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T'he conventional ideas about normal modes and molecular
vibration are currently undergoing closer examination for
highly vibrationally-excited systems. The standard method
involves caleulating normal modes with the GIF matrix tech-
nique (7). Normal modes assume a harmonic potential and,
in fact, in high energy systems local anharmonic modes have
given a better description of the spectrum than (harmonic)
normal modes of the molecules as a whole (2).

In the currently used theory of unimolecular reaction (3),
it is typically assumed that if one “normal mode” of a molecule
is highly excited, it will share its energy with the other degrees
of freedom and not keep it as the simple normal mode theory
predicts. In an effort to understand the molecular vibrational
motion of madel systems, numerous classical trajectory studies
have been made (). In the future, these models will be aided
by the fact that vibrational potential energy surfaces have
been calculated for a number of triatomic molecules (3). It is
the purpose of this article to discuss the new results which
have been obtained in the theoretical understanding ol vi-
brational motion.

Method

Once the potential energy surface Vig) is known, the
Hamiltonian can be written as
P pit
H=iy By
2T 2m; @)
where V(g) can be expanded about the equilibrium position,
to vield

—

Vig) = 3 Yhiq* + Y kigq; + Yhinqigjqn.

T'he ¢;'s are generalized coordinates and the p;’s are their
conjugate momenta. For simplicity, we shall omit the rota-
tional part of the Hamiltonian. H is equal to the total energy
of the system E. The correct solution of the vibrational motion
would involve the use of quantum mechanics; howwever, be-
cause of the difficulty in obtaining a quantum mechanical
solution in anharmonie systems, classical mechanics is often
used. In the GF matrix or normal mode approach, one would
consider only the quadratic part of V(gq) and neglect the rest
of the terms of higher order. More generally, one can integrate
the molecular vibrational Hamiltonian using Hamilton's

equations (and using a computer):

dy; _ oH
de  ap;

doi _ —ok
dt dq;

and the exact nature of the vibrational motion is thereby de-
termined. Integration of these equations yields ¢; and p; as
a function of time, i.e., yields a “trajectory” for these coordi-
nates.
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! Strictly speaking, the constants are the “action varinbles™ # pdy.
which for harmonic oscillators, are proportional to the squares of the
amplitudes.
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Molecular Vibration and the Normal Mode
Approximation

For the purpose of this paper, the vibrational behavior of
a molecule will be illustrated using the behavior of two-di-
mensional systems (e.g., anharmonically coupled symmetric
and antisymmetric stretching vibrational motion in a linear
triatomic molecule). The Hamiltonian for the two mades x
and ¥ of an isolated molecule is then of the form:

M=t 24 p2 b e+ w4 1
and
= Ax(y* = yx®)

where H’ is an example of a term neglected by the normal
maode approach. (In general, H’ would also contain other terms
in addition to the two above.) For many problems the exclu-
sion of H’ makes some but not much difference to the shape
of the trajectory. A trajectory for which this is the case is
shown in Figure 1 (6a). The trajectory here is of the “box™
type, and the ellipse is the contour for which V = E. When H’
is neglected in the Hamiltonian, the trajectory is still of the
box type. The motion for the anharmonic case of the trajec-
tories of this type is reasonably well approximated by the
normal mode motion, as is seen in Figure 2, which shows that
the energy in a normal mode is nearly constant, even in this
anharmonic system.
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Figure 1. A box-like trajectory.
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Figure 2. Energy in a ““mode" versus time for the trajectory lrom Figure 1. All
quantities are dimensionless.
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Figure 3. A Fermi-resonance trajectory.
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Figure 4. As Figure 2, except the trajectory is [rom Figure 3.

One way in which it is possible to obtain quantum me-
chanical results from classical mechanics is to use the semi-
classical method (6), which has its beginnings in old quantum
theory. Using this method, one can find the trajectory which
corresponds to a quantum state. To do this, one [inds the true
constants of the motion of anharmonic modes of the system.
For this case these true constants nearly equal the analogous
normal mode constants (“amplitudes”).!

A trajectory which has a Fermi resonance (v, = 2w,) is
shown in Figure 3 (6¢). These trajectories again do not fill the
contour V = E, but have a very different shape from the box
type. In this type of motion where w, = 2w,, the motion of the
*normal modes” x and y is resonantly coupled by H’. How-
ever, it is still possible using semiclassical theory to find the

constants of the motion and the eigenvalues for this type of

trajectory (6c¢). The shift in energy of the quantum states [rom
the normal mode approach can be substantially larger for
these systems than in the “box” trajectory case, as shown in
Figure 4, even though they also have types of normal
modes.

The approximate vibrational spectrum can also be caleu-
lated directly from the trajectory (7). Figure 5 shows a typical
spectrum, which shows several sharp peaks. These correspond
to the frequency of infrared light which the system would
absorb for those vibrations which are infrared active.

If one now looks at what happens when more energy is
added to a molecule which had a trajectory like that in Figure
3. anew type of motion is observed. This motion is described
as stochastic. The motion shown in Figure 6 (6¢) covers the
entire potential energy surface unlike the previous trajectories.
There are no normal modes for these types of trajeclories as
seen in FFigure 7, which shows large fluctuations in the normal
maode energy. An excellent review on the transition of the
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Figure 5. Spectrum ol trajectory in Figure 1, a plot of intensity at frequency w
versus «. The width of each line is due to a "'round-olf* error, which could be
reduced in size using longer-time Irajectories,
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Figure 6. Ergodic Irajectory.

il s“‘J v

0 S A ==me=

0 200

a00 600
TIME
Figure 7. As Figure 2, except the trajeclory is from Figure 6.
motion from that in Figures 1, 2, and 3 to that in Figure 6 can
be found in an article by Ford (8).

The vibrational spectrum in the stochastic regime is shown
in Figure 8. It is quite broad when compared to a spectrum at
low energy. This broadening is characteristic of any spectrum
caleulated from a stochastic trajectory. The quantum analog
ol this transition is not completely understood, but it appears
the wavefunction also exhibits a transition (6¢) from one
which is rather localized in space to one which is rather ex-
tended over the energetically accessible region.

Conclusion

Our current view of vibrational motion in molecules is
summarized in Figure 9. A plot of generalized potential energy
surlace is shown in which the many-dimensional potential
function has been simplified by only considering the potential
energy function as a function of two coordinates. Along the
vertical axis V(x, ¥) is plotted versus x and y. The horizontal
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Figure 8. Spectrum of trajectory in Figure 6.

Figure 9. A plane of a potential energy surface showing the two regions of motion
{regutar motion for E < Eg).

plane paraliel to the xy plane indicates the stochastic limit
(EsL) where the motion changes from being “regular” to sto-
chastic. Several possible ways exist for calculating this limit

analytlcally However, the most reliable seems to be inte-
grating the molecular trajectory. Experiments for measuring
the effects of this transition are presently indirect (study of
unimolecular reactions, study of multiphoton infrared dis-
sociation, shapes of spectral lines). However, with the advent
of the pico-second lasers and new techniques for high reso-
lution optical technology (‘“pump and probe” experiments),
more direct studies may become possible. It is clear that a
better understanding of this behavior is necessary to interpret
these results in spectroscopy and in chemical kinetics.
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