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ABSTRACT

The nature of molecular vibrational states at low and high energies
has been studied both classically and quantum mechanically. At low
energies the classical vibrational motion is highly "regular" (quasi-
periodic) in the usual harmonic normal mode regime. Interestingly
enough, it can still remain so when the motion is anharmonic. However,
at high enough vibrational energies numerical calculations indicate
that the classical mechanical motion usually becomes chaotic (frequently
termed "stochastic") although still deterministic, of course. The
corresponding quantum mechanical behavior is discussed using semi-
classical ideas, and a method of calculating eigenvalues in the quasi-
periodic regime is described.

A definition of quantum stochasticity is proposed in terms of
overlapping avoided crossings in quantum mechanical eigenvalue versus
perturbation parameter plots. Some implications for phenomena such as
intramolecular relaxation, spectra, unimolecular reactionms, and infra-
red multiphoton dissociation of molecules are described.

INTRODUCTION

In the last twenty or so years, a ''mew phenomenon' has appeared in
classical mechanicsl. 1In this paper we describe this phenomenon and
what we believe to be the analogous behavior in quantum mechanics. 1In
the process we shall use some semiclassical results obtained by our
research group2 and indicate some of the implications for chemical
behavior, as in intramolecular vibrational relaxation, unimolecular
reactions, and infrared multiphoton dissociation of molecules.

Around the turn of the century, it was thought, we recall, that all
was understood in physics; but then came quantum phenomena. However,
not all was understood even in classical physics. In particular, in
the classical mechanics of three-body systems in celestial mechanics,
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perturbation series were available for treating the motion, but these
series were not shown to converge (''small divisors" problem) and were
valid only for a limited time interval rather than for infinite time.
Thus, the question of global time stability of the motion of an
isolated solar system was unsolved., (Would some planet ultimately go
to infinity?)

In the 1950's and early 1960's the existence of long time stability
of classical mechanical systems was suggested3 and proven~, under
restricted conditions, in the, form of the now famous Kolmogorov-
Arnol'd-Moser (KAM) theorem>*?, This theorem is concerned with the
effect of small perturbations on integrable Hamiltonian systems. For
integrable systems there exist as many single-valued constants of the
motion, variously termed "first" or "isolating" integrals of the motion,
as the number of degrees of freedom (N). This results in all the
trajectories being forever confined to manifolds with the topology of
N-dimensional tori (doughnuts) embedded in the gN-1 dimensional phase
space energy shell of the (conservative) system™. In this case the so-
called action-angle variables are defined for all initial conditions
(i.e., the Hamilton-Jacobi equation has a global solution). The KAM
theorem states that for a sufficiently small nonintegrable perturbation,
almost all tori are preserved, albeit in slightly distorted form. This
means that with the exception of a set of small measure, the classical
trajectories still display (infinite) long time stability. By contrast,
the trajectories that do not lie on tori tend to wander in a pseudo-
random manner (the motion is still deterministic) over large portions
of the energetically available phase space. The integrals of the
motion are, for the most part at least, not single-valued (? ipfinitely
many sheets) and do not confine the trajectory the way tori do".

At low enough energies for weakly perturbed integrable systems
such as coupled nonlinear oscillators, almost all of the trajectories
lie on tori, while increasingly, in some tramsition region at higher
energies, numerical calculations show that they tend to become of the
wandering kindl. The two different classes of motion are often referred
to as quasi-periodic and "stochastic" (or chaotic), respectively.
Small changes in initial conditions can cayse the trajectories to change
from quasi-periodic to stochastic behavior™.

CLASSICAL BEHAVIOR

A typical Hamiltonian for a pair of anharmonically coupled
oscillators coordinates x and y and momenta, py and py, in a molecule
is given by

1 2

H = 5‘(?

2 2 2 2 2 2 2
(Py + py + w x + wy vY + Ax (y" + nx") (1)

(This Hamiltonian is also related7 to that for a star in the vicinity
of the galactic plane in an axially symmetric galaxy »8.  The non-
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statistical velocity distribution of stars in a galaxy pointed to long
time stability and restricted nature of the motion’*®. Thus, the
dynamics based on (1) have been extensively investigated in the
astronomy and related literature.)

When Hamilton's equations of motion for these coordinates and
momenta are integrated numericallg using a computer, one obtains a
trajectory such as that in Fig. 1-.

Figure 1. A trajectory for Hamiltonian (1), coordinate
space xy, for the case W, and wy incommensurable.

The ellipse is the curve on which the potential energy equals the total
energy and so the trajectory must lie in a region bounded by that curve.
One sees, ‘however, that the trajectory occupies a much more restricted
region than the energetically accessible one. One sees, too, that the
amplitude of the x-motion is approximately independent of y, and vice
versa, and so there is relatively little energy interchange between

the oscillators. The plot in Fig. 1 is a projection of the invariant
torus in phase space onto the xy plane.

Another example is given in Fig. 2, now for the case that the
unperturbed frequencies W and wy are equal.

Figure 2. Same as Fig. l but for w, = wy.

The motion is again quasi-periodic at the low energy involved. Now,
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howeverlo, because of the "resonance" between the two oscillators,
there is seen to be extensive interchange of energy: sometimes the
motion is largely along the x direction, sometimes largely along the

y one, and sometimes in between, during the course of the motion.
Similarly, in the case of a 1:2 ratio of frequencies (Fermi resonance)ll
there is a fairly extensive interchange of energy, as in Fig. 3.

Figure 3. Same as Fig. 1 but for w, = 2wy.

A different plot is that of a Poincaré surface of sectionlz, e.g.,

a plot of py vs. x recorded each time the trajectory _crosses the y = 0
axis with a (say) positive value of py, as in Fig. 4~°.

32 4 6 1 2 3

Figure 4. Poincaré surfaces of section for several trajec-
tories, each a box-like one analogous to Fig. 1.

Here, the plot is given for a number of different trajectories at the
same energy, each one giving rise to an ellipse-like figure. Related
patterns arise in the 1:1 and 2:1 resonant systems, and here it has
been convenient to introduce surfaces of section using curvilinear
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coordinates, patterned from the shapes of the regions in xy space
covered by the trajectories (e.g., polar coordinates for the 1:1
resonant case and parabolic coordinates when wy/w_ equals 1:2)10’11.
The connection of these diagrams for the quagi—periodic regime
with quantum mechanics is the following. Many years ago Einsteinl3
pointed out that to quantize a dynamically nonseparable system, it was
necessary to find the canonical invariants ép'dg for the system, when
they exist, and set them equal to nh [or now, really (ny + %)h, in the
case of oscillators], each cyclic integral in the phase space being
over a topologically independent path C; in phe phase space. Those
for the Fig. 1 have been described elsewhere’ and are, for example, the
same as or equivalent to the y = 0 and x = 0 Poincaré surfaces of
section. Those for Figs. 2 and 3 were obtained from curvilinearlo’11
surfaces of section. The number of independent integrals equals the
number of coordinates (N, say). The allowed energies of the system are
those for which the numbers (n,, . ., n,) are integers. Using such
semiclassical concepts, derive% now from multidimensional WKB type
argumentsl »28  one obtains in this way good agreement between eigen-
values for the Hamiltonian (1) calculated quantum mechanically from a
large variational basis set and those calculated semiclassica11y9'
Semiclassical eigenvalues were calculated for the first time for two or
more dimensional nonseparable systems with smoothly varying potentials
in Refs. 15 and 9. More recently, a variety of methods have been
developed16.

The wave function is large and oscillatory in the shaded region in
Figs. 1 to 3, and decreases exponentially outside that region in accor-
dance with multidimensional semiclassical theory. The boundaries serve
as caustics for the wave function. There is also a regular nodal
pattern (where we have examined it) in this quasi-periodic regimel .

From a classical trajectory a correlation function, e.g., for x(t)
and y(t), has been calculated, and from it by a Fourier transform a
power spectrum was obtainedl/. The spectrum consisted of several lines.
The positions of the spectral lines agreed well with the corresponding
quantum mechanically calculated lines (i.e., with the differences of
quantum mechanical eigenvalues)l7.

At high energies, a quite different behavior occurs. The trajectory
now tends to occupy much of the energetically accessible space.
Correspondingly, the Poincaré surface of section produced by a trajectory
tends to be a shotgun pattern, as in Fig. 4 of Ref. la, and one can no
longer evaluate ép’dz integrals ("action" variables) from these surfaces
of section. Indeed, in a truly stochastic regime, the only isolating
integral of the motion is the total energy (and, where applicable, the
angular and total momentum). The N ig‘dg integrals appear to no longer
exist. Thus, it has not been possible, as yet, to obtain semiclassical
eigenvalues from classical trajectories. A method which gives the
value to within one quantum state, for the system studied, from
evaluations of volume of classical phase space has been devised™ .
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The classical spectrum, obtained from the correlation function,
now consists of numerous lines, giving rise to a "band" near the
fundamental frequency as in Fig. 6 of Ref. 2c. The quantum mechanical
wave function in th}g region appears to have an irregular nodal pattern

. 2e,ll
where studied .

QUANTUM STOCHASTICITY

In a quasi-periodic energy regime, we have noted, the wave function
is fairly localized, whereas in the stochastic energy regime it is
expected to be more delocalized, largely over the microcanonically
classically accessible region. On that basis we suggested2e that for
a quantum state corresponding to a truly stochastic regime the quantum
mechanical average of each dynamical quantity A(p,r) would approximately
equal the microcanonical average at that energy (provided A does not
weigh heavily the classically forbidden regions). A possible mechanism
for the onset of this statistical nature of the wave function in the
stochastic regime is the following.

For some unperturbed Hamitonian H_ which is integrable, there tend
to be regular sequences of the energy levels. With increase of some
perturbation parameter, some isolated energy levels may tend to come
near each other and undergo an avoided crossing as in Fig. 5.

EL—

—

-
A

Figure 5. Example of an isolated avoided crossing in a plot
of energy eigenvalues E versus a perturbation
parameter A.

An example of this behavior for the Hamiltonian (1) is given in Ref. 2f.
In the vicinity of the avoided crossing each of the two perturbed wave
functions takes on the character of both'zeroth order wave functions'

at that A. Thus, the nodal pattern is more complex than before (in
contrast to an actual crossing, which is not expected to change the
nodal pattern). This isolated avoided crossing does not in itself yet
constitute ''quantum stochasticity.'" Rather, it represents the quantum
analog of an isolated classical resonance. A classical Hamiltonian
with an isolated resonance is integrablel.

Classically, an isolated resonance occurs where, for some set of
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initial conditions, the characteristic frequencies wi of the motion
(which depend on the perturbation parameter and on the action variables
and hence on the initial conditions) become commensurable, i.e., when
there are positive and negative integers mj such that

mwy + . . . +mw = 0. (2)
One can then define new action variables, and thereby, new frequencies
wi', such that at this resonance one of the new frequencies is zero.
Since frequencies correspond semiclassically to differences of quantum
mechanical energy eigenvalues, the corresponding'zeroth order eigen-
values'versus perturbation parameter plots should intersect.

We anticipate that quantum stochasticity will begin in some energy

region when many eigenvalue curves undergo avoided crossings there2f,
as depicted schematically for the crossing of three such curves in

Fig. 6.
E J
A

Figure 6. Example of overlapping avoided crossings in the
plot for Fig. 5.

Now each of the wave functions contains the character of each of the
three 'zeroth order wave functions', for A in the vicinity of the cross-
ings, and so has begun to take on a statistical character. When many
such overlapping avoided crossings occur in the same region of parameter
space and energy, something more likely to happen at high energies
because in part of the higher density of states, each of the relevant
wave functions has become "stochastic," and the average of any dynamical
quantity in that state should become more nearly equal to the classical
microcanonical average at thaigenergy. At present, we are investigating
the dynamics of this behavior™~. The present definition is less basis-
set dependent that one based on the projection of the exact wave
function onto those for Ho.

We believe that ' overlapping avoided crossing' is a quantum analog
of Chirikov's "overlapping'" of classical mechanical resonances<”.
Chirikov has used this overlapping as a tool for predicting onset of
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stochasticity21 in classical mechanical systems. However, the presence
of "quantum stochasticity" as we have defined it, i.e., the presence

of overlapping avoided crossings, is not necessarily implied by the
presence of a corresponding classical stochasticity. This is due to the
finite size of N, which can lead to a sufficiently large energy level
spacing such that avoided crossings are relatively rare occurrences
(see, for example, Ref. 2f). However, in the semiclassical limit

h + 0 there could well be a close connection between the classical
stochasticity and our definition of quantum stochasticity. In this
case our "'quantum stochastic states' would be closely related to the
"irregular states" postulated by Percivallda,

CONSEQUENCES OF QUANTUM STOCHASTICITY

One main difference in the two regimes lies in the spectrum. In
the quasi-periodic regime it should be decipherable, in principle,
into regular sequences (interlacing ones when there are several degrees
of freedom). For example, for a set of N coupled oscillators these
allowed frequencies are differences of eigenvalues

= 3
Eni' .y ) n, wi(g)fi + constant (3)

where the frequencies w,, due to anharmonicity and to anharmonic
coupling, are slowly varying functions of n, . . . n_. In the stochastic
region, due to overlapping avoided crossings at the given value of the
perturbation parameter, the spacings of eigenvalues become more
complicated and "erratic," creating an irregular spectrum. Isolated
avoided crossings would cause isolated irregularities in the spectrum.
Because of the large number of vibrational states available at higher
energies, it may be difficult to sort out any regular sequences (3)

even if they occurred there.

A second effect of quantum stochasticity on a vibrational spectrum
is to distribute the infrared oscillator strength in a particular
frequency range over many true eigenstates and so ''broaden' the
spectrum. For example, if most of this oscillator strength came from a
particular coordinate (say),it would, if the final vibrational quantum
states were in the stochastic regime, be distributed over many final
true vibrational eigenstates and so give rise to a broadened spectrum
(cf. 19a). Some distribution of oscillator strength could also occur
even if the final eigenstates were in the quasi-periodic regime, and
so cause some (but less) broadening. It remains for detailed calculations
for individual cases to compare the relative amount of broadening.

Examples of broadened spectra for low and high overtones are found
in CH bonds in aromatics?? (usuallg complicated by presence of several
CH bonds) and C=0 bonds in ketones?3. The detailed interpretation of
the width of a high overtone spectrum is of particular interest. It
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may be due to "energy _relaxation" or to a "pure vibrational dephasing"
mechanism, or to both24, "pump and probe'" experiments should distin-
guish the two. In the latter one excites ("pumps'') one absorption
band and monitors the intensities of other bands. Such experiments
are, for intramolecular vibrational relaxation, at or almost at hand.

When the width is predominantly due to an ''energy relaxation
mechanism," there is a close relationship between the width and the
relaxation time for an upper state population formed from a pulse
excitation of the entire band. When the spectral width is much larger
than can be explained in this way and when it is not due to the presence
of overlapping absorption bands ('inhomogeneous broadening'), one has,
instead, a "pure vibrational dephasing mechanism."

To illustrate the relation of the two mechanisms to exact final
eigenstates, it is convenient to consider first a very simple model.
Here, one coordinate xy is assumed to carry the oscillator strength
for the band, via a dipole matrix element over two zeroth order wave
functions ¢(x1) and ¢*(x1) for the lower and upper states, respectively.
We let ¢_(x,) denote the remaining zeroth order wave functions for xj
and let x2. . .¥y be the remaining coordinates, with wave functions
wn(xz. . .xy). We consider for simplicity the excitation from a single
vibrational state, e.g., the ground state of the system.

The (normalized) "exact" wave function for the entire molecule in
one of its upper vibrational states Yg in the band is then, for this
model,

beGey « o oox) = 0faw + 6 Tbu T e o (4)
n n mn

There can be many Y¢'s, each differing in values of the a's, b's and
c's. If, as one limit, the underlying perturbed classical motion for
the final states were integrable and were as in Fig. 1, with x denoting
x1 and y denoting collectively x, . . . , each wf would have only one
dominant term and would be quasiZperiodic: only a single |by]| in it is
near unity, all remaining coefficients would be small, or, in the case
of an isolated avoided crossing at most two of |b_|'s in it would be
. . .. N

appreciably large. If a Y quantum state in this model were, instead,
itochastic, none of the |an"s |by|'s and |cgn|'s would be typically
arge.

A pure vibrational dephasing mechanism would prevail if all of the
"exact" states Y. containing ¢~ did not contain a significant contri-
bution from ¢ ang from the ¢ 's, i.e., if the exact wave functions Ve
were of the form ¢ X bp¥,. In this case the Y¢'s are, at most,
statistical only in Bheir description of the (xz .« e . xn) motion.
Other things being equal one expects the band width to be less when the
Y¢'s are quasi-periodic than when they are statistical.
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An energy relaxation mechanism prevails when all of the ]an]'s,
|by|'s and |cp,|'s are small for the upper states. Then, the final
quantum states are stochastic. (In more complicated situations there
can also be intrinsic internal resonances which can contribute to the
nature of the relaxation.) One model frequently E§e96for other types
of systems is the "discrete state in a continuum"“~’“" and is a
particular cagse of Eq. (4). Here, the (unperturbed) ''discrete state"
is a single ¢ wn and the continuum of states is ¢§Ianwn, each such state

with a different set of values of the a_'s. The "exact" eigenstates
are then linear combinations of the discrete state and the continuum
state, and so correspond to (4) with all b_'s but one equal to zero,
and all cpy,'s equal to zero. o

In contrast, when x; does not nearly parallel the x (or y) axis
in Fig. 1, an "energy relaxation" in the x; coordinate, a relaxation
defined operationally, would be observed even when the wf's are quasi-
periodic. (Cf. an analogous relaxation in an integrable system, the
Toda lattice?7.)

In the above we have omitted for brevity the case where intrinsic
internal resonances occur in H,, as in Figs. 2 and 3. They permit
periodic energy exchange instead of or superimposed on an "irreversible"
one.

One also expects differences in behavior of a molecule undergoing
optical excitation, according as it is excited to a quasi-periodic or
a stochastic vibrational quantum state of an upper electronic state.
In the former case, the subsequent behavior would depend very much on
which vibrational state it is excited to, varying markedly from state
to state. For example, if the excitation were to some given metastable
electronic state and tovarious vibrational states, the subsequent
fluorescence or predissociationbehavior of this electronically and
vibrationally excited molecule could depend significantly on that
vibrational state. If the upper vibrational state were, instead, of
a stochastic nature, then because ofits statistical character, less
dependence on the individual upper vibrational state would be antic-
ipated.

Again, if a particular collision largely excited some terminal bond
in a molecule and transferred enough energy to place the molecule in the
stochastic regime, one could again form a "discrete state in a continuum"
system. If the range of energies of excited states exceeded the width
of states coupled to the discrete state, one would have a phenonemon
of intramolecular energXSrelaxation. In the usual theory of unimolecular
reactions (RRKM theory) rapid intramolecular "randomization" is
assumed so that the subsequent behavior of the molecule depends on its
energy (and angular momentum) but not (or not noticeably) on any other
integrals of the motion. A significant dependence on the latter could
give deviations from RRKM theory29. A correlation function approach
to time scales for energy relaxation is discussed in Ref. 30.
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In the phenomenon of infrared multiphoton dissociation of a
molecule current theoretical work assumes that these are two energy
regimes of the molecule, with quite different properties--a discrete
state regime and a quasi-continuum”*~. In the former a coherent
absorption of the infrared radiation is assumed from state to state,
while in the second regime rapid intramolecular randomization is
frequently supposed. These two regimes may correspond largely to the
present quasi-periodic and stochastic regimes, although the laser width
is also involved in the definition. An example of a classical mechanical
trajectory for a CD;Cl molecule undergoing infrared multiphoton
dissocation is given in Fig. 3 of Ref. 32, in which the energy absorbed
by the molecule is plotted versus time. The "induction period" may
correspond to a response of the molecule in its initial quasi-periodic
regime with absorption and emission occurring. It is followed by a
more cumulative increase of energy, perhaps when the molecule reaches
the stochastic regime and can more readily undergo an intramolecular
relaxation. A more detailed investigation of this phenomenon is
underway~-.

SUMMARY

We have summarized briefly the '"new" phenomenon in classical
mechanics. Recent symposia and reviews attest to its widespread
interest. It also arises in many other systems, as in a transition from
laminar to turbulent flow. We have also indicated what we believe
its counterpart in quantum mechanics to be and some implications for
various experimental systems. Because of the detailed information
becoming available through the use of lasers and other techniques, the
subject is one of considerable current interest.
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