions C(T) [Eq. (3.5)]
computed at energles (from top to bottom) 0. 0367, 0.0767,
0.1167, 0.1367, 0,1567, and 0, 1667,

C(f)= (a(O)"‘ a(t))

@0)*, a0y °

In Fig. 3 we show C(¢t) computed at some of the same
energies used in Fig. 1 for D(f). Now the change in be-

- havior is much clearer, In the predominantly integrable
regime, C() displays a somewhat regular oscillatory
structure about a constant mean. As the motion changes
to predominantly chaotic at higher energies, a clearly
decaying behavior sets in, For both C(f) and D(¢) the
change in behavior is gradual, and it would be difficult
to determine a “critical energy” from their behavior.
Our results suggest that Mo’s method, as it now stands,
has a questionable basis, since there is no clear break
in behavior from oscillatory to exponential at the crit-

. ical energy (0.112),

(3.5)

In Fig. 4 we show the scaled first moment of the
- Liouville operator (iL); i.e.,

Y,={GLa)*, (iLa)/n*E] , (3.6)
[where a is again given by Eq. (3.3)—but time indepen-

dent of course] at a series of energies.!* It displays, as
must all other moments Y, -a smooth dependence on
energy. This smooth behavior simply reflects the in-
creasing volume of accessible phase space with increas-
ing energy. The scaled moments agree with those cal-
culated® by perturbation theory to about 15%,

Finally, we look at the correlation function of a phys-
ically more useful quantity, namely, an individual mode
energy

a(®) = 3{[p,O)F +[0,()) . 3.7

The behavior of the corresponding C(¢) is shown in Fig,
5, The general trend is not easy to characterize, but
there is again a clear change from a smooth periodic
structure to a (rapidly) decaying behavior in the predom-
inantly chaotic regime. The equipartition value of c@®)
is approximately 3/4, In the Appendix, we use a simple
model to demonstrate that such a value is to be expected,

To model this correlation function we have introduced
the following form for the memory function K(s):

1 a f b(s +c) ds
V+s s stc  (s+cEray "'554‘:...’3z - B8

From Eq. (2.5) one finds that this function corresponds
to a correlation function of the form

C()=a+(bcosw i+ f)e™ + dcosw, ¢ . (3.9)
Since C(t) equals unity at ¢ =0, f can be expressed in
terms of @, b, ¢, andd. This correlation function has
several oscillatory terms, some overall decay, and an
average value at long times {a).

Using the following values for the constants in the
chaotic regime: a=0,74, 5=0.13, ¢=0.1, d=0.01
{and so £=0,11), w,;=0,78, w,=0,84, and using for the
constants in the quasi-periodic regime: a=0,88,
5=0.11, ¢=0, d=0,01 (and g0 f=0), w,=0.05, w,=1,05,
4 comparison is given in Fig, 6 with two of the mode
energy correlation functions of Fig. 5 in the range
0=< ¢t= 75. The fact that 4 has its equilibrium value
(~ }) in the chaotic case is reasonable.

0.3

y1 0.2

0.07 0.10 0.3 0.8
E

FIG. 4. Scaled first moment of the Liouville operator as a
function of energy [Eq. (3.6)].
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From the correlation function one can estimate a
relaxation time for mode energy decay. In the case of
unimolecular reactions, this would correspond to the
time for significant intramolecular redistribution of en-
ergy in the isolated high energy molecules. Here we
see a relaxation time varying from 20-30 vibrational

c(m)
7
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FIG. 3. Normalized mode vnergy autocorrelation functions cor-

reaponding to the enorgies of Fig. 3.
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()

(1)
o
¢
§

0.50 4 )
0.¢ 750

TIME
FIG. 6. Comparison of two of the results In Fig. 5 (£=0.0367
and 0, 1567) (dots in the present figure) with Eq. (3.9) (smooth
curve in the present figure) using the constants cited in the text.

periods at low energy to 1-5 vibrational periods at high
energy. In other computations'® and experiments'® this
relaxation time has been found to be of the order of a
picosecond. Finally, we remark that the relaxation
time we deduce [rom the correlation funetion pertains
to a rate of energy diffusion, This contrasts with other
work!” where the Llime scale is deduced from a K-en-
tropy -like quantity that is related to a dephasing time
scale.!®

IV. CONCLUSIONS

We have demonstrated that a variety of correlation
functions, computed for the Hénon-Heiles system over a
microcanonical ensemble, show a gradual change to
some form of (oscillatory) decaying behavior as the mo-
tion hecomes predominantly chnotic. The decay of a
mode energy correlation function indicates a time scale
for intramolecular energy redistribution of the order of
a few vibrational periods in the chaotic regime. How-
ever, it should be pointed out that once a system be-
comes sufficiently large, correlation functions will de-
cay independently of the underlying dynamics, As an
example of this, we cite the study of the momentum
autocorrelation function of a mass defect in a linear
chain by Cukier ef a/.'® Thus, although the motion is
entirely integrable, they were able to observe an almost
pure exponential decay for a mass defect ratio of 0.1
in a chain of 50 particles. The multiply periodic tra-
jectories of a sufficiently large integrable system gen-
erate a “randomness” comparable to that of the chaotic
trajectories of a smaller, nonintegrable, system.
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APPENDIX

The “equipartition” value of the normalized autocorre
lation function is simply given by

(a{0)*, a(=)) _ ([a(0)])*
@(0*,a0)y {laP -

For the case of the mode energy correlation function for
the Hénon-Heiles system, we may obtain a crude esti-
mate of C(w) by evaluating the mean square to square
mean ratio of the mode energy in the absence of the
intermode coupling,

For a pair of uncoupled oscillators, the Hamiltonian
takes, in action angle variables, the simple form

H= I;wz + Ig‘l-’z .
The normalization integral is simply

r= f de f dI5(E ~ H(D)) = (27)? fdla(E - H())

C(=)= (A1)

(a2)

_(2n)E

Wy Wy (AS)

The individual mode energy is just I;w,; hence

{w [P =t Ido dlw

= @) %(fl—z) / @) (w—‘?w:)= i g2

The mean value is just

(L) =w, f a8 f a1 ———-I‘“Er' H(D)

~(ar 3() [ enr (E) <45

Hence the equipartition value is simply

(w, ) .Ez 3
cir-ly - 5 -1

(A4)

(A5)

(a8)
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