Semiclassical calculation of eigenvalues'for a three-
dimensional system

D. W. Noid
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

M. L. Koszykowski
Sandia National Laboratories, Livermore, California 94550

" R. A. Marcus

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 3) pasadena,
California 91125
(Receiyed 7 January 1980; accepted 26 March 1980)

A method utilizing integration along invariant curves on Poincaré’s surfaces of section is described for
the semiclassical calculation of eigenvalues for three and higher dimensional systems, supplementing
thereby our previous work in two dimensions. The eigenvalues calculated for anharmonically coupled

oscillators agree well with the exact quantum eigenvalues.

I. INTRODUCTION

The calculation of bound state properties using semi-
classical techniques has been of considerable interest
for years. The problem has been extensively studied for
systems which permit separation of variables, We have
recently developed methods for calculating eigenvalues
semiclassically for systems which do not permit the
separation of variables.** Other more perturbative
semiclassical methods® have been developed, and the
various methods are complementary..

The path integral method has its origins in Einstein’s*
and old quantum theory and later in WKB-type semiclas-
gical theory.® The quantum conditions™® for N-dimen-
sional nondegenerate systems are (fi=1)

2n(n,+3) = fc 3 padas (1.1)
$

where the % applies for a system of nondegenerate oscil-
lators; it is replaced by other known values for other
systems; the g,, p, are coordinates and their conjugate
momenta, the n; the integers, and the C, are topologi-
cally independent closed paths. The closed paths need
not actually be along trajectories,

The earliest path—integral method was developed by
Eastes and Marcus®® for a two-dimensional system. The
“method involved first the calculation of a single long
time trajectory. The caustics.(the envelope of the tra-
jectory in coordinate space) were then located; semi-
classically the caustics separated the classically allowed
from the nonallowed regions. The two independent path
integrals for two-dimensional systems were evaluated by
integrating along a side of the boxlike caustic. (Evalua-
tion along two adjacent sides sufficed.) This method was
successful for trajectories with obvious nonshifting
caustics, but would not succeed otherwise.

A more general method was developed®? in which the
independent paths were taken as the Poincaré surfaces
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of section. The method was applied successfully to a
system of two dimensions, both with and without zeroth
order resonances, and also to quasibound systems (scat-
tering resonances).?* This method alsc involved the
numerical integration of a trajectory, and the behavior
of the trajectory in a plane of phase space was examined.
Some plane (say y =0) was chosen, and each time the tra-
jectory crossed the plane in a given direction, the point
corresponding to the value of x and p, was marked,
thereby generating a closed “curve” of p, versus x. The
same procedure was followed for the x =0 plane where
the values of (y, p,) were noted, These two “surfaces

of section” were then used as paths to evaluate the [p. dq
integrals. (Curvilinear surfaces of section were used

in the resonant cases.) The surface of section can also
be used to determine if the motion is quasiperiodic or
stochastic. Quasiperiodic motion occurs on a torus.in
phase space and the surface of section will have a regu-
lar pattern. Stochastic motion tends to fill the phase
space and the surface of section will have a much more
random pattern. :

In this paper, the extension of the method to three and
higher dimensions is described. The calculation is
made more tractable by the introduction of 2 coordinate
transformation from Cartesian coordinates to zeroth
order action-angle variables, A sample calculation is
made for a three-dimensional nondegenerate system and
the agreement with exact quantum-mechanical calcula-
tions is excellent.

In Sec, II, the independent paths and the quantum con-
ditions are discussed. The numerical methods and re-
sults are shown in Sec. HI, and a discussion is pre-
sented in Sec, IV. - :

il. SEMICLASSICAL QUANTIZATION

A three-dimensional oscillator with no resonances is
studied here by way of an example. One model Hamilto-
nian is

H=4pE 40} +p v 0l o257 4 02%]

Az + V) +n(y2i + 8%, (2..1)
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'FIG. 1. The p, vs x surface of section from a particular three-
dimensional trajectory (€ = 0. 2).

_.where the terms in square brackets describe the uncou-

" pled normal coordinate Hamiltonian for three normal
modes, This Hamiltonian serves as one model for a
nonrotating nonlinear triatomic molecule having certain
anharmonic coupling terms between several normal
‘modes. The parameters used for the calculation are’
0?=0.49, wl=1.89, wf=1.00, A=p =-0.10, and n=
£=0,10, The Hamiltonian from Eq. (2.1) yields trajec-
tories which are the three-dimensional analogs to the
“boxlike” trajectories of two dimensions and are thereby

’ "cube” type.

The behavior of solutions to Eq. (2.1) is next exam-

ined in phase space so as to calculate the three indepen-

* dent path integrals needed to obtain the energy eigenval-

.ues, First, the (x, p.) plane is examined, wherein
points with y =z =0 are collected. The semiclassical
wave function has 2° branches for this boxlike, three-.
dimensional system (all possible permutations of p, 2 0,
420, p,20). The branch chosen in Fig. 1 has p,=0
arnd p,=0. The corresponding surface of section, plot-
ted in Fig. 1, can be seen to form a well-defined closed
path, just as did the two-dimensional surfaces of section
of Ref. 2(a). The quantum condition for this path is (in
units of fi=1)"%

fp. dqafp,dxazh(n1 +¥)
(7] Cy
(y =0, 2=0 surface of section). (2.2)

The first equality in Eq, (2.2) results because dy =dz =0
along the path C,.

Similarly, one has

| f peda=f pay=2utm ), (2.3)

§ p-da=§ pay=2nlm+d). (2.9)
Cs Cs

Another quantization condition which incorporates
(2.2)-(2.4) is

$ Y pdg,e2mnein, (2.5)
closed {
vath
where 2/ is the number of times the path touches a caus-
tic. N is an integer. Equation (2.5)is used later to in-
crease the accuracy of eigenvalues calculated from
(2.2)-(2.4).

Ill. RESULTS

Hamilton’s equations for the Hamiltonian (2.1) were
integrated using the program DEROOT® (Sandia National
Laboratories). Beside integrating the trajectory, this
program automatically determines points on the trajec-
tory which are the roots of an equation provided by the
user, The root~gearching part of DEROOT was set to
return points when the equation .

xyz =0 (3.1)
was satisfied, These points were saved for later use in
evaluating the surface of section. For example, consid-
er the (v, p,) plane. The points which solve Eq. (3.1)
were searched for y =0, Now, we technically need z =0
also to calculate a p, vs x surface of section, but these
x=0 and z =0 conditions occur simultaneously so infre-
quently that instead the points with |z| = ¢ (where ¢ is
some small number) were collected. Of these points
those with positive p, and positive p, were selected and
plotted as p, versus x. Figures 1-3 each have some
“width” to the invariant curve because € was not negli-
gibly small, Figure 4 is intended to show schematically
which set of points in coordinate space was collected,
where the thickness of the rectangles enclosing the axis
is e, The smaller € is, the smaller the thickness. A
similar procedure was followed for the other surfaces
of section, as in Figs. 2 and 3. Table I summarizes
the conditions used to determine the three surfaces of

" section.
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FIG. 2, The p, vs y surface of section for the same trajectory
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FIG. 3, The p, vs 2 surface of section for the same Lrajectory
as that in Vg, 1.

The surface of sections were next transformed from
Cartesian coordinates to zeroth order action-angle vari-
ables to facililate the numerical integration. [n this
action-angle space the surfaces of section are “lines”
rather than “ellipses’ and fewer poinis are required to
accurately evaluate the [p . dq integrals.

Indeed, because of the “width” the numerical integra-
tion performed on the Cartesian p, vs ¢4 data would make
it difficult to correctly order the points as well as to ob-
tain stable converged values for the integrals., This dif-
ficulty was removed, however, by the present canonical
transformation to the line, The width of the line in the
new coordinates averages to zero when the area is eval-
uvated. This transformation is indeed a key step in the
present evaluation.

These action-angle variables used are the zeroth or-
der ones, i.e., those associated with the normal coordi-
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FIG. 4, Tho rectangles on the uxis are the regions in coordi-
nate space used to obtain the points on the surfaces of section.

TABLE 1. Determination of surfuce of sections.

Plane  Path by ¥ z P« by be
x,p) ¥ 0 =e® pe =0 =0
Wopy G =P ¥ 0 =0 py =0
(z.p) L, 0 =c? 2 =0 =0 Pe

ASee Fig. 6. bLe., lzt=¢, or Ixise, or lylse.

nate Hamiltonian, and so the action variables will not be
constants but will vary slightly along the trajectory.
The transformation from Cartesian coordinates (q,, p,)
to action-angle variables’ (J,, «,) is given by (3, 2) with
a slandard convention on the relation between the phase
1y and the sign of p,:

2me, =tan"wy /p ) , (3.2)

and
Jy=m(pd+ i /w,, 3.3)

where w; is the zeroth order angular frequency of the
ith coordinate. A transformed surface of section is
shown in Fig. 5. The width of the line is again due to
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FIG, 5. Surfaces of section In action-angle variables. The

pluses are for ¢ >0 and gl <€, while the circles.are for q<0
and gl <¢<.
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TABLE . Comparison of quantum
and semiclassical eigenvalues,

State* Emm Em‘ Eo

0,0,0 1.494 1.493 1,500
1,0,0 2.185 2,184 2,200
0,0,1 2.486 2.485 2,500
0,1,0 2,711 2,771 2.800
2,0,0 2.873 2,872 2.900
1,0,1 3,177 3.177 3.200

*Values of (ﬂ“ na, n;).

the finite value of € from Table I, and the +corresponds
to having ¢ in the range |g!| < ¢ be a positive number,
while the circles correspond to [ <0, lq! <€]. The
path integrals in Egs. (2.2)-(2.4) now become

1

. vaw=rrne ) 6=1,2,9). @3.4)
When Eq. (3.4) is evaluated, the width of the surface of
section is effectively averaged and the correct average
value of the path integral is obtained. The value of the
integral has been shown (numerically in the present
study). to be independent of € for small €. 8 The numeri-
cal results of using this procedure on the Hamiltonian
(2.1) are presented in Table H.

A linear interpolation was used to find the eigentrajec-
tory for which n,y, n,, and ng all equal the desired inte-
gers. The interpolation equations used, analogous to
those discussed in Ref. 2(a), were

ny=AE . +BE,+CiE;+ Dy,
g =AE, +ByE  + CiE, + Dy
" my=AgE, +BE,+CsE,+Ds
where :
E,=F,E, E,=F,E, E,=E-E,-E,.

F,and F, refer to the zeroth order fraction of the total
energy initially put into the x and y coordinates, i.e.,
(p2 +wix?)/2E and (pt +wly?)/2E, respectively. The con-
stants were evaluated using four trajectories, the eigen-
trajectory was interpolated and the procedure was iter-
ated with several more trajectories to test convergence.

(3.5)

To obtain better convergence and accuracy this eigen-
trajectory (E, F,, F,) was used to calculate the total
phase with the trajectory close method of Ref. 2(b), i.e.,
i.e., the total phase ¢(t) was computed by integrating
the additional equation

do/dt =me./w

and connecting with the trajectory at £ =0 on a surface of
section, The procedure was iterated by changing E and
tinding the E for which, with ¢ calculated over the closed
path, one has

¢ =2aN+1n. 3.7)

In this two-step approach E was only varied by 0.005 in
the second step, With this method for checking the
phase consistency the accuracy for the eigenvalues was
enhanced an order of magnitude, The principal idea’

(3.6)
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underlying it is that E depends more on the prineipal
quantum number (related to N) than on ny, n,, and ny,
Thus, it suffices to have n,, n;, and ny close to integers
but to have N even closer to an integer.

The quantum mechanical eigenvalues were computed
using the variational method and a large basis set. A |
product wave function

¥ =Z ZZ Y ,(X)RIJ,()')IP,(Z)

was used where ¥,(x), ¥,(y), and y,(z) are harmonic
oscillator wave functions and are solutions to the equa-

tion
H°Y=E® ,
where H° is the term in brackets for (2.1). The

Hamiltonian matrix was diagonalized using the program
gispac . ® ‘

(3.8)

@.9)

The semiclassical and quantum results for the eigen-
values are given in Table II.

IV. DISCUSSION

. The gsemiclassical method outlined in this paper is
seen to provide accurate eigenvalues for the Hamiltonian
(2.1) (Table II). It is more economical than a quantum
mechanical variational calculation, when the matrix ele-
ments used in the latter must be integrated numerically
(rather than available analytically) and when, at the
same time, only a few eigenvalues are desired., The
present procedure can be extended to both zeroth order
and exact degenerate systems. Combined with the tech-
niques of Ref. 2(b)-2(d), it enables semiclassical eigen-
values to be calculated for a general N-dimensional
Hamiltonian with and without degeneracies.

The method outlined here succeeds for Hamiltonians
whose trajectories are quasiperiodic for the energies of
interest. A quasiperiodic trajectory has a regular pat-
tern in the surface of secion. At higher energies, the

- patterns on the surface of sections become random, first

near the separatrices (lines separating resonance cen-
ters) and then at higher energies everywhere. At these
higher energies, a typical surface of section will have
resonance centers anda stochastic “shotgun” pattern. The
trajectories associated with the random patterns are
stochastic, and in coordinate space they “randomly” fill
the classically accessible coordinate space. It has also
been found that the frequency spectrum of this motion no
longer consists of sharp lines, but becomes a pand, 1=
The stochastic trajectories of a N-dimensional system
apparently do not have N isolating integrals of the mo-
tion, the total energy being the only isolating integral.
Accordingly, they cannot be quantized with the present
method,
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