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In the present lecture several topics on the behavior o vibrationally-excited mole-
cules are considered. The first is the translational energy distribution of products of
molecular beam reactions proceeding via molecular complexes. The second is the
behavior of vibrationally-excited molecules inferred from receni quantum, classical
and semiclassica) theoretical studies--a largely statistical behavior at high vibrational
energies and a nonstatistical coe at Jow epergles.

The translational energy distribution of products of bimolecular rexctions involv-
ing intermediate complexes, such as

F+ CCl, - cH,Z» FCCL - CB, &5 1+ FCC1= CB, (o))

F+ C(CH,), = CH, <» FC(CH,), - ¢8, £> cu, + Fcon, - cg, , (2)

depends on (a) the energy distribution in the transition state of step 8 in these reactions,
and on (b) subsequent coupling, inany, of the internal modes of moton to the transla-
‘tiona} motion of the separating products in step 8. When that coupling is negligible, the
energy distribution of the products can readily be related to that of the transition state. 1
Bince RRKM theory attempts to describe the energy distribution in the transition state,
it can then be tested lx measurements o the energy distrfbution of reaction products.
Some information on the coupling in (b) is obtained from the steric factor of the reaction
{or the reverse of step 8. A steric factor of unity implies a loose transition state and
80 no such coupling. Probably the steric factors of (1) and of (2) are of the order of
unity and 1Q~°, respectively. Data on (:)-n;.freed well with the theoretical (e. g
gredict.ions while (2) required a fuller sis of the coupling effects in (b). ¥ One

eatment, which assumes the reverse o (Jto be translationally rather than vibration-
ally "driven", was given in Ref, 3.

Some examples of classical mechanical trajectory calculations for a system of
anharmonically coupled oscillators are described next. For the Hamiltonian

B=4(p,+py + ’t'-w,'y’)nx(y'mx’) ' ()]

the classical mechanical equations af motion for coordinates x and y and for momenta
rx and Py have been integrated pumerically on a computer to yield these variables as a
unction “af um% A typical trajectory is given in Fig. 1 for the case of incommensur-

able wy and wy
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One sees {from Fig. 1 that not all of the energetically accessible curfiguration
space is occuried by the trajectory. In the four-dimensional prase space (x. y. py. py)
at a given enerpy E. the instantaneous value of B, 15 determaned, apar! from sign. bv
the instantaneous value of x, y, and Px of the tra}’cclory. by energy conservation. Thus,
the svstem moves on a three-dimensional surface in tins phase spacc. However. for
quasi-berjoaic trajectories, such as that in Fig. 1, it moves 1n a more restricted way--
on a two-dimcneional surfyce! It winds around a torus (doughnut), ultimately covering
it uniformly when wy ¥ wy. ® A projection of the torus onto the (x, y) plane yields Fig. 1.
One can plot p, versus 7each time the trajectory in Fig. 1 crosses the plane y = 0, with
Py 2 0. asin Fig. 4 of Ref. 4. By calculating the area ¢p, dx and setting it equal to

Opy dx = (n, + §)h @

where ny is an integer. and doing the same for a 5&1 vs. y plot, composed of points
noted each time the trajectory crosses the x . 0 s, with, say, Py >0,

¢p, dy = (ny+4)h (5)

one can "quantize" the trajectory, thereby ina.king use of a semiclassical theory
bridging classical and quantum mechanics. 4 The initial conditions of the trajectory,
including the total energy E, are adjusted until the n, and nv determined by (4) and (5)
are integers. The energy eigenv:alues calculated in this wa¥y agree well with the
quantum mechanical eigenvalues.

Related remarks apply to the cases where wy and wy are commengurable. for
example 1:1 or 2:1. 6,7 An example of the 1:1 case is given in Fig. 2. ° One now has
extensive energy exchange between the x and y coordinates, but the motion is still
quasi-periodic rather than statistical: One again has simple patterns in the momentum
versus coordinate plots, and eigenvalues ecan é.gain be calculated reasonably accurately
using curvilinear analogs of Eqgs. (4) and (5). © Indeed, at low energies for these and
other systems, one typically has ghis nonstatistical behavior of the vibrational motion of
the molecules ("KAM"* theorem).

According to the semiclassical theory the vibrational wavefunction should be large
(but oscillatoxl{)lg in the region occupied by the trajectories, e. g., in Figs. 1and 2. Th
expectation was verified by a large basis set variational calculation of the wavefunction

The spectral lines were also calculated from trajectories in this "quasi-periodic"
regime (defined in the standard way as a Fourier transform of the autocorrelation
function of a coordinate) and suitable semiclassical analysis. 8 They yielded a spectrum
i::méx;sed oﬁa few lines, and these agreed well with the quantum mechanically calcu-

ted lines.

At high energies the vibrationally-excited molecule behaves very differently. The
trajectory now tends to occupy all of the energetically-accessible region as in Fig. 3.

Fig. 3. As in Fig. 1 but for a high
energy trajectory (statistical regime).
5.7

The px vs. x plot at y = 0 and the vs. y plot at x = 0 now resemble 2 shotgun pattern”:
and 50 no area can be calculated fof Eq. (4) or (5). Similarly, q;e quantum mechanical
wavefunction tends to occupy the energetically accessible space;’ the classical

569



mechanical spectrum now contains many lines, and the quantum mechanical spectrum
also contains warious lines, uwe{ than those in the classical spectrum but in the
same region as the classical lines.

In the high energy ("statistical") regime each quantum state thus behaves as
though it tries to occupy all of the relevant phase space and 30 a theory such as RRKM
would be valid under such conditions. At low enough conditions the reverse 18 true and
a different, more dynamical approach is required The energy region where the statis-
tcal behavior sets in is given by Chirikov's theory of overlapping internal resonances:10
The system can oscillate between two “modes” in a resonance, and continue to behave in
& ponstiatistical fashion, but when there are many overlapping resonances, it moves
from one mode to many other modes and ultimately, for a sufficient number of over-
lapping resonances, occupies all of the energetically accessible phase space.

An internal resonance results in a slow energy exchange superimposed on the
matural {ast oscillations, and so contributes additional lines, displaced from the main
frequencies by an amount equal to the frequency of this transfer. When there are many
resonances, one would expect, on this basis, to have numerous lines, as observed.
Thus, this cbserved result of Refs. 8 and 11 offers support for Chirikov's theory.
Averaging over many trajectories converts the line classica) spectrum in this statistical
case to a continuous curve.

The f{nnclnaical wavefunction for the quasi-periodic bound state systems can be
written as

v-%hapm (®

where A is determined from § by normalization (the Van Vieck determinant), § is
i(px dx «+ %dy) and the sum b is over all four branches of § corresponding to the four
r:ssible cOmbinations of signs of px and xzx, and is such that the classical variables of

e tra}ectory groduci.ng S correspond to the specified integer values of ny and ny in
Eqgs. (4) and (5). (A fuller discussion is given in Refs. 12, 6, and 7.)

In the statistical regime the semiclassical wavefunction is not yet known, since the
Op:lﬁ'tntegm.s no longer rigorously exist under these conditions. One possibility, a
rather appraximate one, is that § now includes contributions fram all geroth order sets
of integers o consistent with the given epergy E (say, N sets):

Vg & §‘n"n v eyl AR 0

where each ¥, is of the form in (6) and the sum is over all sets of integers n for that E,
within some uncertainty 3E related to the rate of modal energy exchange between the

n'8. Because of the large number of n's contributing, one expects destructive inter-
Jerence of cross-ierms in computing averages with this wa. (This interference would
occur, for example, when there is a random distribution af signs o the ap's subject to
the constraint imposed by orthogonality of the N ¢g's in the (E, E + 8E) range.) The
average of any function { in such a state is then

Wptvp i oy T v, & (8)

whbere dg denotes the volume element in coordinate space. One can show, when the
semiclassical expression for yp in Eq. (6) is introduced, that this average effectively
equals the microcanonical average:

J¥gtp 63  [1dqdp 8(E-B(q, p))/J dgqep 8(E-H) . (®

Here, E 15 the energy efgenvalue of the exact wavefunetion i;, Eq. (9) can be, but has
not yet been, tested by numerical comparison of both sides of the equation for various
's. 8 is the Dirac delta function, ensuring a microanonical average.

Related remarks may apply to the computation of off-diagonal matrix elements
such as those involved in the calculation of spec e. 8., for a spectral line of fre-
guency v = (E' - E)/h, one calculates |[¢3v x¥p dg |°, which would become
ﬂf:m(!-') zYn(E) da*/N(E)N(E’), with T Bver i £hd n, when cross-terms are neglected

ere are fewer linés in the quantum spectrum {n the statistical case than in the clas-
sica) spectrum, 9 perhaps because of the restriction in the former case on the allowed
n's (integers) and not on the latter. Thereby, there are fewer resonances between the
different modes in the quantum case and s0 a smaller pumber of lines.
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In summary, we believe that a quantum state in the statistical regime already
has statistical properties, with the excitation distributed am many geroth-order
modes of vibration, and RR!IM behavior is then anticipated. er calculations will
test this possibility, e.g., via testing Eq. (B). At low enough energies ("quasi-
periodic” regime) 8 quite different, highly nonstatistical behavior prevails.
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