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Several aspects of the quantal energy spectrum are explored for the Henon-Heiles Hamiltonian system:
a striking and initially unexpected continuation of sequences of cigenvalues from the quasiperiodic to the
stochastic regime, the origin of large second differences A’E; of eigenvalues arising from variation of a
parameter, the comparison of classical and quantal spectra, and a comparison of the “classical” and
quantal number of states. In the study of the second differences we find both “crossings” and “avoided
crossings” of the eigenvalues. We discuss the importance of overlapping avoided crossings as a basis for a

possible theory of “quantum stochasticity™.

I. INTRODUCTION

The classical motion of nonlinearly coupled oscillators
tends to be predominantly “quasiperiodic,” or “regular,”
at low energies, the trajectories being confined to N-
dimensional tori in the phase space.! At higher energies
the motion can become predominantly “stochastic” or
“irregular,” displaying great sensitivity to small changes
in initial conditions and wandering over large portions
of the energetically accessible phase space. (The term
“stochastic” is used to imply a chaotic, randomlike be-
havior—the motion is still, of course, deterministic.)
In 2 study of the quantum mechanical wave functions of a
system with a (2:1) Fermi resonance we noted an analo-
gous behavior. Namely, in the quasiperiodic regime,
the wave functions tended to be localized in well-defined
regions of configuration space. On the other hand, in
the stochastic regime, the wave functions spread over
most of the allowed configuration space. ?

In the present paper we explore several aspects of the
quantal energy spectrum: (a) the continuation of certain
sequences of eigenvalues from the quasiperiodic to the
chaotic regime, (b) the “second differences” A°E, of the
eigenvalues, i.e., their sensitivity to small changes in
perturbation, (c) classical spectra in both regimes and
a comparison with quantal spectra in the quasiperiodic

regime, and (d) a comparison of “classical” and quantal )

number of states.

At low energies one expects to see regular sequencies
of eigenvalues. At high energies it has been predicted®
that the spectrum will, instead, be “irregular” and that
the eigenvalues will be very sensitive to external per-
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¢ turbations. Evidence for this predicted behavior has

been reported in a study of a Henon~Heiles Hamiltonian®
of the form '

Hed (epbe e ) ey —42) (1.1)

We have made adetailed investigation of this system, but
with a somewhat different value of A.(0. 1118) from that
used in Ref. 4 (0,088). Our results reported below, re-
veal a number of interesting features. These include
(a) regular sequences of eigenvalues which continue
smoothly from the quasiperiodic into the classically
stochastic regime, a result which was initially quite un-
expected, and (b) the presence of both “crossings” and
“avoided crossings” of eigenvalues as small changes in
the perturbation parameter A are made. The former
leads to spuriously large A2E,’s whereas the latter
leads to genuinely large AzE,’s. Finally, it should be
remarked that the Henon-Heiles system is somewhat
atypical by virtue of its 1:1 degeneracy. However, it
is this symmetry that enables us to identify more
readily the course of various eigenvalues under pertur-
bation and to see whether various sequences are pres-
ent,

11. EIGENVALUES, SEQUENCES, AND SECOND
DIFFERENCES

When converted to polar coordinates one sees that
the energy eigenvalues for Hamiltonian (1.1) have A
and E symmetry, i.e., nondegenerate and degenerate
eigenvalues respectively. 8 Useful quantum numbers
are n, the principal quantum number, and [, an approxi-
mate angular momentum quantum number (exact when
A=0"). The latter takes the values [=0, 2, ..., 7
for evenn and I=+1, £3, ..., xn foroddn. The E
states are those for which ! is not a multiple of 8 or.not
equal to zero.® All [#0 states are degenerate when A=0,

. The eigenvalues are given in Table I for all states for
which n=9. They were obtained from a variational cal-
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TABLE I, Energy eigenvalues E, for the
Henon-Heiles Hamiltonian, *

n ! B n ! E,
9 £1 9,444 11 27 11.534
9.467 11,750
O S T W
9 5  9.629 12 0 11,966 ) )
9 +7 o.79¢ 12 2 11968 () L,V
10. 035 . +
9 49 g 11 1 12 0681 (1t 2)
10 0 10.305 12  £4 12.206
12.277
10 #2 10318 12 #6 (...,
0 4 10,468 12 £8  12.480
10.578
10 8 o oep 12 %10 12,712 )
13,077 2%
10 8 10774 12 #1200 E‘ (13,%
10 +10 11,080 13  £1 12,762
12,748 7 o
o1 1L182 18 23 S 03z ~~' it
11,160
11 %3 [)'gs 13 #5613, 081
11 +§ 11.383 13  £7 13,233
*Equation (1); A=(0.11180). The unperturbed
energy equals n+1,
culation using a basis set of 980 functions. A test case

was checked with a basis set of 1225 functions and no dif-
ference was found, The eigenvalues for »= 8, which
will also be required here, are given in Ref. 68, Other
studies of the system (1. 1) have been made both quan-
tally and semiclassically.® Aninitial assignment of quan-
tum numbers was made on the basis that the ordering of
lovelsis E,,, > E,, regardlessofl, and E, ,,,>E, ;. Anad-
ditional check is provided by the fact thatfor the doubly de-
generate (E) states ! cannot be a multiple of three, Forall
levels ator below (11, +11) the above assignment placed the
E states in their correct positions amid the A states.
"However, for some of the higher levels more care was
required to make the assignments. As described below,
irregularities in certain sequences of eigenvalues and
anomalously large second differences indicated an in-
correct assignment. Inspection of the eigenvectors
themselves was used to distinguish the (11, £11) E state
from the (12, +2) E state, the former having a large

contribution from high angular momentum basis functions.

The (12, +10) and (13, +1) states were similarly checked,

The regime of predominantly stochastic motion sets in
at around E=9.0, which is about 2/3 of the well depth
of 13.33. Roughly one-half of all the 89 bound states are
in this regime, i.e., between E =9.0 and dissociation.
Certain quasiperiodic regions are nevertheless also
present here and we were able in fact. to locate the eigen-
trajectories® for the states (n=9, I=+9), (10+10), and
11, +11) and hence determine these eigenvalues semi-
clagsically. Almost all the states with n=< 8 have also
been determined semiclasgsically. 8

In Table II we show sequences of differences of quantai
eigenvalues in both the quasiperiodic and stochastic re-
gimes., The sequences are for (i) high I: (n, tn)
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~[n+1, 2(n+1)], (ii) intermediate I: [, +(n-4)]
~(n+1,x(n~-3)], and (iii) low ! (n,+1)=(n+1,0) and

(n, 0) = (n+1, £1) for odd and even n respectively. Only
in the sequence of high ! states are all the states in re-
glons of quasiperiodic classical motion, Nevertheless,
for the other sequences, the entryinto the stochastic re-
gime (2= 9) has surprisingly little effect on their regular-
ity (Table II), Indeed, an initially observed irregularity
in the low ! sequence was found to be due to an incorrect
assignment of quantum numbers!

Second differences of eigenvalues were calculated
from

E(A+83) = 2E,(\) + Ey(\ - 62) (2.1)

using a 61=0.001. The - A%E,’s are divided by E, for
normalization. The results are those plotted in Fig, 1,
and several others mentioned later. All values are
positive other than the two not depicted in Fig, 1. Apart
from two distinctly large values of A%E,/E,, which we
discuss below and which are not in Fig. 1, the second
differences seem to form distinct families. (Specific
values are given below.) The family of smaller - A’E,/
E/’s tended to belong to those states with high I quantum
numbers whereas the family with the larger - A’E,/E,’s
belonged to states with low Z. This behavior would ap-
pear to be consistent with the underlying classical dy-
namics. All the high [ states are associated with stable
(quasiperiodic) motion, even in the predominantly sto-
chastic regime. On the other hand the low ! states,
when they could be computed semiclassically, that is at
low n, were found to be associated with eigentrajectories
near the regions that first became unstable (stochastic)
at higher energies. (These regions are at values of I
ranging from =1 at low n to 8 at the highest n.)

AzE‘ =

TABLE II. Differences of eigenvalues for varicus sequences.*

Transition Transition
nl —~ nl AE nl — nl AE
Low ! Intermediate
(6, 0) 7, 1) 0,982 (4, 0) 5, 1) 0.95
7, 1) (8, 0) 0.88 5, 1) (6, 2) 0.94
8, 0 9, 1) 0.89 6,2 . (1, 8 0, 95
, 1) (10, 0) 0.87 (7, 3) 8, 4) 0,96
(10, 0) (11, 1) 0.84 8, 4) (9, 5) 0.95
11, 1) (12, 0) 0.82 (9, 5) (10, 6) 0.95
(12, 0) (18, 1) 0.79 (10, 6) (11, 7 0.95
11, 7 (12, 8) 0.95
High !
11 2, 2) 1.00 7, D (8, 8) 1,01
2, 2) (S, 3) 1,00 (8, 8) 9, 9 1.01
@, 3) 4, 4) 1.01 (9, 9) (10, 10) 1,01
4, 4) (5, 5) 1.01 (10, 10) . (11, 11) 1,02
(5, 5) (6, 6) 1.01 (11, 11) (12, 12) 1,01

*The energy levels of the (7, +3), (10, +6), (3, =3), (6, +6),
(9, +9), and (12, +12) states are split, The transitions in-
volve the means for the =1 gtates, and'so introduce uncer-
tanties in the relevant AE column of +0. 02, +0.01, +0, 00,

and % 0, 005, respectively, whenever these states are involved.
For notational brevity the % gymbol is omitted in the value of
! in the table, .
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FIG. 1. The normalized second
differences ~ A’E;/E, as a func~
tion of energy E;. Omitted are -
several (off-the-graph) values
.listed in the text.
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2
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E,

For example, for the states (n, +n) the values of
- A%E,/E, for n=1, 3, 5, 7, 9, 11 are (x10™) 0,088,
0. 185, and 0. 0849, 0.156, 0.285, 0.705, and 0. 621,
1.48, respectively. Similarly low values are obtained
for even n’s in this (n, +n) series. As an example of
another series, (n, 1), the values of - 4’E,/E, for
n=1, 8, 5, 7, 9, and 11 are (x 10%) 0. 088, 0. 350, 0.642,
1.11, 2,15, 3.88, respectively, and so are typically
larger than those for the (n, +n) family. Not shown in
Fig. 1 are several large (off-the-graph) values (5.68,
7.43 and 11.2x107°) associated with the (12, 0) (12, +2),
and (13, +3) states, respectively, all of which are for
states lying near classical separatrices. Also not shown
are the values for the (13, 1) and (12, +10) states,
which are discussed below, —34.7-and 48, 6x 107, re-
spectively.

These two largest values of — A‘E,/E‘, ~34.7, and
48,6x 10, can be understood when we plot (Fig. 2) the
eigenvalues as a function of A, For the states (13, 1)
and (12, +10) there appears to be an “avoided crossing.’
This behavior is further evidenced by the fact that the
- A’E,/E, associated with the (13, 1) E states is nega-
tive whereas that for the (12, +10) E states is positive.
Of all the 99 bound states only the (13, 1) states had
genuinely negative — A®E/E,’s. Four other (apparently)
large values of - A*E,/E, were also observed initially
(74.4, -94.1, 100, 3, -177.3x10™) but closer inspec-
tion showed these four to be spurious, namely to be due
to the (13, +5) E states crossing the (12, :12) states
{(which are split because [ is a multiple of three). The
level crossing, which is permitted because the (13, +5)
and (12, +12) states are of different symmetry, is also
shown in Fig. 2. The significance of the true avoided
crossing will be discussed later.

Parenthetically, we note that in the vicinity of an iso-
lated avoided crossing of two eigenvalues one can ap-
proximate the behavior, if one wished, by a two-state
Hamiltonian with diabatic basis elements H;(3), ¢, j=
=1,2, chosen so that the corresponding two adiabatic
curves E,.(A), equal to %{(H" +H33) & [(H" - Haz)a"' 4”?2]1/2},
would approximately fit the two exact ones in this A
neighborhood, If one then lets H,; -0, these curves
would cross, instead of avoiding each other. In the ex-

act Hamiltonian, on the other hand, which generates all
the curves E,(A) there is no parameter such ag Hy,(2)
which, upon vanishing, makes the curves cross at that.

We have illustrated in Fig. 2 an avoided crossing in
one region of A\. Further avoided crossings may also
occur in other X neighborhcods. Incidentally, the word
“crossing” is used throughout in the (conventional) sense
of two energy levels crossing each other when they are
plotted as a function of some parameter (A).

11l CLASSICAL AND QUANTAL POWER SPECTRA

In the quasiperiodic regime we are able ‘to make a di-
rect comparison between the classical power spectrum,

1310
a2
a2
13051 \
L 1328
12,801
E .
aym
1270
133
) 12,110
-0002 0 0.002
AX

FIG. 2. Plot of the eigenvalue E; as a function of the perturba-
tion parameters A. The diagram shows the repulstion of levels
between the (13, 1) and (12, *+ 10) states and the level cross-
ing of the (13, +5) and (12, +12) states. The (12, +12) de-
generacy has been removed, and we have labeled these two
states simply by (12, 12).
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FIG, 8, (a) Classical power spectrum, I(w) of the x coordinate for the ground state; the peak height is 0.48. E=0.9986. The
eigentrajectory corresponding semiclassically® to the quantum ground state is used; (b) Quantum spectrum corresponding to a.
The peak helght s 0.49, E=0,9986, (300 basis elements were used.)

calculated from the Fourier transform of classical

. 'trajectories, and the spectrum of quantal transitions:

Since we are looking at transitions between pure states
(the molecules are assumed isolated), one may show ex-
plicitly how, in the limit # -0, the quantal and classical
power spectra become identical. This is demonstrated
in Appendix I. In Fig. 3 we compare classical and quan-
tal spectra in the quasiperiodic regime at E =0. 9986.

" The details of how such computations are made has been

described elsewhere.'®® It should be noted that (for
quagiperiodic motion) the broadening of the lines in the
classical spectrum is entirely an artifact of the finite
length (in time) of the classical trajectory that is Fou-

- rieranalyzed, Ourresults show good agreement between

- the quantal and classical spectra both in the positions of

Jw)

.

the lines and their intensities; the latter corresponding
to the transition probabilities.

Although the “correspondence” between quantal and

" classical spectra in the quasiperiodic regime is well

understood™® no such clear picture emerges in the sto-

0.2 |

10 2.0 30

w

chastic regime.® Here the clasgsical trajectories dlsplay'

power spectra of great complexity. In Fig. 4 we show
the power spectra of two stochastic trajectories at the
same energy but with different initial conditions. One
trajectory corresponds to motion that i, in the senge
of the zero order Hamiltonian [i.e., A=0 in Eq. (1.1)],
of high angular momentum and the other of low anguiar

momentum. The fact that the two spectra are different ;

indicates that the phase space of the system, at the
energy considered, is strongly divided, i.e., the tra-
jectories are not ergodic over the whole of the energy
shell.
tic regime there will be a correspondence between the
spectrum of an individual trajectory and the quantal
spectrum. In the quasiperiodic regime the classical
spectrum is that of a trajectory which, in the semiclas-
sical limit, belongs to the phase space manifold (the

Furthermore, it is not clear that in the stochas- .

torus) with which the corresponding quantal state can be .

associated. It may well be that in the stochastic regime
the quantal states will be asgociated, in the limit 2-0,
with the whole energy shell. In this case the clasgsical

0.2 ]

[w)

30

10 20

w

FIG 4, (a) Classlcal power spectrum of high angular momentum trajecbory at E=11.16; (b) Classical power spectrum of low

angular momentum trajectory at E=11,16.
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FIG. 5. Classical power speclrum microcanonically averaged
at E=11.18.

spectrum should be obtained from the dipole correlation
function computed over the microcanonical engenble,
(The behavior of correlation functions in the quasi-
periodic and stochastic regimes is described else~
where). ' In Fig. 5 we show the microcanonically aver-
aged power spectrum. In order to compare this spec-
trum with the quantal spectrum it may be necessary to
take the latter as an average over some famly of slates,
and we plan to explore this topic in a later paper.

IV. “CLASSICAL” AND QUANTAL NUMBER OF
STATES

. In studies of unimolecular reaction rate theory,'™ par-
ticularly for comparison with classical trajectory results,
it is useful to have a method of calculating the number
and density of states for nonseparable systems, 'The
“classical” number of states with an energy = k£, N, (E),
for a system of » degrees of freedom is simply given by

N“‘(Eh?#h)" fdpquﬂ[lf - (p,q)],

where p and ¢ are the » dimensional vectors of momen-

(4.1)

100.0-
80.0
60.0

N(E)

40.0

20,0 -

1

T 1
10.0 12.0 14.0

0.0 t T T T
6.0 8.0
E

FIG. 8. Comparison of the “classical” und quantal number of
states. - For the classical aumber N denotes the Ng given by
Eq, (4.1).
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FIG. 7. An cnlargement of Fig. ¢ in the high encrgy region,

tum and conjugate coordinate respectively. 6 is the
(unit) step function. (The density of states is just
dN(E)/dE. This is expressed by replacing the step
function in (4. 1) by a delta function.) The integral {4.1)
can be evaluated quite rapidly using efficient Monte
Carlo procedures. In Figs. 6 and 7 we compare the
smooth N, (E) wilh the corresponding exact quantal re-
sult. The agreement is very good and in fact at high
energies the simple “quantization condition” N,(E)
=integer can give quite good agreement with the exact
quantal eigenvalues.' At these high energies the agree-
ment is not better than the mean separation; clearly any
more sophisticated quantization procedure must do better
than this. Finally, by analogy with known results™:in
the separable casc, a large deviation between classical
and quantal resulis at moderate energies is anticipaled
when a system of higher number of degrees of freedom
is considered. Athigherenergies, though, the deviation
will become minor.

V. CONCLUSIONS AND REMARKS ON
“QUANTUM STOCHASTICITY”

We believe that the presence of both “crossings” and
“avoided crossings” is of particular importance. If the
former is not taken into-account spuriously large second
differences will be obtained. The latter is responsible
for genuinely large second differences. For our sys-
tem (A=0. 1118) we only observe two large A%E,/E’s
corresponding to the one “avoided crossing” between
the (13, +1) and (12, +10) E states. This is to be com-
pared with the investigation of Pomphrey! where many
more large A*E,’s are observed. In this case (x=0.088)
the system supports more bound states, i,e., lhe sys-
tem is nearer the semiclassical (/- 0) limit, Since
Pomphrey's calculations involve states of only one sym-
melry species we conclude that his large A’E,'s are due
to the presence of many “avoided crossings.”

The presence of avoided crossings may have a deeper
significance. The avoided crossings are in A space, and
an “avoided crossing” corresponds lo the presence of a
“resonance.” If cach state is simultaneously involved
in humerous avoided crossings the relevant eigenvectors
will adopt a rather statistical character. This notion, '’
which in the semiclassical limit is analogousto '
Chirikov’s theory of overlapping resonances, 18 may pro-
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vide a criterion for the onset of “quantum stochasticity,
Further tests of this conjecture are now in progress.

The relationship between the classical and quantum
power spectra and their behavior in the stochastic re-
gime is of importance to IR multiphoton dissociation.
The time dependent classical and quantum spectra have
been calculated for a model of a triatomic molecule in
a laser field. Initially, the spectra consist of a very few
lines but a transition to a stochastic type spectrum con-
sisting of many lines occurs both quantally and classi-
cally.'®

Recent interesting results on nodal lines and natural
orbitals have been obtained, ?° and it would be useful to
make plots such as the present Fig. 2 to see if there is
an avoided crossing and whether it is an isolated one or
an overlapping one. Only in the second instance, we
would contend, might the wave function take on a statis-
tical character.

The present description of “quantum stochasticity” as
being associated with overlapping avoided crossings in
eigenvalue vs parameter plots differs from a deserip-
tion given elsewhere.® The latter criterion involved®
projecting the wave function onto those at A=0 and so
was basis set dependent, 2! The conclusions regarding
the quantum stochasticity of the Henon—-Heiles system
for the parameter chosen are quite different from those
described in this paper. Other aspects of quantum sto-
chasticity have been discussed (e. g., Ref. 22) and have
been discussed in a recent review,® which also reviews
developments in classical stochasticity.
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APPENDIX [

Here we examine the relationship between quantal
spectra and the classical spectrum of quasiperiodic mo-
tion,

In the Heisenberg representation the quantal correla-
tion function is
(D=2 Prnln| HOVA(D)| n) , ‘ (A1)
n

where the p,, are the diagonal elements of the density
matrix and i the dipole operator. Using the standard
result

Iit)=e'”""ﬁ(0)e"”"" , (A2)

and ass;lming the states | n) to be the exact eigenstates
of A (we are considering the spectrum of an isolated
molecule) (A1) is converted to the Schrédinger form

() =2PM Z: [¢&] ()] n)|2e4BrBmern (A3)

The power spectrum is just
= 1 © fwt

Ho)=5- j; c(tet=tde , (A4)

yielding
. E -E

K= 3 |Ck] 0] m)|* 6 (o- _(_,.ﬁ_d) (48)
where for simplicity we have assumed that only the nth
state is populated (i.e., p,,=1);

We now consider the matrix element

tan={k| 1(0)| n) . (A8)

For quasiperiodic classical motion the states |n) can be
approximated by their action-angle representation, i.e.,

|n> =e!llma (A?)

(here we work, without loss of generality, with one-di-
mensional motion). Since the motion is assumed quasi-
periodic the dipole moment can be expressed as a Fou-
rier series, clasgsically as,

pe=ul,w)= 30 p e, (a8)

where u,(7) are a set of Fourier coefficients which are
functions only of the classical action variable I; w is the
conjugate angle variable. The dipole operator can be
expressed as

EIDICIDIUEDITNDECR (49)

Using (A7) to (A9) the matrix elements u,, are easily
related to u,, ‘

Ban= Z “s("h)bl-n.a ’ (AIO)

and hence the power spectrum becomes
=2, 3 | 1 (1h)Bp, o} 20 (w-@'-';‘—@) . (a11)
[] s

The last stage is as follows. The eigenvalues E, and E,
are approximated by their EBK values, i.e., apart from-
the 3h terms considered later,

E,=H(I=nh); E,=H{I=Fkh) , (A12)
where the Hamlltonian, since it is integrable, is ex-

pressed in terms of the action variable. Hence to first
order we have

E,—E,~(k-n)h (%l):- "

2(k =i wink) , (a13)

where w(nh) is the classical angular frequency associated
with the torus with action I=nk. Substituting (A13) into
(A11) and using the Kronecker delfa 8,., , gives the final
result.
K=, | fnh)|28[w = swlnh)] . (a14)
8
This is exactly the classical power spectrum of motion

on the torus of action I=nh.® For brevity, we omitted
the usual 3% terms in the energy eigenvalues of the os-

J. Chem. Phys., Vol. 72, No. 11, 1 June 1880




Noid, Koszykowski, Tabor, and Marcus: Vibrational energy levels

cillators, They cancel in the final result, but the u (nh)
and w(inh) are replaced by p (uk+1h) and wlrh +1h),
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