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State-to-state transition probabilities for molecular collisions are often computed from classical trajectories
by equating quasi-classical and quantum moments of the final energy distributions and using some functional
form to relate the transition probabilities to the quantum moments. The equality between quantum and
quasi-classical moments in examined using semiclassical theory.

Introduction

The semiclassical theory of inelastic and reactive
collisions'? has been used both qualitatively, providing
insight into the validity of classical trajectories for treating
such collisions, and quantitatively. In the latter, transition
probabilities have been calculated. The computation
involves (1) the evaluation of integrals, (2) multidimen-
sional root searches, or (3), via the added approximation
of partial averaging,® one-dimensional root searches. In
cases (2) and (3) the search is for classical trajectories
leading from the initial to the desired final quantum
number(s). In applications to real systems thus far, the
third method has apparently been the one principally
used'sl‘

Another method of using classical trajectories first se-
lects the trajectories in a quasi-classical manner, the initial
action variables chosen in a discrete way and the initial
conjugate angle variables (phases) chosen in a uniform way,
in conformity with WKB (semiclassical) theory. One next
assumes that the quasi-classical and quantum moments
of a distribution of final averages (of energies of each
degree of freedom, usually) are equal, an assumption which
has been tested in some cases where exact results are
available.® Some functional form or model is then used
for the transition probabilities to evaluate the parameters
from the moments. Typically, the number of moments
used is small (one to three).® When the number of im-
portantly contributing transitions is comparable to the
number of moments, the method can be reasonably ac-
curate. Its usefulness for the remaining transitions then
depends on the correctness of the assumed functional form.
In the present article semiclassical theory is used to
compare quasi-classical and quantum moments of
quantum numbers and their classical analogues. (These
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numbers are more precisely defined than “energies of the
individual degrees of freedom”; the latter assume additivity
of such “energies”.) In some cases averages of absolute
values rather than moments have been equated. We do
not consider this procedure here. The justification given
below for approximately equating the moments is based
on analytic functions of operators and so does not treat
absolute values. Application of the moment method is
made elsewhere to vibrational-vibrational transfer.™®

Semiclassical Calculation of Moments

The collisional cross section is given by (1) for transition
from quantum numbers whose totality is denoted by n to
final values n’, regardless of any changes in the remaining
quantum numbers, collectively denoted by m:

Onn = f;%pn'n(m)pm (1)

where k is the wave number associated with the initial
relative velocity v(k = pv/h); p.(m) is the probability of
the n — n’transition for given values of the other quantum
numbers m, summed over all final values m* p,,(m)
depends on k; and p,, is the probability of being in the state
m.
The corresponding state-to-state rate constant k., is

Rup = J;ova,,:n 4rk3p, dk (2)

where 47k?%p;, dk is the Maxwell-Boltzmann probability of
finding the system in (&, k& + dk).
The probability p,.,(m) is given by

pn’u(m) = ;IS n’rn’nml2 (3)

where S, is an S-matrix element. Part of the sum over
m in (1) yields a degeneracy 2!/ + 1, since the value of
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Y \Swmnmi® i8 independent of the m; present in the
“totality” m ( is the orbital quantum number for relative
motion, m, is its z projection, and p,, is the same for each
myin ! < m; <1.) The sum over m includes also a sum
over ! from 0 to ®. S,m is given semiclassically by'?

Swmnm = | #%nli0) ¥3w) dob @

where V() is a semiclassical wave function for the
collision, expressed in terms of reduced angle coordinates
whose totality is denoted by w. There are N - 1 such
coordinates in a collision involving N coordinates, the Nth
coordinate being time.! &9+, is the unperturbed function
in these N - 1 coordinates for a system in final state n‘m’.
(The usual variables are the N - 1 angle variables w and
the radial coordinate R, but a canonical transformation’
converts these to i (conjugate to final classical quantum
numbers /1) and time ¢ and to ¥° (conjugate to initial
classical quantum numbers n) and time £. di? denotes a
product IIdw;, i = 1 to N - 1. ¥} (0) and &3,,4:%) have
the following form, semiclassically

3%, 410) = exp(2win'® + 27im W) (5)
Vi () = (det aw/aw®) "2 exp(iy) (6)

where n'0 and m® denote 3_;n;/1; and 3 ;m/;, respec-
tively (i.e., sums over the relevant coordinatesf, the de-
terminant is N - 1 X N - 1, and the phase ¢ of the
semiclassical wave function has the property that

(1/2m)ae/ow = Re ()]

7 is the final value of the classical analogue of a quantum
number (an actionlike variable) for the trajectory which
begins at (n,m) and ends at .

The quantum mechanical average value of any function
of n’, f(n’) for thermally averaged collisions for a given
initial state n, is

0 = T [0 vewidak®or dk/Z b (®

where k,, is given by (2).
In the semiclassical W representation, an actionlike
operator n canonically conjugate to  is (1/2mi)a/aid,’ i.e.

n = (1/2xi)s /o 9
Thereby, from (5) and (9) we have
f(n) EmAw) = f(n) &4 mAw) (10)

From (1), (3), (4), (8), and (10), we have
) = T [0kl X
n'm'm
{f(n) @gh4‘1':m)ﬂmv47fk2pk dk/z'kn'n (11)

The Hermitian operator f(n) may be transposed in (6) so
as to act on the last ¥,. Using the closure relation
(discussed below) for ®2,,. one then obtains

) = T f () mpnodnkor db /T ko (12)
m n’

where
(f(0)) i = (Vrnlf(@)| Y7 (13)

The dependence of {f),x on n is suppressed in the no-
tation.

When n’and m’ belong to the set of positive and neg-
ative integers, the eigenfunctions exp(2xinw + 2ximw)
form a complete set on the unit interval of the ’so one
can see from (4)-(6) and (15) below that the semiclassical
T ISmnmnl® summed over m’ and n’equals unity. In some
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cases one or more of the n’ and m’ is restricted to non-
negative values (e.g., n’ for vibrations or total angular
momenta), and then this 3°}S,mi” is only approximately
unity. Since the trajectories begin in some initial state n
(and m), then provided the action variables J for such
degrees of freedom do not come too close to zero, the
corresponding matrix element Sy, in (4) for negative
n’ (and m’) has stationary phase points only at complex
values of the w’s; the transition is thereby *classically
forbidden”, the resulting matrix element is exponentially
small, and the deviation of the S,/,n.'s from unitarity is
correspondingly small. Indeed, it is precisely for those
degrees of freedom having positive and negative quantum
numbers that the semiclassical description in action-angle
variables is exact (no classical turning points), while for
the others the quantum action operator J was made to
correspond to (n + o)k, where & (zero in the case where
n is unrestricted) was chosen to yield agreement with WKB
eigenvalues.]® A consequence of this approximation is seen
later. Similarly, the closure relation used for the semi-
classical $,,,(t0) in obtaining (12)-(13) from (11) is exactly
fulfilled when n’ and m’ are not restricted to positive
integers. It is approximately fulfilled, when applied to (11),
when they are restricted, since the (¥},.|®2..» are expo-
nentially small for negative integers n’ or m’.
We shall write the wave function (6) as

Via(D) = A exp(iy) (14
On noting that
A% dw = (det au®/aw)dw = duw® (15)
one finds'?
1

D) = J; n du® = (n), (16)

(0 = (D)) s = (O = (AP (17)

(0 = (0) )Y ma = (- <n)c)3)c (18)

where (f). denotes the integral ff dw? over the unit in-
terval and is actually a quasi-classical average (an average
of the trajectory results over the initial phases w® for given
initial quantum numbers (n,m) and k). Terms of order
h?, relative to the classical terms, were neglected from the
rightl-ohand sides of (17) and (18); none were neglected in
(16).

Within the stated approximations one sees semiclas-
sicatly from (16)—(18) that the quantum and quasi-classical
average are equal. In using (15) it was also assumed that
det aw%/aw is nonsingular. Singularities in the preexpo-
nential factor A of semiclassical wave functions sometimes
occur. They reflect a hreakdown in semiclassical theory,
but not necessarily in the approximate equality of qua-
si-classical and quantum moments.

In virtue of (16)—(18) it is useful to examine the results
for an exactly soluble problem, namely, the forced oscillator
problem. Here, i depends on @° as'!

n=n+ a[(@n + 1)/h]Y? cos 270° + (a?/2h) (19)

where a depends on the strength of the interaction of the
oscillator with the time-dependent force and involves a
Fourier integral of that force. The exact quantum and
classical averages of n’ and 7, respectively, have been
given,!? from which one obtains the following relations
between the moments:

(n)q = (R), (20)
((nl— (n’)q)z)q = ((n - (n)r)z)c (21)
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(R’ = (n))q = (A - (M) + ?/2h  (22)

where (f(n’)), denotes ¥ f(n)p3,, the sum being over all
n’, p3,, being ghe quantum mechanical probability for the
transition n — n’. Comparison shows that eq 16-18 are
in error only in the case of the third moment result (18),
and that the error is of the order of o?/2h. Equation 22
suggests, since (5 — n), for this problem is a?/2h (as one
can see directly from (19)) that instead of equating
quantum third moments (7 — n). be added to the qua-
gi-classical one. It will be useful to have further comparison
of exact classical trajectory and quantum results for other
problems to test this possibility. The results in (20)-(22)
are also interesting in that they apply even in the presence
of a singularity of dw®/dw. For example, trigonometric
arguments for the forced oscillator problem yield"!

sin 2x(3° - @) = [/{(2n + DAIV?] sin 2x  (23)

Thus, when a/[(2n + 1)h]'/2 exceeds unity sin 2xtb cannot
reach the value of unity. In fact, as @° increases 0 to 1,
w under such conditions no longer rises from 0 to 1 but
instead rises to a some value, falls back to zero, then
becomes negative, and at ° = 1 becomes zero again.
Thereby, di/du’ is zero at two points inside the interval
(0, 1) and so dip/duw” is singular. This singularity does not,
fortunately, affect the relations (20)-(22) between the
moments.

In the semiclassical treatment of this problem, one can
handle the singularity as follows. The semiclassical wave
function is now the sum of two terms each of the form (6)
for each value of @, one drawn from the w° region of
positive di/duw®, the other from @° region of negative
di/diw® (using terminology appropriate to the above
one-dimensional problem). When the moments are cal-
culated, and when the cross terms are neglected (they are
highly oscillatory), the term arising from ¥**f¥ then
corresponds [via (15)] to one &° interval and the other
corresponds to the other w° interval. One again obtains
(16)—(18).

Until now, we have considered moments at a given m
and k, via the averages (), in (16)-(18). One then in-
tegrates over k, multiples by p,,, and sums over m (the
latter provides the “quasi-classical” treatment for the m
quantum numbers). The new averages yield overall av-
erages for the various moments. The foregoing remarks
about (), based on (15)-(22), then apply also to the
averages given by (12). Finally, in practice some of the
quantum numbers in m, such as [, are quite large, and their
part of the multiple sum over m is typically replaced by
integrals.

In summary, we have seen that according to semiclassical
theory, subject to the approximations indicated, the
quasi-classical and quantum moments for changes in
quantum numbers, weighted as in (12), are equal, as are
those in (13). [A deviation from this equality was seen to
exist, as for example in the third moment for the forced
oscillator problem.!?] Since the quasi-classical moments
of the changes in quantum numbers can be evaluated from
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classical trajectories when one uses action-angle variables
to define the initial and final states, one then has values
for the quantum moments of these changes. When a
particular functional form® is assumed for the quantum
mechanical state-to-state transition probabilities or
state-to-state cross sections, the quantum moments can
be expressed in terms of the parameters appearing in the
functional form and one can then evaluate those pa-
rameters by equating the quantum moment to the lmown
quasi-classical ones. One thus obtains, indirectly, values
for the state-to-state transition probabilities® and cross
sections using classical trajectories.
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