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A method is devised to calculate eigenvalues semiclassically for an anharmonic system whose two
unperturbed modes are 2:1 degenerate. For some special states the periodic energy exchange between
unperturbed modes is found to be very large. The quantum mechanical wave functions are examined and a
correlation with the classical trajectories is described, both for quasiperiodic and the stochastic cases. A
method used in the literature for calculating the stochastic limit is tested and found to break down when

the present anharmonic system is separable.

I. INTRODUCTION

The phenomenon of Fermi resonance! is a well-known
example of resonant coupling between two degrees of
freedom in a molecular system, occurring when two os-
cillators have a frequency ratio of 2:1. For example,
in CO, one stretching frequency of 1337 cm™ is almost
twice the bending frequency of 667 cm™. A dynamic in-
teraction causes a splitting of the degeneracy, yielding
instead of a 1337 cm™ Raman line, two lines, one at
1388 cm™ and the other at 1286 cm™., Fermi resonances
algo oceur in many other molecules. .

- In earlier papers of the present series, eigenvalues
were calculated semiclassically using the classical tra-
jectories of systems of two oscillators for both nonde-
generate’™* and 1: 1 degenerate systems.® Good agree-
ment was found with the quantum results, Other semi-
clagsical methods have also recently been developed,
although only surface of section methods have been ap-
plied to systems with zeroth order degeneracy, &®

The 1:1 degenerate case has an element not present
in the nondegenerate one, namely the existence of two
types of quasiperiodic trajectories —librating and pre-
cessing, and a transition between them.® The change in
caustic structure during this transition involved the
coalescence of some caustics and the formation of new
ones. This change was examined in some detail in or-
der to understand the nature of the semiclassical quan-
_tum conditions for such systems.®

The present degenerate case for w :w,=2:1 is seen
below to have three types of trajectories, one serving
as a transitional type between the other two. The semi-
classical formalism is developed in the present paper to
treat the three types, and the eigenvalues are calculated
and compared with the quantum ones,

The specific form of the Hamiltonian employed is the
same as in previous papers of this series:
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© term sin27(w, - 2w,) is a “secular” perturbation, '
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(1.1)

where w, and w, were incommensurate in Refs, 38 and 4,
1:1 in Ref. 5, and 2:1 in the present paper. The case
where w,:w,=1:2 is also described here.

H=3p} + 9} +0ix® +0}y?) +Maly? - as?) ,

Il. UNPERTURBED SYSTEM AND QUANTIZATION
The unperturbed Hamiltonian is
Hy=3(p} + 0} + wis® +wly?) . @.1)

When w, and w, are incommensurate, the single tra-
jectory for (2.1) with given action variables' (J,,J,)
sweeps out a region covered by a rectangular box (ef.
Fig. 1, Ref. 2). Small perturbations of such a system
led only to small distortions of the box (cf. Fig. 1, Ref.
4.

Whén resonances arise, namely when - )
(2.2)

where n, and n, are small positive integers, a major
distortion of the region swept out can occur, e.g., as
in the case of a 1:1 resonance for the case @ =1/3, 8
where the region swept out by a perturbed precessing
trajectory became an annulus instead of a box. Polar
coordinates and their related action variables were used
in discussing the behavior and making a semiclassical
quantization.® The unperturbed Hamiltonian (2.1) was
separable in Cartesian coordinates and, when w,=w,,
also in polar coordinates.

When w,/w, equals 2 or 1/2, the unperturbed Hamil-
tonain (3. 1) is gseparable both in Cartesian and parabolic
coordinates. Each unperturbed trajectory is a closed
figure-eight. An ensemble of them for given values of
the Cartesian action variables (J,, J,) fills up a rectangu-
lar box in (x, y) space, The perturbed Hamiltonian (1,1)
contains terms such as sin2x(w, + Zw,), sin2a(w, - 2w,),
and sin2mw, (Appendix A). (The w’s are angle variations
cpnjugate to J, and J,.) When w =2w,, the perturbation
The

Wy = yWy, =0,
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shape of the region swept out Is thereby very different
from a box, and will be seen from figures given later ,
to be a parabolic-shaped region. Thus, to quantize such
trajectories semiclassically we consider instead the re-
sults of initial separation of variables in (2. 1) in para-
bolic coordinates, £ and . In contrast, the w,=2w,
unperturbed system is also separable in parabolic coor-
dinates, but now the sin2u(iw, — 2w,) does not act as a
secular perturbation for this system, and for this sys-
tem a perturbed trajectory sweeps out a boxlike region
instead of a parabolic one. In resonances other than
1:1, secular terms are at least sometimes needed for
the perturbed trajectory (when polynomials are the per-
turbation) to cover a region in (x, v) space other than a
box-shaped one,

In terms of the parabolic coordinates £ and 5 the
Cartesian coordinates x and y are given by?

x=(-9%)/2, y=¢n, (2.3)
and the unperturbed Hamillonian (2. 1) is given by (2. 4)
upon getting w,:;z and w,=1,

Ho=(p} +p3+ £5+n°)/2(87 + 1) . (2.4)

To obtain the Hamilton-Jacobi equatioh corresponding
to (2.4), p, and p, are replaced by 8S/8t and 85/9n, re-
spectively, where S is a function to be determined, and

H, is set equal to E. A separation of variables is intro-
duced by setting

S(&, 1) =5(8) +S,(n) . (2.5)
One obtains, after rearranging the terms,

jeo-2t%e jn° -2
-C c
K
g / n
-K
\/b

K>0

FIG. 1. Plots of un effective potential £° - 20°E [cf, Eq. (2 7))
and of n° - 27°E [ef. Eq. (2.8)] for the case K >0. p,2 and pgt
and given by Egs. (2. 7) and (2. 8).

8 2
 °-2¢% |7 ~2nE
-C c
-K
¢ 7
K
a b
K<O

FIG. 2. Plots similar to Fig. 2 but for K <0.

(dSy/dE) + £° - 282E = - [(dS,/dn)® + 1 - 29°E] , (2.6)

noting thereby that both sides of (2. 6) are independent
of £ and n and so can be get equal to some constant K,
One obtains ’

pi+E° -2E=K (2.7
Pyt -2’E=-K , (2.8)

In Fig. 1 for K> 0 are given plots of £° - 2¢%E versus
t and % -2n%E versus 7. In this coordinate system the
transformalion is not 1:1 if the gigns of both £ and 5
are unrestricted, For K>0, we wish ¢ to have positive
and negative signs (to cover the full ¢ path for evaluating
¢ phase integrals in Fig. 1 and in Fig. 3 below) and so
restrict 7 to positive values in the second plot in Fig, 1.
For K<0, to have i both positive and negative, ¢ is re-
stricted in the second plot in Fig. 2 to positive values.
(The case of K=0 is treated later.) The action vari-
ables J, and J, are functions of X and E via the phase—
integral expressions:

Jo= f pAEVIE , Jo= f pmden (2.9)

where p, and p, are given by (2. 7)—(2.8), and the inte-
grals are over one cycle of ¢ motion and of n motion,
respactively. The above “‘change” in coordinate system,
i.e., setting >0 and —~<f<= when K>0 and —=<q
<= and £ >0 when K<0, has no effect on the quantiza-
tion, which depends only on the topological properties

of the {rajectories, of the regions swept out, and of their
caustics. The phase integral §{(p dx 4 p,dy) along any
path is invariant to any canonical transformation.

When K> 0, as in Figs. 1 and later in 3, the integral
for J, is the cyclic integral over ¢t between - ¢ and c; the
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FIG. 3. Family of trajectories for the unperturbed problem

with K > 0 {(ef. Fig. 1). Along the curve of 1j = constant £ varies
from a turning point at £ =—c to one at £ =+¢. Along the y axis
£ is constant (=0) and n varies from a to . Along the caustic
passing through n =a, £ equals a, and along the one passing
through n=4, % equals 4. In one trajectory the figure-eight has
degenerated with a simple arc.

integral for J, in (2.9) equals the cyelic integral over 7
between ¢ and b in Figs. 1 and 3. When K- 0, as in
Figs. 2 and later in 4, JJ, is the cyclic ¢ integral be-
tween @ and b there, and ./, is the cyelic n integral be-
tween - ¢ and ¢. There is thus a discontinuity in the

values of J/, and J, when K passes through the value zero,

Each frajectory in the unperturbed w = 2w, resonant
system is a closed curve, a distorted (igure-eight, All
trajectories in this unperturbed case are closed because
of the commensurability of the unperturbed {requencies.
We consider first an ensemble of unperturbed trajec-

()

FIG. 4. Family of trajectories for the unperturbed problem
with K >0 (el. Fig. 2). In Flg. 3, the legend with & and n are
interchinged.

Noid, Koszykowski, and Marcus: Bound states in multidimensional systems

X
FIG. 5. Family of trajectories for which K =0 for the unper-
turbed problem.

tories, each of which has the same J, and the same J,
and hence the same K and E, but differs in the other ini-
tial constants and hence differs in initial phase. With
this ensemble one obtains figures such as Fig. 3 for K
>0, Fig. 4 for K< 0, and Fig, 5 for K=0." In any one
figure each closed figure-eight curve within a family is
a single trajectory.

The quantization conditions are obtained as follows:
Consider first a path along a single figure-eight trajec-
tory in Figs, 3 to 5. [n each of the cases K> 0 and K< 0,
a trajectory touches a caustic six times during one fig-
ure-eight cycle, There ig a semiclassical phase loss of
72 each time the trajectory touches a caustic. ' .J, the
phase integral [, ,(p dx = p, dv) along the closed tra-
jectory, minus this phase loss of 37, must equal 27,
where n an integer, in order that the semiclassical wave
function be single valued. Thus, -/ is given by

J= f (pedy +p,dy)=2u(n+ 1),

traj

(2,10

where #=0,1,2,... . This quantization condition also
applies to the figure-eight cycle when K =0: Here, the
trajectory touches the caustics in Fig, 5 four times,
with a resulting phase loss of 27, and passes through a
focus once, with an additional phase loss' of 7. One
thus again obtains (2,10). Using Cartesian coordinates
one can readily show thal £ depends only on » in the un-
perturbed case and thal the degeneracy of the unper-
turbed system for any » is (n/2) +1 or (n +1)/2, accord-
ing as n is even or odd, respectively (Appendix A).

Because of an invariance of ¥, p;dq, to a canonical
transformation, the J in (2.10) is also given by

o = (prodt + poan) . (2.11)

traj

evaluated over one cycle of the figure-eight trajectory.

In addition to (2, 10) a second quantization condition is
needed. As in previous papers, *® Poincaré surface of
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FIG. 6. The two independent path integrals for the unperturbed
problem, for K>0, are evaluated along the cited paths.

sections are introduced, curvilinear in the present case,
one of constant 77 and one of constant £. On a n=con-
stant surface of section the integration path is indicated
by the curve C, in Fig. 6 for X>0, Along this path the
phase change in a semiclassical wave function is J,

_ minus 7, since the phase loss at each of the two turning
points is /2. The net phase change must equal, for
single valuedness of the semiclassical wave function,
27n,, where n, is an integer. Thus,

d, =fp¢d§ =2m(n, + 1) (i>0,n=constant), (2.12)

where n,=0,1,2,... . Similarly, when K>0, the quan-
tization condition for the 7 motion along a £ =constant
path C, in Fig. 6 is

J,,=fp,,dn=21r(n,,+%) (K>0, t=constant) , (2.13)

where 2,=0,1,2,... . Because there are two 7 cycles
and one £ cycle in a figure-eight trajectory in Fig. 6,
the # in (2. 10)—(2. 11) can also be written as

n=2n,+n, (K>0). (2.14)

When K<0, the quantization condition is similarly de-
rived, using Figs. 4 and 7 instead of Figs. 3 and 6. One
obtains’

= 5{ pedt=27(n +%) (K<0,n=constant)  (2.15)
Jy= f poan=2uln,+%) (K<0,&=constant) (2.16)
n=2h,+n, (K<0). (2.17)
In the case of K =0 (Fig. 5), we have, by symmetry
Jy=d, (K=0) (2.18)

as the quantization condition, where J, is defined as the
$ p,dt integral between —c and ¢ in Fig. 1 with K =0,
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and J, is the § p,dn integral between -c and c in Fig. 2
with K=0.

Equations (2.10)—(2. 18) will be used to quantize the
system. In the unperturbed system the energy depends
only on n. To characterize the states it will be useful
to use the principal quantum number 2 and a quantum
number ! defined as follows:

l=n,+1=(J/2n) +3 i K>0, (2.19a)
==(n+1)=-(,/2m -3 ifK<0, (2.19b)
=0 {K=0. (2.19¢)

The degeneracy is, we recall, (n/2)+1 when z is even
and (n +1)/2 when n is odd. For any n, positive and
negative values of I occur in pairs, and so the unpaired
state =0 occurs only when the degeneracy is odd. The
degeneracy is odd when n is an integer of the type 4N or
aN+1(N=0,1,2,...).

11l. PERTURBED SYSTEM AND QUANTIZATION

In the perturbed system, a single trajectory sweeps
out a region similar to that swept out by an ensemble of
unperturbed trajectories in Figs. 3, 4, or 5. Examples
are given in Figs. 8-10. When perturbed, a figure-
eight trajectory of the type in Fig. 5 undergoes a
“preathing” motion maintaining the focus near the origin,
and so covers a region of shape similar to that of the
ensemble of trajectories in Fig. 5, as in Fig. 10.

The quantum conditions in Sec. II apply to the per-
turbed case, as well as to the unperturbed one, witha
modification of terminology: The constant K was a sepa-
ration constant and so no longer describes the perturbed
system. However, the cases of K>0, K< 0, and K=0
correspond to trajectory regions shaped as in Figs. 3,

4, and 5, respectively, and we shall continue to use this
K terminology to describe similarly shaped figures for
the perturbed system.

Yo

_FIG. 7. The two independent path integrals for the unperturbed
problem, for K <0, are evaluated along the cited paths.
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el L7 S FIG. 10. A K =0 trajectory {or the Hamiltonian (1.1}, with w,
=1.4, w,=0.7, A==0,08, @ =0.08, E=3.150, p,=v2E .
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single trajectory, a librating figure-eight trajectory,
FIG. #. A K >0 trajectory for the Hamiltonian (1, 1) with w,.= 1.4, whereas Fig. 3 was described by a family of trajecto-
wek0. T, A=e0, 08, o 90, 08, E =4.265; xo=0.034. ries. A curvilinear surface of section at a given 5, cor-
responding to the C, path which cuts the same two caus-
tice as Fig. 6, yields a p, vs £ of the form in Fig. 11.

To treat trajectories of the type in Figs. 3 and 4 J, can be calculated from the area of the p, vs £ curve,
(i.e.., K>0 and K<0), we introduce curvilinear sur- using (2. 9).
fac;e.?hol' St;e‘ctior;, as ltn Re:. 3 but now one ;)f constant 7; Similarly, a plot of p, vs 7 for a curve of constant ¢
= elptiier of tons anil £, 5 Anexamipie of & perturbe can be obtained corresponding to any path equivalent to

trajectory of the type which generaies a pattern similar C,in Fig. 6. Here, the value of the phase integral J,

to Fig. 3 is given in Fig. 8. Figure 8 is described by a along any C, in Fig. 6 equals that of the phase integral
f podx along a v =0 Cartesian surface of section. ' A
plot of p, vs v is given in Fig. 12. Equation (2. 13) be-

6 l . : comes
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4 ‘} e
L 4 & 5
: R i
2 1{ i
| 2
b i A -
P{ ok R
-2 1 :
e 3 -
| o : ;
-4 .]
| . :
3 PR i
_6 T ERPrrTy T 1 Fa ". "‘I'
e
=0 i (6] ! 2 i | | fva] | Pl
X -4 =g 0 2 G
FIG. 8. A K <0 trajectory for the Hamiltonian (1,1}, one with ¢
a cusplike caustie, with w =1.4, w,=0.7, A=-0.08, o =0.08, PIG. 11. The » =1.7 surface of section for the trajectory in

E =31,50, X,=0.065. Fig. 8.
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FIG. 12. The y =0 surface of section for the trajectory in
Fig. 8.

fp,a:.r,,-_-zﬂ(n,ﬁé) ) (3.1)
The quantum conditions actually imposed on a trajectory
of the type in Fig. 8 were Eqs. (3.1) and (2.12). How-
ever, sometimes it was convenient (because of spacing
of points) to use (2. 13) instead of (3.1). Any of these
conditions could have been equally well replaced by Eq.
(2.10), utilizing the “close trajectory” method of Ref. 5.
Once n, and n,, and hence n, is obtained I is calculated
using (2.19a). Similar remarks apply to trajectories
for the type similar to Fig. 4, but with the roles of £ and
n reversed. Numerical calculations verified that the
value of J, obtained from (3.1) was the same as that ob-
tained from (2. 13) using Poincaré surfaces of section of
constant ¢ along other values of ¢ =constant, as indeed
it should be.

To use the quantum conditions of Sec. II for trajecto-
ries of the type in Fig. 5 we employ Eqs. (2.10) and
(2.18). To a high degree of approximation the trajec-
tory closes itself at the focus or at a “near focus, ” after
each single figure-eight cycle as in Fig. 10. This K=0
case arises only for n=4N and n=4N+1, as discussed '
in Sec. O. The actual integration of (2. 10) was done by

TABLE 1. Eigenvalues for the case
where w,=2w, in the Hamiltonian (1.1).°

State

("'l) Eo Ewm Eumi
(0,0) 1.050 1,048 1,050
1,0 1.750 1.739 1.750
@,+1) 2.450  2.384 2,388
2,-1) 2,450 2,485 2,476
3,+1) 3.150 3.028 3.028
3,-1) 3.150 3.204 3. 207
(4,+1)  3.850 3.653 3.654
(4,00 ° 3.850 3.825 3.840
(4,-1) 3.850 3.945 3.941
(5,+1) 4,550 4.265 4,265
(5,0) 4.550 4.490 4. 650
6,-1 4.550 4.682 4.682

2w,=1.4, 0,=0.7, A=~0.08, a =0.08.
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TABLE 1. Eigenvalues for the case
where w,=2w, in the Hamiltenlan (1.1).*

State

(”rl) Eo Eqmm Euml
(0,0 1.050 1.050  1.050
(1,0) 1,750  1.747 1.750
2,+1) 2.450  2.442 2.421
2,-1) 2.450 2.471 2,467
3,+1) 3.150 - 3,100 3.099
3,-1) 3.150  3.184 3.185
(4,+1) 3.850  3.769 3.769
(4,0 3.850  3.844 3.850
(¢,-1) 3.850  3.906 3.908
(5,+1) 4.560 4.434 4.434
(5,0 4.550  4.536 4.549
(5, 1) 4,550  4.631 4.630
{6,+2) 5.250 . 5.0085 5.093
6,+1) 5.250  5.204 5,205
6,-1) 5.250  5.268 5.261
6,-2) 5.250 5,358 5.358

dwe=1.4, 0,=0.7, A=—0.04, a =0.04.

introducing an additional differential equation [Eq. (3.2)]
and integrating the latter along the trajectory
. .
J= fo (boi+0,3)dt , (3.2)
where T is the time for the trajectory to undergo the
cycle in the close trajectory method of Ref. 5.

Systems with negaiive { had trajectory-covered re-
gions similar to Fig. 4, those with positive ! similar to
Fig. 3 and those with /=0 similar to Fig. 5.

In the case of trajectories sweeping out regions simi-
lar to that in Fig. 4, cusps were sometimes obtained
near the y axis, as in Fig. 9, but caused no difficulty
and no need to alter the foregoing procedure.

IV. RESULTS
A. Eigenvalues

The initial conditions for a trajectory involved the
specitication of E, the initial x, x,, and the setting of the
initial p,=y =0; the initial 1p,| was then chosen to yield
the specified energy E. For any trajectory it was al-
ways possible to choose p_=0 and y=0, since such a
choice corresponds to an end-point of the x motion in the
Poincaré surface of section y=0. The surface of sec-
tion data was obtained from a trajectory using a linear
interpolation on both sides of the surface. '?

In the case of the transitional type trajectory, the K
=0 trajectory (e.g., Fig. 10), the system spends a lot
of time on or near the y axis. Accordingly, such tra-
jectories were readily generated by choosing xo=y,=0
and making the p, very close to zero; p, was then chosen
to yield the specified energy. For the reason discussed
earlier, such trajectories were sought only for n=4N
and n=4N+1, N=0,1,2,.... The results for the 1:2
resonance are tabulated in Tables I and II, which give

. J. Chem. Phys., Vol. 71,'No. 7, 1 October 1979
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TABLE I,

where @, =4 w

Eigenvalues for the case
in the Hamiltonian (1, 1), %

b e B
State
0 3 .

(”"")" ES £ GUAD T t‘n—ml
1“-,1;— 1. 050 1 045 I 048
1,0 L. 750 1544 1. 744
2.0 2,450 24839 <. 4439
0.1 2,450 2. 439 2,438
3,0 3. 150 3. 130 3, 130
| B | 8 B Jd. 135 3. 132

=1.4, A==0.053, a=0.058,

the guantum numbers n and /, the unperturbed energy
Ey, the quantum mechanical energy and the seniclassi-
cal value. The semiclassical eigenvalues are linear in-
terpolations of three trajectories which had %, and "y
values which were close to the desired integers,

The quantum mechanical caleulations required a
larger Cartesian basis set than that used in the pre-
vious™® systems: Usually 49 elements sufficed pre-
viously, but now 64 and even 100 were needed. For ex-
ample, one eigenvalue calculated was 4, 282 with a basis
set of 49 elements, It changed to 4, 265 for 84 elements
and remained the same for 100 elements. A basis set
based on separation in parabolic coordinates would be
useful, if the matrix elements could be evaluated analyvt-
ically.

Some trajectories were also obtained for the w,=2w
case, They were boxlike rather than paraboliclike,
Their treatment is the same as that for the boxlike tra-
jectories in Rel. 4. In the quantum mechanical caleula.
tions a basis sel of 40 elements sufficed, Resulls for
this 2:1 resonance are given in Table [1I.

X

B. Quantum mechanical wave functions

For [urther comparison of the classical and quantum
behavior, wave functions were computed from the varia-
tional caleulations, and the features were compared with
the regions swepl out bv the revelant trajectories.. Cal-
culations were made for the quasiperiodic regions, to
which the considerations of Sec. II and 111 apply, and for

ra 1

FIG. 13. A wave function in the quasiperiodic region, corre-
sponding to the Lrajectory in Fig., 3,

Bound states in multidimensional systems

B 3
|
6 3 =
R
4 19 i
? - -
23 { £ -
< - o
| s
- c 1‘ E":—‘:_;
X i
= e
f ==
] -
"1
=
-€ ’
P S R A 23 e : ree e o
s -3 -2 = & ' 2 3 a

FIG. 4. A trajectory for the Hamiltonian (1. 1) in the ergodic
region, with w.=1.4, w,= L7, A==0.08, =0,08, E=8,0 X3

the stochastic regime, for which those semiclassical
considerations do not apply. A wave function from the
energy region where the eigentrajectory (a trajectory
which corresponds to the eigenvalue) was of the type in
Fig. 8 is shown in Fig. 13. The trajectory occupies a
curved region of coordinate space and the wave function
is oscillatory within this region, being a damped expo-
nential outside even though it is still within the energeti~
cally allowed region. When the motion is stochastic,
the trajectory (Fig. 14) is seen to occupy the entire en-
ergetically allowed region of coordinate space and the
wave function (Fig. 15) is oscillatory over the entire
classically allowed coordinate space and a damped ex-
ponential in the forbidden region. In the high energy
(“stochastic") region we found sevéral quanperiodic tra-
jectories and their analogous quantum mechanical wave
functions.

Another interesting aspect of the motion in the quasi-

FIG. .15. A wave function in the ergodic region, corresponding
lo the trajectory in Fig. 14.

J. Chem. Phys,, Vol. 71, No. 7, 1 October 1979
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periodic regime is that the present system is seen to
exhibit an extensive periodic energy sharing between the
x and y normal modes (e.g., Figs. 8-10), Thisis a
dramatic example of the breakdown of the normal mode
approach even in the quasiperiodic region.

C. Stochastic limit considerations

Inasmuch as the considerations of Sec. II and III apply
only to the quasipericdic regime it is useful to examine
geveral approaches which have been used to predict the
stochastic limit.

At energies above E = 7 for the present A and a, the
trajectories begin to fill the energetically accessible
coordinate and phase space (become stochastic). In the
example given in Fig. 14, the system is seen to occupy
all of the energetically accessible region unlike the tra-
jectories in Figs. 8-10. The changes in shape of the
figure-eight cycles show that J, and J, are no longer
constants of the motion. Indeed, only the energy is the
“constant” of a sufficiently long-time trajectory, in the
stochastic system, since all parts of the energetically
accessible phase space are covered. There are signifi-
cant similarities between the classical stochastic sys-
tem in Fig. 14 and the corresponding stochastic quan-
tum mechanical one in Fig. 15. The shape of the re-
glons covered is similar (the energetically accessible
space); the region of greatest probability in Fig. 15 cor-
responds to that of the densest number of trajectories
in Fig. 14.

Various approaches have been developed to obtain the
stochastic limit, i.e., to obtain the energy below which
the system is largely quasiperiodic and above which it
is largely stochastic. One of these methods is that of
overlapping resonances, due to Chirikov,'? Several ap-
plications of it have been made in the literature.'® How-
ever it cannot be applied, at least not in a simple form,
to the present problem because there are no first order
resonances other than the 1:2 resonance, and 80 no
overlapping of resonances.

Another method for obtaining the stochastic limit is
that due to Toda, !¢ with a similar equation for the limit
having been obtained also by Brumer.!* This second
method has worked reasonably well for a couple of sys-
tems. * However, it has been shown to fail as a global
criterion. !¢ We illustrate its application to the pres-
ent system here and see that at least in the neighbor-
hood of @ =~ 2 it breaks down.

The method uses the exponential separation of trajec-
tories as a criterion of stochasticity, and uses an ap-
proximation to see when the separation is exponential.
The calculation involves forming a differential
equation for the separation in x space, Ax, and also
for Ay, of two adjacent trajectories, linearizing that
equation if necessary, and then solving for the behavior
of Ax(#) and Ay(#). Second derivatives for a two-coor-
dinate system are,

r=08%V/e2, t=0'V/8y?, s=08%V/bxdy. (4.1)
It i3 concluded that the motion will be stochastic when
rt-s¥<0 . (4.2)

b
T

M L B RELA ARG B B

P PN PR Y |

TTrirrvrrrou

PN BT S §

- ST S N W AR
-4 -2 8

[
-]

FIG. 16. The contour of (4. 3) (dashed lines) is superimposed
on the potential energy contours (solid lines) for E=2, 4, §,
and 8,

In the present case, with the V(x,y) from Eq. (1.1) one
finds that

7t - s2=(w? = Brax)(w? +2xx) - 4A%?=0 . (4.3)
v y

Setting ¢ - s?=0 is intended to yield the stochastic
limit, However, for o = -2 the perturbed system is
separable in parabolic coordinates, since the Hamilto-
nianfora=-2is

H=[4(p} +p2+ &% + 1% + /42 D) 1/(E% +0%), (4.9)

and gso by setting H=E one sees that on multiplying by
£2+7? one can separate (4. 4) into two equations. There-
fore, this system cannot exhibit stochastic behavior at
any energy. Figure 16 shows the contour of Eq. (4.3)
superimposed on the potential energy surface with a

=-2 and A=~ 0,08, thus predicting regions of stochas- -
ticity. This result suggests that this prediction of a
local instability is not a sufficient criterion of stochastic
behavior for bound state or scattering problems.

V. DISCUSSION

A comparison of the w,=2w, and w,=2w, cases shows
that the effect of the perturbation is considerably larger
in the former, as expected.

The quantum and semiclassical results for the w,
=2w, system, compared in Tables I and II, are seen to
agree moderately well, The agreement for the w,=2w,
(Table III) isquite good. In the w,=2w, case a large
rather periodic energy-sharing between the x and y mo--
tions usually occurs—in some cases the figure-eight
motion is largely in the x direction and sometimes large-
ly in the y direction. The systemfor a=— 2, is separable
and provides an example where the simple stochastic
limit considerations of Ref. 14 break down.

Itis interesting to note the various types of caustics,
which depend on the initial conditions for a given E.
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For example, for some v, the region swept out by a
trajectory is as in Fig. 8, without a cusp. Here, a
figure-eight cycle touches the caustics six times, for a
total phase loss of 3r. A variation of x; introduces a
cusp, as in Fig. 9. The cusp serves as a focus for
some of the figure-eight cycles, namely those which
touch the 1nner caustics twice during a cycle and the
outer caustic twice, The toial loss of phase due 10
touching the caustic and passing through a focus is 37
per figure-eight cycle,

The wave functions in the quasiperiodic regime occupy
locatized regions of coordinate space corresponding to
the trajectory {as in Fig. 13), and in the stochastic re-
gime the entire classically allowed region (as in
Fig. 15),

In the quasiperiodic region the energy in a given
“mode” fluctuates periodically while in the crgadic re-
gion it fluctuates more “‘randomly.” We are currently
investigating the behavior of the mode energy autocor-
relation function in the two regions.
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APPENDIX A. DEGENERACY AND OTHER
PROPERTIES OF THE UNPERTURBED SYSTEM

We let J, and J, denote the unperturbed action vari-
ables and w, and a, the conjugate angles. The Cartesian
coordinates and momenta are then'

x={J /1w ) gin2zn,
pe= (o /) cos2am, , (A1)
with analogous equations for y and p,.

For system with a given J, and J,, a single trajectory
sweeps out a region covered by a rectangular box, when
u, and w, are incommensurate, with amplitudes in the
x and y directions equal to (J,/7w )" and (J,/7w,)!"?,
respectively,

Along any figure-eight trajectory the unperturbed sys-
tem has one cycle of the v motion and two of the x mo-
tion when w,=2w,. Thus, the total phase integral J
along this trajectory is

Je f (Pedx+py,dv)=2J +d, . (A2)
tray
The unperturbed energy of the two oscillators equals’
(Jyw, +J,w,)/27, and 8o equals J,/27, since w,=2 and
wy=1. "It thus depends only on J. The quantization con-
ditions for the unperturbed oscillator are

Je=2nln,+%), J,=20(n,+%) (A3)
in units of #=1, withn,, n,=0,1,2,.... Thus, theJ

in (A1) equals
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J=20(n + ;) . (A4)
where
n==2n,+0,,  n=0,1,2,... . (A5)

For any » the degeneracy is seen from (A5) to be (n/2)
+1or (1 +1)/2, for n even or odd, respectively. Also,
since E depends only on ./ it depends only on n {cf. (A2)].
The degeneracy is unchanged, of course, if one quantizes
Jy and J, instead of J, and J,.

In these action-angle coordinates the perturbed Hamil-
tonian (1.1) is

H=w,d +w,d, -\ mw,)V ) d, dnw ) [sin2z{ie, + 2u,)
+sin2ali, - 2uw0,) - 2sin2m, ] - Aald, /7w )2 sin’2mc,
(AS8)

thus yielding the secular perturbation term discussed in
the text,
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