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- Rotational energy transfer cross sections are calculated for HCI-HCl and HCI-HF collisions using
classical trajectories. The exponential model for the rotational results is compared with transitions j—j’
in collisions of a supersonic HCl molecular beam with a thermal beam. Reasonable agreement with the
functional form of that model is obtained. Using a simple intermolecular potential without adjustable
parameters, in which the only anisotropic terms are of the dipolar and dispersion type (i.e., long
range), agreement is obtained with the experimental constant for HCI-HCl in the exponential.
Calculations are also given for HCI-HI and HC1-HBr collisions. Microscopic reversibility for the

averaged cross sections is discussed in connection with the exponential model.

The trajectory results

show that some modification is needed in the exponential formula, to account for microscopic

reversibility in these rotor-rotor collisions.

. INTRODUCTION

Many theoretical calculations have employed classical
mechanics to describe molecular translational-rota- -
tional energy transfer for collisions between atoms with
linear molecules, treated as rigid rotors.! In the pres-
ent paper, classical trajectories for collisions between
two linear rigid rotors?® are used to compute the cross
sections o(4,5'), for an HC1 molecule in a supersonic
primary beam to undergo the collisional transition,
j=j', when this fast primary beam is crossed with a
thermal beam of a hydrogen halide. Throughout, the
unprimed quantity refers to the value of a dynamical
variable before a collision, while the primed quantity
denotes its postcollisional value. The calculated values
of 0(7,7') for several HCl-hydrogen halide collision
systems are compared with the exponential model pro-
posed by Polanyl et al.,?

0(j,5')=C4(2%’ +1) exp(-C|E,~ E,. |} , (1)

where C, and C can both depend on the total energy and
are characteristic of a particular collision pair. (The
collision partner will be termed the “perturber”. )
Under the conditions of the experiment®®’ the initial
relative kinetic energy of the molecules was about 30
keal/mole, and exceeded the rotational energies by fac-
tors of the order of 50.

By spectroscopically monitoring the primary HC1
beam before and after it crossed a thermal beam, Ding
and Polanyi’® directly measured AN(j), the change in
the population of the jth rotational state of the HC1 mole-
cules. By plotting the measured AN(j) vs j and by com-
paring with the plot predicted by the exponential model,
they inferred the value of C in Eq. (1). This value is
compared with that calculated in the present work.
Previously, classical trajectory calculations of o(4,7’)
have been performed for the HCl-Ar3‘ "3t gygtem
and compared with the exponential model. 3%’

Values of o(,’) for the HCl-hydrogen halide systems
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are computed in the present paper for three different
initial states, j=0, 4, and 8, together with total in-
elastic cross sections o(j):

olf)= 2. ot1") - | @

- In the case of atom-rigid linear molecular collisions
the equation of microscopic reversibility is

K(2j+1) (4,5 ) =k'*(2f +Doli',f), (3

where k denotes the translational wave number. In the
experiments of Ref. 3(a), the initial translational ener-
gies for the molecules in the beam of about 30 keal/
mole in each system are much greater than the rotation-
al energy of even the eighth level of either molecule,
the approximation that the ratio of final to initial veloc-
ities v'/v(=k'/k)= 1 is appropriate here. Equation (1)
then satisfies the microscopic reversibility relation (3).
We shall also explore.the extent to which (3) and hence
Eq. (1) satisfy microscopic reversibility for collisions
between two rigid rotors.

Il. CALCULATIONS

The total angular momentum J representation, with
J placed along the 2 axis, was used to treat the dynam-
ics.? Using a subscript p to denote the angular mo-
mentum of the second molecule, the variables in the
coupled action-angle representation of Ref., 2 are the
magnitudes of J ’ of the rotational angular momenta of
the two rotors, § and 7, Js» of the orbital angular momen-
tum 7, and of the resultant (h=j,+l) There are also
the angles conjugate to §, #,, {and fi(g,, g, ¢1,q), the
intermolecular separation distance R, and-its conjugate
momentum p,. These variables are described in Figs.
1-3 of Ref. 2(b).

In determining transition probabilities via the Monte
Carlo method, each trajectory was started at a separa-
tion distance Ry, chosen so that at R, the intermolecu-
lar potential energy is less than 1% of thermal energy
(k5T) at 300 °K.2™ Hamilton’s equations with rigid
rotor constraint [Appendix A of Ref. 2(a)] were inte-
grated numerically for a specified interaction potential
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function while the two molecules collide. When the

separation was again R =R, the integration was stopped.

Transition probabilities were calculated quasiclassically
by noting which interval (j’ -4, j' +4) the postcollision
value of the quantum number j’ was in, and counting
such trajectories towards the transition probability for
j=ji'+ The quantum numbers j are related to the corre-
sponding angular momenta j semiclassically by £q. (4)
in units of #=1,2

J=y+%. ¢

Instead of ¢’s, time-independent angle varlables w (ob-
tained by a canonical transformation) were used.?

The cross section for a transition j-j' is given by
o(4,i') = J; P(j, i, b) 2nbdb , (s)
where

- d Py f‘? ~a -~
PO, 0= [ oy, [ didiseg, D

»

Y A ' : o
xv[i‘-‘j‘n &U/Z’?’)J; J; P(j,§")dw . (8) -

Here, di denotes dw, dw,dw,,dw,; p,, denotes the Boltz-
mann distribution of perturber rotational states; P(j, ')
denotes the probability of the j—j' collisional transition
for a given set of initial conditions, being 1 or 0 accord-
ingly as the trajectory determined by those initial con-
ditions does or does not result with a value of 7' within
the interval (' -4, j'+%). The integral in Eqs. (5) and
(6) can be evaluated by sampling the eight variables

®, Jy» hy J, Wy, Wy, Wy, w,), introducing new variables
x; 80 that all lie in an interval (0, 1) (cf. Appendix A

and Ref. 2). The impact parameter b yields the value
of the orbital angular momentum /, being equal to i/p .

Instead of Eq. (6) 2 semiclassical calculation was
used in Ref. 2, wherein the mean probability term
] ‘P(j.j )dw, is replaced by ldj /dw,1™, evaluatedata
w, (for the given remaining w’s and momenta) which
gives rise to the desired final j'- When more than one
w, gave the desired final j/, this probabmty was a sum
over such derivatives,

The values of the total lnelastic cross section of o(5)
are computed from

o)) = L [1-P(3,j,6)25bab . )
The intermolecular potential used in the present cal-

culations consists of a spherically symmetric repulsive
core Vo, as in the first term of Eq. (2.1) of Ref. 2(b),

TABLE 1. Total rotational inelastic
cross sections (% o(5) for hydrogen

halide systems.

System " 0{0) o(4) o(8)
HCl-RCl 92+2 95+ 2 602
HCl=HF 1092 127+3 10943
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TABLE II, Rotational cross sections (12) for

HCl—-HCl.
7

¥ 0 4 8

0 1,2+0,2

1 47.8%2,0 4,4¢0.4

2 19.8:0.8 9.6+0.6

3 12.3:0.6 85.5¢1.7 0.49+0.13
4 7.2£0.4 2,6+£0.8

5 4,2+0,3 32,6+2.0 4.8:0,4
6 0.98+0.15 7.4+0.5 8.2+0.5
7 2.9+0.3 23.6+1.3
8 1.5+0.2

9 0.24+£0,08 16.1+1.0
10 8.5+0,8
11 0.87+0.15
12 0.23%0,07

a dipole~dipole term V,,, and dispersion terms V.,
as in Eqs, (2.7) and (2.4) of Ref. 2(b). The values of
the molecular parameters used in this work in the nota
tion appearlng in those equations, namely, of ¢/k, o,
1, B, o', a*, are 344.7°K,% 3.339 4,51.08 D,*

10. 5909 cm‘1 72,807 A3%,° and 2,407 A’ ¢ respectively,
for HCl. The corresponding values used for HF are
330,% 3.148,5 1,82,% 20.939," 0.96,° and 0.72,° re-
spectively. Those for HBr and HI are given in Ap-
pendix B.

lIl. RESULTS

Tables I-II summarized the present results for
HC1-HC! and HC1-HF: The total inelastic cross sec-
tions o(j) are given in Table I for § =0, 4, and 8 and the
individual 0(4,7')'s are given in Tables Il and IIl. The
() uncertainties noted here are those assoclated with a
68% confidence limit in Monte Carlo®!? calculations.
The sampling of the impact parameters was performed
in such a way as to yield minimum error in the total
inelastic cross section o(j), as in Appendix A, rather
than for any one o(j,7'). An estimate of the error for
o(j) is seen from Table I to be about 2-3%. Tables I

TABLE III. Rotational cross sections (3.’)
o{j.§’) for HC1-HF.

%
.
o -

4 ‘8

0 1.7+0.3

1 §2.1+2,1 8.0+£0.5

2 20.3+1,0 13.2+0.8 1.0+£0,2
3 12,7+0.7 50.5+2.4 3.2£0.3
4 9.3+0.6 *4,.86+£0.4
5 7.3+0.5 89.4+2.3 7.8+0,6
6 4.6+0.4 9.2+0,6 15.7+0.9
7 2,3+0,3 3.6+0.4 45.1+2.2
8 0.83+£0.18 2.0%0.3

9 1.2+0.2 24,1+1.5
10 0.44+0.13 4,6+0,6
1 1.5+0.2
12

0.9+0,19
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FIG. 1. Plot of In(2j* +1)/a(4,§))/B v8 1§'{j* +1)=j(§+1) | for

excitation transitions (§’ >j) for the HCl1-HCl system. The"
circles refer to j=4 and the squares to j=8.
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FIG. 2. Legend same as Fig. 1, but for de-excitation transi-
tions (4’ <j).
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FIG. 8. Plot of In[(2j’ +1)/0(4,5))/B vs 1'(§ +1)=§(j+1)] for
excitation transitions (j/ >j) for the HCl-HF system. The
oircles refer to j=4 and the squares to j=8.
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FIG. 4. Legend same as Fig. 3, but for de-excitation transi-
tions. :
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aid III contain the o(j,7')’s for which tlie standard error ‘

is less than about 35%.

The constant C in Eq. (1) is obtained as the slope of
a n[(2' +1)/0(3,5)V/B vs 15'(§' +1) —j(j+1)! plot, where
B is the rotational constant of HCl. The results are
plotted in Figs. 1-4. The j=4 and j =8 points are seen
to lie on the same line, The slopes for the excitation
transitions (' > ) for the j =4 and 8 systems in Figs. 1
and 3 yield C values of 0. 008 cm and 0.005 cm for the
HC1-HCl and HC1-HF systems, respectively. The
slopes of the de-excitation plots (Figs. 2, 4) are the
same as those in Figs. 1 and 3, within the errors.
There may be some tendency for departure from-
linearity at low energy transfers, a point to which we
return later (cf. an analogous result for HC1-Ar).*

The excitation points for j =0 are not shown in Figs.
1and 8. They lie near the lines drawn, but tend to be
crowded into a curved portion of the plots at low

1#'(5'+1) = j(G+ DI,

Deviations from the atom-rigid rotor microscopic
reversibility relation (3) show up in Figs. 1-4, in that
the intercepts of the excitation plots (Figs. 1,3) are not
the same as those of the de-excitation plots (Figs. 2,4).
A sharper test of (3) and hence of this “microscopic
reversibility” aspect of (1) is given in Table IV, where
use is made of the fact that 2’ =k to a high accuracy.
Tests of a microscopic reversibility relation described
in the next section are also given, and serve as tests
of the accuracy of the trajectory data.

V. DISCUSSION

The trajectory-calculated values of C for the HCl-
HCl and HC1-HF systems were 0,008 cm and 0. 005
cm, respectively, as already noted. The former
agrees well with the experimentally determined value
of C of 0,008 cm.¥*® In the cases of HC1-HBr and
HC1-HI (Appendix B), however, the calculated C values
were greater than those inferred from measurements,
considerably so in the HC1-HI case. Thereby, the cal-
culated distribution of final rotational states of HCl in
those collisions is narrower than the experimental
one deduced from the value of C. In collisions of
HC1-HI, the calculated total inelastic cross sections
were substantially smaller than that for HC1-HCl and
HC1-HF (Appendix B), so short range anisotropic re-
pulsive potentials shouldrbe included in any potential
used. The anisotropy of the potential used in the pres-
ent calculations contained only long range (dispersive
and dipolar) terms. . '

It 13 seen from the first two columns of numbers in
Table IV that the microscopic reversibility relation (8),

TABLE IV. Test for “microscopic reversibility.”"

+ _o(0,4) 9014, 8) (Na(0,4) {9014, 8)
System 90(4,0) 170(8, 4) 9014, 0) 17018, 4)
HCI~ECl 0.66%0.14 0.80+0.07 1.11£0.30 1,32+0.40
HCl-HF 0.62£0.14 0.23+0,05 0.94+0.27 0.88%0.34

a5 ratio of unity for the first two columns yields agreement
_ with Eq. (3) and, for the last two columns, with Eq. (12).
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strictly valid for atom-rigid rotor (Linear molecule)
collisions, is not obeyed by the appropriate ratios of
cross sections. The discrepancy is greater for the

o (4,8)/0(8, 4) ratio than for the ¢ (0, 4)/0(4,0) one. Be-
cause of the small fraction of the total number of tra-
jectories contributing to these highly inelastic transi-
tions, there is a standard error of about 20% associated
with these ratios in Table IV, which are nevertheless
sufficiently precisely determined to provide a reliable
test for adherence to Relation (3). Thus, since (1)
satisfies (3) it does not describe this aspect of micro-
gcopic reversibility accurately for rotor-rotor colli-
sions, although it does represent the logarithmic plots
in Figs. 1-4 reasonably well. We explore this break-
down next,

For a rigid rotor-rigid rotor system one has instead
of Eq. (3),

kH(2 + 102, + 1)o(3,, §'33)

=R'%(25" +1)(2], + V)o(§'54, 34p) « (8)
This equation is next multiplied by (&' /%) exp(- E}y/
ks T)/Q,, Where E' is defined by an atom-rigid rotor
energy conservation, setting =1,

E,+F/2u=Ep +k"%/2 , ()
and @, is the rotational partition function of the per-
tuber. Upon integration over j, and F»» one obtains
12(25 + 1)alj, )& /R

x expl(E , - E})/ksT)) =E'*(25' + Vo(j",3) , (10)

where o(4,7') is the denominator in the following ex-
pression, (f) is

(= [ | fotssnd'iD osndis

X (I} o(4ips1'38) Pndj:dj'»)-l ’ (11)

and py, is (2j,+1) exp(- E,,/k3 T)/Q,. Apart from the
factor { ), Eq. (10) is identical with the atom—rigid
rotor microscopic reversibility relation 3.

Under the conditions of Ref. 3(a), 2 k’=k and (10)
becomes

(24.4'1)0(]',]’) ' N
x{expl(E,, - E})/kT]) = (2§’ +1o(j',]) (12)

To test this equation, the same trajectories used to cal-
culate o(4,5') and o(j',§) were also used to calculate the
quantity in brackets. The results are given in the last
two columns of Table IV, The microscopic reversibility
relation (12), unlike (3), is seen to be satisfied within
the estimated errors, as indeed it should be. The per-
cent standard errors associated with the ratios in the
last two columns in Table IV are about 30%, slightly
larger than those for the ratios im the previous two
columns, The errors are small enough to make possi-
ble a meaningful test of the relation (12).

If there were resonant rotational transfer, i.e., if

, E""E,’=E;+E/'£, then E!’-E"” wo“lsl be E; "'EI and SO‘V
5 .

(exp(E,, - Elp)/kp T) would exceed unity when j<j'.
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. Therefore, one sees from (12) that the ratios in the
first two numerical columns in Table IV should be less
than unity, as found. Since Ej - E, is much greater for
the 4 8 transition than for the 0~ 4 one, the deviation
from unity should be much larger for the-former trans-
fer than the latter, again as found. However, tendency
towards resonance is only an approximate one, for if it
were an exact one, one could simply replace ¢ f) by
exp(E;-E,)/ky T as a correction factor. This factor is

. about 14 for the 4~ 8 transition for HC1-HC1, whereas
the true {f) is only about a factor of 4.

1t is seen in Figs. 1—4 that a departure from lin-
earity occurs for the point with the smallest | E} - E,l .
Because of the nature of the classical calculations a
well-known infinity develops in the total. elastic cross
sections —unless some cutoff in scattering angle is
introduced into the classical definition of the cross sec-
tion. This infinity occurs, thereby, at j'=j and the
effects of this singularity do not immediately disappear
as §' moves away from j. Thus, there is at least the
possibility that at small |E) - E,| the trajectory-cal-
culated rotational inelastic cross section may be too
high {i. e., 1n[(2j’+1)/0(j,')] too low}, and so could ac-
count for this particular deviation in Figs. 1-4. An
alternative possibility is that Eq. (1) breaks down at
low | Ej - E,;l. A comparison of (1) with quantum re-
sults would therefore be especially useful,

In summary, the simple expression (1) is reasonably
well obeyed for the § =4 and j =8 systems studied, apart
from the microscopic reversibility aspect embodied in
(12) and iilustrated in Table IV. Classical mechanics
plus the present potential which has no adjustable
parameters yields reasonable agreement with the ex-
perimentally derived®®’ C value for the inelastic ro-
tational transitions for HC1-HCl1. It will be.useful to
compare the absolute values of the individual cross sec-
tions when they become available., The intermolecular
potential used here contains in its anisotropic part the
sum of dipole-dipole and dispersion forces. For sys-
tems like HC1-HI, it appears that additional, short
range, anisotropic terms, probably repulsive, will be
needed, This result is not surprising in view of the
relatively small calculated cross section (see Appendix
B). Total inelastic experimental cross sections would
be useful in this respect.

The calculated cross sections obey the principle of
microscopic reversibility (12), Some tendency towards

" - resonant energy transfer prevents the atom-diatomic

molecule microscopic reversibility relation (3) from
being obeyed when the highly inelastic j —j’ transitions
(0 4) and (4 8) are considered,
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APPENDIX A: REMARKS ON SAMPLING

The cross sections were calculated using a random
sampling® of the variables f,, &, 7, ¢,4;,d;, and G,.
Since py, is known, one knows f when b has been selected
(I=pgd). The impact parameter b was chosen by ran-

‘domly sampling the.variable x, = exp(- 5%/b%) over the

interval [0, 1], where b is a parameter selected for
each collision system so that the curve of P(3,5) vs b
generated in the Monte Carlo evaluation is reasonably
well approximated by the plot of x, vs b. Such a plot is
shown for HC1-HCl, j=4 in Fig. 5. The numerical
values of P(j, b) (the circles) are the averages over
each.interval of 1 a,u. on the b axis; the dashed curve
represents the Gaussian function x,. For HCl-HF and
HC1-HC|, the values of the Gaussian parameters b are,
respectively, 12 and 10 a.u. The choices of b are well
justified by the 3% or less standard deviations in the
average total inelastic cross sections in Table I. The
va.rlables fo» h, and J are replaced by new variables®’
x and x,, defined as exp(- B,33/k; T),

]/43, I, (72~ (k- j)“]/4l’ij, each of which lie
in (0, 1) and whose volume element dx,, dx,dx, equals
the corresponding volume element in (8) (noting that the
1/Q, in p,, equals B,/ky T, where T =300°K). More de-
tails about the sampling and calculations were given
earlier.2® Some 4000 trajectories were used for each
4 to obtain the distribution of j’s and hence to obtain
each column of Tables II and I, while 2000 trajectories
were usedfor each j inthe case of Table V in AppendixB.

10 -w;‘\
o °$\b\
o Qo
\ o
P(j, b) \\ o
= N,
0.5 \‘:)
\ O
\\
3
\c\:
%
Y.
0 | I I N I - |
0 4 - 8 12 16 20
b (a.u.)

FIG. 5. Plot of P(4,b) vs b for HC1-HCl, j=4. The dashed .
curve is a plot of x,aexp(— 5%/%°%) vs b, where b=10 a.u.
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TABLE V. Rotational cross sections (32
o(§,4') for HC1-HI and HC1-HBr.

b 0 4 8
HCl-HI
0 0.1+0,05
1 40.8%2.5 0.7+0.1
2  13.4%0.7 4.0+0.4
3 5.6+0.4 18.4+1.8
4 0.8+0.2
5 19.6+1,7 0.06+0.03
8 2,7¢0.3 2.0£0.3
7 0,07¢0.04 10.7+1.0
8
9 6.7+0.5
10 0.3+0.1
11
HCl=-HBr
0 0.8+0.2
1  48.7%3.9 3.9%0.4
2 21.0+1.1 9.6+0.7
3 11,1+0.7 30.2%2.1 0.2+£0,1
4 7.5+£0,5 1.3+0.2
5 2,640,383 28,1%+2,5 3.6+0.4
6 0.2+0.1 7.0:0.6 6.5+0.6
7 2,1+0.3 18.0+1,5
8 0.7+0.2
9 0,04+0,04 11,7+0.8
10 2,9+0.4
11 0.2+0.1
12

APPENDIX B: CALCULATIONS FOR HCI-HI AND
HCi-HBr SYSTEMS

For HI the values used for ¢/k, o, j, B, a’, and o*
were 289 °K,® 4.211 4,5 0.44 D,® 6.551 cm™,” 8,58 43,°
and 4,89 A’,' respectively. The corresponding values
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used for HBr were 449, 3,353, 0,82, 8.473, 4.22, and
3.31 (same references). The values of o(j,j’) calcu-
lated from the present potential are given in Table V
for the HC1-HI and HC1-HBr systems. One also finds
that the o(j)’s for HC1-HI collisions are 20+ 1, 4612,
and 44+ 2 A% for j =8, 4, 0, respectively, while those
for HCl-HBr collisions are 44+ 2, 8223, and 9124 A%,
respectively. From the results in Table V, one finds
that C for HC1-HI is 0.016 ¢m, compared with a value
inferred from experiment**’ of 0,003, and C for
HCl-HBr is 0.008 cm, compared with an experimental
value®®’ of 0.004,
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