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ABSTRACT A discrepancy is explored regarding the spin
exchange integral estimated from magnetic field effects on re-
combination of the bacteriochlorophyll dimer cation (Bchl)y+
and the bacteriopheophytin anion Bph— and the measured
electron transfer rate between Bph and electronically excited
SBchl)z. In one explanation considered here there are two sites

or the electron or for the hole, with a hopping between sites.

1. INTRODUCTION

A mechanism currently assumed in bacterial photosynthesis
(1-86) involves electron transfer between an electronically ex-
cited bacteriochlorophyll special pair (Bchl)e* and a bacterio-
pheophytin (Bph), followed by electron transfer to an iron-
ubiquinone complex FeQ,

(Bchl)e* + Bph — (Bchl),* + Bph~ (1.1]
Bph~ + FeQ — Bph + FeQ~ [1.2]

and by subsequent steps. Studies of magnetic field effects on
the back reaction (1.3 and 1.4)

(Bchl)e* + Bph~ — (Bchl);*T + Bph (1.3]
(Bchl)e* + Bph~ — (Bchl), + Bph, (1.4]

in which T denotes a triplet state and (Bchl), is the ground state
singlet, have led to an estimate of the spin exchange integral
for the radical pair in [1.1] and, in turn, to the electron transfer
integral for [1.1]. A discrepancy then arises in the calculated
compared to the experimental electron transfer rate. There are
several possible explanations, one of which is explored in the
present paper: Theré are one (Bchl)s, two Behls, and two Bphs
in the reaction center (1-8). We consider a possible hopping of
the electron (or hole) in the (Bchl)o*Bph pair between two
sites.

The triplet yield increases from 10 to 20% at room temper-
ature to 100% at 20 K and is also influenced by an external
magnetic field (7-9). At room temperature it decreases by about
40% to 2 kG, much of the decrease occurring at the relatively
low field of less than 30 G. This magnetic field effect can be
understood in terms of singlet-to-triplet transitions in the radical
pair (Bchl);*Bph~ induced by hyperfine interaction (7-12).
The spin exchange integral J is the splitting of the triplet and
singlet states of the free radical pair (Bchl)o*Bph— and is esti-
mated from magnetic field effects to be, at most, 10~3 cm.
There are several mechanisms that contribute to J (13). Prob-
ably the dominant one is due to a virtual transfer of the electron
from the Bph~ to the empty excited orbital in (Bchl)e*, where
it undergoes a strong intramolecular exchange interaction with

The publication costs of this article were defrayed in part by page
charge payment. This article must therefore be hereby marked “ad-
v}?mfsemem" in accordance with 18 U. S. C. §1734 solely to indicate
this fact,

the hole. The electron transfer integral ¢ for transfer from
(Bchl)o*Bph to (Bchl)y*Bph~ is then related to J by an ex-
pression derived by Anderson (13):

J =26 ]/ (AEP, (1.5)

in which AE is the vertical energy difference of the (Bchl)s*
Bph and (Bphl)s* Bph™ states and [y is the splitting of the
excited singlet and triplet states of (Bchl)e, and is approximately
2500 cm™! (3). The relation [1.5) is similar to one describing
virtual transfer into an already half-occupied orbital (13-16).
‘Taking AE to be of the order of 3000 cm~! and ] <10~3cm™),
€2 is of the order of 2 cm™2, We next introduce this value for €2
into a reaction rate expression. The Fermi Golden Rule ex-
pression (17), applied to the rate constant k for electron transfer
reaction between two fixed sites, is

2me?

k== 2 [y l¥ |%pid(Ey - o), [1.6]

in which the overlap integral was factored into an electronic
part € and a vibrational part (Ys|y;) by using the Condon
approximation. Eq. 1.6 assumes a continuous distribution of
final vibrational states f; p; is the probability of finding the
reactants in an initial vibrational state {.
Eq. 1.6 can also be written as
2mwe 1

k =T'6—E§ 1l i) | 20,

in which the sum over f is over all states f whose energy Ej lies
in the interval (Ey, Ef + OE).

If one considers a range of 6E = 200 cm™! (a typical relevant
vibration frequencys, so that at least one state f is in 5E) and
considers, as a maximum, ; to have an overlap of unity with
some final vibrational state f and zero with the others, then from
Eq. 1.6,

[1.6a)

2
ks=———. (1.7}

This k, with €2 replaced by 2 em™2, is calculated thereby to be
less than or of the order of 1019 sec™!, as compared with the
experimental value equal to or exceeding 2 X 101! sec™! (19)
for reaction 1.1.9 Other models yield analogous results. For
example, in a system having all vibration frequencies equal and
at low enough temperatures that there is only one initial vi-
brational state 1, the ground state, Eq. 1.8 yields (22-24)

k = (2we2/h)(1/hv) exp(—a)a?/p), (1.8]

Abbreviations: Behl, bacteriochlorophyll; Bph, bacteriopheophytin.
¢ This frequency was used (18) to model the behavior of the rate con-
stant of a (Bchl)o-cytochrome ¢ reaction becoming temperature
independent at low temperatures.
*d For subtleties of interpretation of the experimental data see refs.
19-21.
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in which a is related to a reduced displacement of the two po-
tential energy surfaces of the reaction (it is A/hv, using the
symbol X of refs. 24 and 25) and p is a reduced “exothermicity”
—A/hv (—A is the standard free energy of reaction). The factor
multiplying 27e2/h hv is less than unity since the sum of a?/p!
over all integers p (0 to =) is exp(a). Thus, the discrepancy is
even greater than given by [1.7].

Ancther model for Eq. 1.6 is the semiclassical model (26, 27);
there, 8(E; — Ej) is inserted in the integral (¥s|¥s) and re-
placed by §(V, — V,), V, and V,, being the potential energy
functions of the reactants and products, respectively, and
harmonic oscillator wave functions are used for the ys. For the
case of equal frequencies, one obtains (18)

_ exp[—(A + A)2/2Mhv coth ]
k = (2we?/h)(1/hv) [2ma coth 7]1/2

in which ¥ = hv/2kT. Once again, the factor multiplying
2me2/hhv is less than unity, at room temperature, for values of
a for which Eq. 1.9 is valid. The same conclusion follows when
the classical limit of Eq. 1.9 (hv/2kT <« 1) is used.®

Similar remarks apply to a more general expression obtained
from Eq. 1.8, in which both ¥, and Y5 are written as harmonic
oscillator wave functions, yielding (22, 23, 28)

k = (2we2/h)(1/hv)Ip(a/sinh v) exp (— % —a coth 'y),

(1.9]

(1.10]

in which I, is the modified Bessel function. A summation of
Ip(a/sinh ) exp(~A/2kT — a coth ) over p from — to © is
unity.f Because each term of the sum is positive, the coefficient
of (2me2/h)(1/hv) in Eq. 1.10 must be less than unity.

One possible explanation of the discrepancy between these
calculated and observed values of the k of 1.1 is that the electron
in Bph~ or the hole in (Bchl),* reside on several sites, such that
there is one pair of adjacent sites that has a large exchange in-
tegral for the Bph——(Bchl),* interaction and more remote sites
that have a very small exchange integral for Bph~™(Bchl)s*.
When the system exists with the hole and electron pair so sep-
arated, we shall call this the “distant state”; it can experience
magnetic field effects even at low magnetic field strengths
whereas, when the adjacent pair of sites is occupied, which we
will term the “close state,” the system can undergo the electron
transfer in [1.1], (1.3), and [1.4]. The two-state explanation is
. explored in the next section.

2. THEORY

We consider a spin Hamiltonian H of a pair of radicals having
an electron 1 on radical 1 and a hole 2 on radical 2 in an external
magnetic field # (30, 31)

H=Hp+ J(R)S; - Sq, (2.1]
in which
Hp=gBH - (Si+S2)+ 51 2; AL 4+ ST ApIn®@.
m
(2.2]

Here, g is the g-factor for a radical, assumed to be the same for
each radical (Bchl)e* and Bph™ for notational simplicity, 8 is
the Bohr magneton, §; is the electron (hole) spin vector of the
ith radical (i = 1,2), and A; is the hyperfine interaction constant
for interaction of the electron (hole) with the /th nucleus of spin

¢ One uses equation 25 of ref.24.

{E.g., one uses equations 10, 25, and 35 of pp. 5-9 of ref. 20 and a.,

suitable change of variable.
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L on the radical i on which that electron (hole) resides (i =
1,2). To simplify the notation, the spin dipolar interaction of
the electron with the hole and of each with the nuclei have been
neglected in Eqgs. 2.1 and 2.2. The second term in Eq. 2.1 is the
Heisenberg spin exchange interaction. It depends markedly on
the distance R between the radicals. The first term in Eq. 2.2
is the Zeeman energy, and the other two terms represent the
magnetic hyperfine interactions.

We consider for brevity a two-state model. In one state C
(“close”), the electron and the hole are on radicals adjacent to
each other and have a large value of J of J(R). In state D
(“distant™), they are on a pair of sites further apart and have
J(R) = 0. For example, state C may be (Bchl)s* plus adjacent
Bph~ (or adjacent Bchl™), and state D may be (Bchl)et plus
distant Bph~. In the former case the mechanism of [1.1] now
is

(Bchl)g* + Bph — [(Bchl)e* + Bph~c {2.3]
[(Bchl)gt + Bph~]c = [(Bchl)e* + Bph~lp (2.4]

i.e., the formation of state C is followed by a hopping motion
of the electron on Bph~ to sites that are no longer adjacent. Or,
one may have (Bchl)g* + Bchl — [(Behl)g* + Behl™]c, which
transfers an electron to Bph to yield [(Bchl)e* + Bph~]p. Similar
remarks would apply to the mechanism of [1.3] and [1.4].

To simplify the discussion, we shall suppose that in state C
the spin-exchange interaction J§)-S; is the dominant term in
Eq. 2.1; i.e., the spin-Hamiltonian is then Hc,

Hc=]S;- S [2.5)

We shall assume that in state D the term Hp given by Eq. 2.2
contains the significant contributions to the spin-Hamiltonian;
i.e., that J(R) is negligible in state D.8

We introduce rate constants ks and kr for reactions {1.3] and
[1.4] when the radical pair is in state C, and zero otherwise. The
hopping rate constant for C — D will be written as kc, and for
D — C as kp. If the distribution among the sites is statistical,
then kc/kp would be about 1 when there is one site for C and
one for D.

The population of spins in states C and D can be described
quantum mechanically by time-dependent quantum me-
chanical density operators pc and pp. Their equations of motion
are familiar from the theory of chemical exchange in spin res-
onance (32, 33) and are given by (setting £ = 1 in the fol-
lowing)

dpp .

& —i[Hp,pp] — kppp + kcpc (2.6]

"%"tg = —i[Hc,nc) — kcpc + kppp — ksPSpcPS
— kyPTocPT — ko(PTpcPS + PSpcPT), [2.7)

in which PS is the projection operator onto the singlet manifold
for the radical pair. PT is the corresponding operator onto the
triplet manifold, so that the trace (tr) of PSpcPS and of PTpcPT
denotes the probability of the radical pair in state C being in
a singlet state and in a triplet state, respectively. pp has a similar
property for state D. Thereby, the trace of the ksPSpcPS term
in Eq. 2.7 represents the rate of formation of a singlet state of
[(Behl)z + Bph), and kt tr (PTpcPT) is the corresponding rate
of formation of the triplet state [(Bchl)a*T + Bph]. The last term
in Eq. 2.7 accounts for the disappearance of the off-diagonal

& The explicit form of Hp is not used in the derivation that follows.
Even if, instead of hyperfine terms, some other interaction would
induce the singlet-triplet transitions, the conclusions would not be
changed.
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element of the pc operator (in a singlet-triplet representation).
ks is equal to or greater than its minimum value % (ks + k)
(34), and exceeds the latter when spin-dephasing interactions
can occur.

We consider a reaction center illuminated by a pulse of light,
as in the usual experiments. A reaction that absorbs a photon
produces a final yield ¢ of triplet states per photon, obtained
by an integration

or=kr ‘j; " t(PTpc(t)PT)dt = kr a(PTHCPT), [2.8]
where pc denotes

po= [ " pclesat. [2.9]

Similar remarks apply to ¢s, which equals thereby ks tr
(PSpcP9).

Equations for pc and pp can be obtained by integrating Egs.
2.6 and 2.7 from ¢ = 0 to ¢ = ». The resulting equations are
treated in the Appendix, by using methods (35, 36) originally
developed in the theory of electron spin resonance line broad-
ening due to Heisenberg spin exchange (35). They are shown
in the Appendix to be equivalent to the equation for the p
arising from the solution of the following one-state equation
containing effective constants Jeff, ks*ff, kreff, and koeft;

%% = —f[ Heft, p] — kst PSpPS — kyeft PTpPT

— ko*ff(PTpPS + PSpPT) [2.10)

Here, He!!is given by the sum of Hp in Eq. 2.2 and Hcin Eq.
2.(5, ;vith the As and ] replaced by Acffs and Jeff, p equals f§
p(t)de.

The relation of these effective constants to the actual ones
in Eqgs. 2.6 and 2.7 is shown in the Appendix to be given by Eqs.
2.11-2.14 for a set of initial conditions appropriate for an initial
electron transfer [1.1] to the close site:

ksetf = kgkp/(kc + ks) (2.11]
kretf = ktkp/(kc + k) {2.12]
Jot = Jkckp/[J? + (kc + k2)?) [2.13]

kett = kplJ2 + ka(kc + ko)l/1J2 + (ke + ko)?). [2.14]

Expressed in terms of these effective quantities, the triplet
yield is given by

¢t = kreffitr(PToPT). (2.15]

If the effective one-state model described by Egs. 2.10-2.14 is
fitted to experimental data and if the effective parameter Jeft
was interpreted as the real one, a discrepancy in the value of
k calculated from [1.5)-(1.7] could result. Let us suppose that
1/2 (ks + k1) is of the order of 108 sec™! (corresponding to a life
timehof the order of 10 nsec) and that k¢ and kg are smaller than
J. Then

Jt = Jke/ I)ko/]). [2.16]

Thus, if the geometric mean (kckp)!/2 of the hopping rate
constants is about 10° sec™! and if ] is about 1 cm™! (i.e., about
3 X 10" sec™1), Jeff is about 10~3 cm™1. Accordingly, the small
observed value of J¢ff (<10~3 cm™1) can be consistent with a
much larger J for spin exchange between adjacent sites. A J of
1 em~! and the values of Jin, AE, and hv cited after Eq. 1.5
would correspond to an €2 of about 2000 cn~2 and to a maxi-
mun: rate constant of [1.1] of 10'3 sec™! instead of 10!
sec™ L,
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DISCUSSION

The latter equations of Section 2 admit the following inter-
pretation. The k¢t in Eq. 2.11 equals the rate constant for the
formation of S from D in the sequence,

k k
D—=C-S, (3.1)
kc

in which a steady-state assumption is used for C. This ks*ff then
equals kp when D — C is the slow step and equals ks times an
equilibrium constant (kp/kc) for the ratio C/D when C —§
is the slow step. Similar remarks apply to Eq. 2.12. Eq. 2.16 for
Jeft has a certain analogy to a linewidth result in magnetic
resonance for a spin hopping (rate constant k) between two sites
differing in energy by A (35, 37). In the limit of a slow hopping
rate (k < A) between two sites there are two distinct resonance
lines in an electron spin resonance spectrum. If one observes one
of them, the result of the hopping motion results in (1) a line shift
k2/A, which is analogous to the kckp/J, and (if) a lifetime
broadening of the electron spin resonance line proportional to
k. In our system the analog to two resonance lines is the sin-
glet-triplet splitting in state C (= J) and that in state D (= 0)
and the fact that the hopping motion causes each of the split-
tings to broaden a little, and to be shifted, by an amount that
changes the effective Jp from 0 to kckp/J.

We have seen above that the formal equations for the density
operator yield the same final expressions for the triplet yield,
regardless of whether there are two states, C and D, or only one
state, but that the meaning of the coefficients differs in the two
cases. The transient behavior on the other hand cannot be
identical. In one case one has, in fact, a single first-order dif-
ferential equation for the density operator while in the other
case one has two first-order equations which can be combined
to yield a second equation for p¢ or pp. In principle, thereby,
the transient behavior might serve ultimately to distinguish the
postulated two-state behavior from the behavior of a single
state.

The assumption that electron transfer between (Bchl); and
Bph proceeds by two steps is supported by recent results (38-40)
on photosynthetic reaction centers and is also reminiscent of
a hopping mechanism in a quite different system (41).

APPENDIX

Integration of the one-state equation, Eq. 2.10, from ¢t = 0 to
t = o, with initial condition p(t = 0) = p9, yields
- pO - -i[ Heﬁ’m —_ kseff PSb‘pS - k,l.eff PT[_)PT

ko=t (PTHPS + PSpPT). [A.1]
We show that Egs. 2.6 and 2.7 can be made to yield an equation
of the above form for p, and comparison of that result with Eq.
A-1 then yields equations for the quantities ks¢ff, kyff, Acff, Jeff,
and ko°ff,

Egs. 2.6 and 2.7 are integrated from ¢t = 0 to «, for simplicity
with initial conditions pc(t = 0) = pc®and pp(t = 0) =0 (i.e.,
it is supposed that the electron is first transferred to the close
site). One obtains

0 = —i[Hp,pp] — kppp + kcpc - [A.2]
=pc? = —i[Hc,pc] — kcpc + kppp — ksPSpcPS
— krPTpcPT — ky(PSpcPT + PTpcPS). (A3
Eq. A.3 can be written as an operator ® acting on pc, plus
kppp
—pc = —Rpc + kppp, [Ad]
in which comparison of Egs. A.3 and A.4 defines R. Thus, pc
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equals R~ Y(kppp + pcP). Introducing this result into Eq. A.2
we have

~kcR~'pc® = —i[Hp,pp) — kppp + kckp R ~'pp. [A.5]

To show that this equation is equivalent to Eq. A.l we introduce
an ansatz for ! and determine the coefficients in the result.
Namely, we set (35, 36)

~kp(l = k¢R~)pp = —i[HEY,pp] —ks*'PSppPS
— ky*fPTHpPT —koH(PTHPS + PSppPT), [A.6)

in which I is the identity operator, H is an effective Heisen-
berg spin exchange operator as in Eq. 2.5 with J replaced by
Jet, The Heft in Eq. 2.10 equals Hp + He, Therefore, as a first
result, A = A;. One then operates on both sides of Eq. A.8 b
R (defined via Egs. A.3 and A.4), obtaining the coefficients Jei,
ks*tt, etc., using the properties of PS and PT (=1 — PS);

(pS)z = ps, (pT)z = pT‘ PSPT = PTpS =, [A.7]

and

51'32=PT—%I. [A.8]
Eq. A.8 is obtained by noting that PT = 1, §2 (as can be verified
by its action on a triplet state where S = 1 and on a singlet state
where S = 0) and that §2 = (S; + S2)2 = §)2 + S22 + 2(8)-85).
However, §)2 = S,2 = 3/4 1, and so Eq. A.8 follows. The radical
pair is created in a singlet state; thus pc® = PS/tr PS. The left-
hand side of Eq. A.5 is then readily evaluated, by using ™! as
defined in Eq. A.8, and yields p° = [kc/(kc + ks)loc®. The ratio
of the rate constants arises from the competition of rates in-
volving kc and ks in [3.1]. The ratio affects the absolute value
of ¢t but not its relative dependence on H.
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