204 The Journal of Physical Chemistry, Vol. 83, No. 1, 1979

R. A. Marcus

Vibrational Nonadiabaticity and Tunneling Effects in Transition State Theory

R. A. Marcus

Arthur Amos Noyes Laboratory of Chemical Physics," California Institute of Technology, Pasadena, California 91125

(Received September 18, 1978)

Pubfication costs assisted by the California Institute of Technology

The usual quantum mechanical derivation of transition state theory is a statistical one (a quasi-equilibrium
is assumed) or dynamical. The typical dynamical one defines a set of internal states and assumes vibrational
adiabaticity. Effects of nonadiabaticity before and after the transition state are included in the present derivation,
assuming a classical treatment of the reaction coordinate. The relation to a dynamical derivation of classical
mechanical transition state theory is described, and tunneling effects are considered.

Introduction

Derivations of transition state theory include a classical
mechanical one due to Wigner!? and several based on
quantum mechanics.3>® One of the latter assumes a
quasi-equilibrium between reactants and transition state®
and another assumes vibrational adiabaticity along the
reaction coordinate.®® Apart from the use of classical
mechanics, Wigner’s derivation is the most general of these:
its principal dynamical assumption is that a dividing
surface (“transition state”) can be found in phase space
such that no classical trajectories recross it. Thereby, it
provides insight into possible situations where transition
state theory can break down because of dynamical effects.
When this dividing surface in phase space is assumed to
be independent of the momenta the usual (but classical)
form of transition state theory, with its familiar kT/h
factor, is obtained.

The vibrationally-adiabatic quantum mechanical
derivation*® is a dynamical one, adiabaticity being a
particular dynamical approximation, while the quasi-
equilibrium derivation is a statistical one (more ad hoc).
As such, the former can be more revealing. Vibrational
nonadiabaticity is important in some reactions and in the
present paper a derivation which considers such nona-
diabatic effects before and after the transition state is
described. The problem of nuclear tunneling is also
considered.

Quantum Mechanical State Theory

The following expressions arise in transition state theory
for kg and ky, the microcanonical and canonical rate
constants, respectively, when the motion along the reaction
coordinate can be treated classically and the remaining
;:)oc;l;dinat% are treated quantum mechanically: kg is given

yo
kg = Ng'/hog (1)
where Ngt is the total number of internal states of the
transition state with energy equal to or less than E; pg is
the density of states of the reactant(s) at energy E. In-
stead, if certain quantum numbers, whose totality is de-

noted by J, are conserved during the elementary step, the
rate constant for a microcanonical ensemble of given J is™®

kgs = Ngjt /hpgy 2)

Ng,t and pgy being the number of states of the transition
state and the density of states of the reactant(s), re-
spectively, for the given E and J. The kg and Ng! in (1)
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equal the sum over J of kg and N}, respectively.

Like Ng!, Nz is a step function of E, increasing by
unity each time E exceeds a new energy level E,(g,') of
the transition state. E,(g,}) is the value of the energy of
the nth internal state at a value of the reaction coordinate
g = q,! selected as the transition state for a system in state
n. g, and E, may both depend on J, but for brevity the
J is suppressed in the notation.

The canonical rate constant at temperature T, k7, is the
probability of being in the interval (E, E + dE) and having
a particular J, multiplied by kg, integrated over E and
summed over J. The probability (at high enough pres-
sures) is the equilibrium value, pg; exp(-E/kT) dE/Q,
where @ is the partition function of the reactant(s).
Thereby

ke = (RT/WE. [ Np)! expl-E/KT) d(E/ETIRQ (3)

Since Ng;' is the step function of E described above,
dNg,!/dE is a sum of Dirac-delta functions, ¥ ,0(E -
E.(g,})). Integration by parts thus yields the familiar

kr= (RT/R)Q/Q 4)

where Q! equals Y4, exp(-E,(g,})/kT). This E,(q) in-
cludes any potential energy increment V(q) from reactants
to that value of g.

To count the states in Ng,} one introduces a basis set
of states n. The set may be the vibrationally-adiabatic set
(VA), in which the Schrodinger equation is solved at each
value of a reaction coordinate g, yielding a set of levels
E.(g). If, instead, the coupling between the internal
degrees of freedom is neglected (as is usually the case in
practical applications of transition state theory) one has
what one might call a partially vibrationally-adibatic basis
set (PVA). There is, here, coupling only to g.

Regardless of which of these basis sets is used, the
transition state in vibrationally-adiabatic transition state
theory is taken to be a value of g, g,!, which can depend
on n and J, and is chosen to be at the maximum of the
E,(q) vs. q curve. If we denote by {n] the set of these (VA
or PVA) states in Ng;', and indicate after a colon the
condition satisified by those states we have in VA (or PVA)
theory

Negf=2X1,[n: maxE (q) SE] ¢ (5)

Instead of (5) another and simpler count for Ng/ is the

. total number of states at a given g, NFJ’(q) where ¢

(denoted by g*) is chosen such that Ng, is as small as
possible, i.e.
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Ngfg) = X1, [n: EL(q) £ E) (6a)
N/t =min Ngi(q), ¢ = ¢* at the minimum Ngz(g)

q
(6b)

For simplicity we shall confine our attention here to
systems or conditions where there is only one minimum
in (6b).

The Ng;(q) given by (6a) equals or exceeds that in (5),
exceeding it when there are any states for which

mt?x E.(q) > E> E,(¢" V)]

Thus, by choosing q so that Ng;*(q) is as small as possible,
as in (6b), the number of states obeying (7) becomes as
small as possible, and so (6) approaches the VA (PVA) eq
5.

Before proceeding with nonadiabatic effects it is useful
to recall a VA (or PVA) derivation of (2). An ensemble
of quantum states in (E, E + dE) and with the given J is
considered, there being pg; dE such states. In the reac-
tants’ region the probability of finding the system in any
specified internal state n and also in dg dp (p is the
momentum canonically conjugate to the reaction coor-
dinate q) equals the number of quantum states in dg dp,
divided by pgy dE. The probability thus equals dg dp/hpgy
dE, since each quantum state in (g,p) space occupies an
area h. This probability per unit ¢ (i.e., the above divided
by dq), when multiplied by the velocity g, yields the
probability flux of this nth state, ¢ dp/hpg; dE. Since ¢
dp equals dE,° this flux equals 1/hpg;. A channel n is
“open” if E,(q) < E for all g. If one sums the flux over
all open channels and if the sum of these open channels
is denoted by Ng/!, one obtains the reactive probability
flux, i.e., the rate constant kg, given by (2).

This derivation is the same regardless of whether a VA
or PVA basis set is employed, but Nz then refers to a VA
or to a PVA count, respectively.!® The other assumptions
are those of an equilibrium distribution in the ensemble
of states of the reactant(s), and a classical treatment of this
reaction coordinate.

The connection of this derivation with the dynamical
one of classical mechanical transition state theory!? may
be noted: In the latter, it was assumed that no trajectory,
regardless of where it started, recrossed the dividing
surface (“transition state™) in phase space. Vibrational
adiabaticity was not assumed. In the above quantum
mechanical derivation, the assumption of vibrational
adiabaticity provides a prescription for finding out whether
“trajectories” recross the “dividinF surface”. (The dividing
surface is now the set of points g,' at the maximum of each
E,(q) ineq 5. For a given n the system either crosses this
“dividing surface” once (when max, E,(q) < E, i.e., the
so-called open channel r) or not at all (when max, E,(qg)
> E), but it never can recross this dividing surface in this
vibrationally-adiabatic approximation. However, when a
single value of g,! is used, namely, the ¢* in (6b), re-
crossings can occur in this VA (PVA) case, and so then (6)
exceeds (5) in this case, namely by the states satisfying (7).

Vibrationally-Nonadiabatic Effects

Vibrationally-nonadiabatic effects arise from two main
sources:!! (1) variation in the frequencies of the internal
motions (motions perpendicular to the reaction coordinate)
along the reaction coordinate, and (2) curvilinear effects
of the reaction coordinate, such as a sharp change of di-
rection of that coordinate in the usual® skewed-axes di-
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agram. Both effects participate in reactions which are
nearly adiabatic.!! Reactions which are highly vibrationally
nonadiabatic, such a highly exothermic reactions which
produce very vibrationally-excited products, are probably
so because of the sharp change of direction of reaction
coordinate effect. (The reaction coordinate in this de-
scription is chosen to parallel the “reaction path™.'2)

Of the two equations for Ng,! in the previous section,
(5) and (6), eq 5 treats each channel (internal state) from
reactants to products as either open or closed. A channel
n is open if E,(q) < E for all g and closed otherwise. In
the presence of vibrationally-nonadiabatic transitions, each
channel can become partially open and then eq 5 no longer
applies when such transitions are important. Equation 6
on the other hand merely counts states at some g, re-
gardless of whether they are at a later or earlier ¢ open,
closed, or partially open, and we shall focus our attention
on it.

Several nonadiabatic effects arise. Clearly, a vibra-
tionally-nonadiabatic transition which occurs at a ¢ > ¢!
and which does not result in a reflection back across the
transition state has no effect on the forward reactive flux.
However, certain localized nonadiabatic transitions oc-
curring at g < ¢! also have no effect on this reactive flux.
Consider two channels m and n, which undergo their first
nonadiabatic transition. Each has the same initial flux j°
(= 1/hpgy) in the ensemble. We consider rather localized
nonadiabatic transition probabilities between the two
states at a g, P,,..,, which do not in themselves cause a
reflection at that g. The forward flux in the nth channel
after this transition is j° Py, + /° Py Since P,._, equals
1- P,,.., and since by microscopic reversibility P,,.., and
P,.... are equal, the flux in the nth channel after the
transition is again j°, as is that in the mth channel. Thus,
such transitions at ¢'s less than ¢! do not result in net flux

- changes in each channel, and so do not affect the forward

reactive flux. Similar remarks apply to later vibration-
ally-nonadiabatic transitions which each of these channels
may undergo with other channels at ¢ < g'. In the present
discussion we shall neglect any transition which occurs at
g = ¢, for simplicity. It would lead to an expression less
simple than (2).

Thus, in a derivation which includes nonadiabatic effects
we may proceed as follows. The initial probability flux of
internal states is 1/hpgy, as shown earlier, summed over
all states with energy equal to or less than E and having
the given J. These states may then undergo nonadiabatic
transitions but the transitions described above do not
affect the forward flux of states in each channel. We then
select as the transition state some g, denoted by ¢*, and
assume that there will be very few reactants’ states which
have a turning point at ¢ > ¢* (i.e., states arising from
reactants such that E,(¢') < E < E,(q) at a g > ¢*), very
few products’ states which have a turning point at g < ¢*
(i.e., states arising from products which crossed g! from
the products’ direction then met a turning point and
recrossed ¢'), and very few bound states containing ¢'
(which have, accordingly, both turning points). Under
these conditions, the flux crossing ¢ = ¢! is almost all
reactive flux and one obtains (6a), where Ng,! is the
number of internal states n at ¢ = g'. Because of re-
crossings, which occur where any of the above conditions
is violated, this rate constant is an upper bound (apart
from other neglected effects), and so (6b) is imposed to
minimize the error. Some other prescription for the
transition state, other than g equal to a single value at a
given E and J, could also be introduced, giving ¢! an n
dependence for example (as well as the E and J depen-
dence it already may have).
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Further Comparison with Classical Theory

In the most general form of classical mechanical tran-
sition state theory the dividing surface (the transition
state) is one which depends on both the coordinates and
the momenta.}'? In the transition state theory described
by (2) and (6), the dividing surface depends on a limited
number of momentum-like variables (E and the J’s, re-
calling that quantum numbers correspond to the classical
action variables, which are momenta?®). In (2) and (5) the
dividing surface also depends on other momentum-like
variables, the n’s, but suffered by neglecting nonadiabatic
effects. In none of these cases was the dividing surface
crossed by momentum velocity components (p, J, or 1),
only by ¢ (nor by velocity components for coordinates
conjugate to J or n, the “angle variables” velocities!!). In
one case there was no J because J was a constant of the
motion while in the other case the effects of nonadiabatic
transitions and hence of ri’s were considered before and
after but not at the transition state. Typically, momentum
velocity components at the transition state have been used
mainly (in classical mechanical transition state theory) to
treat atom recombination reactions'?

2X+M—-X,+M (8)

since to avoid immediate redissociation of any newly
formed X, bond some of the energy of the newly formed
bond must be transferred to the other coordinates.

The variational form of classical mechanical transition
state theory, in which the dividing surface is chosen so as
to make the reactive flux as small as possible,? has (6b) as
its analogue in the present quantum treatment.

Tunneling

In transition state theory nuclear tunneling along the
reaction coordinate is usually treated by calculating the
potential energy barrier along the “reaction path” (path
of steepest ascent to a saddle point from the reactants’ and
products’ valleys).?> For a given vibrational quantum
number n of the internal motion(s) (in the vibrational-
ly-adiabatic approximation) E,(q) includes the potential
energy increment, V(g), and acts as an effective barrier for
tunneling. It was recently shown!® for the H + H — H,
+ H reaction that semiclassically a better tunneling path
(one with the less Im fP.dQ integral for the paths
examined'®) was for any specified n the path of vibrational
end points for that n (cf. Figure 1 of ref 15). (Im is the
“imaginatory part of ”, dQ an element of the path, and
P momentum along the path.) This path yielded improved
values of the reaction probability when compared with
exact quantum mechanical results for the collinear collision
treated.

The best tunneling path (one with minimum Im fP-dQ)
will depend upon the reaction. As an example one can
consider the transfer of a light particle H between two
heavy particles A and B, in AH + B — A + HB. When
A and B are sufficiently heavy only the motion of the H
need be considered in the tunneling. The path with the
smallest Im S P-dQ now involves, at the distance of closest
approach of A and B for the given E and n, the motion
of the H alone.!® In other cases, where the masses of A
and B are not so large, they take part in the motion too.
In the usual skewed-axis diagram, one selects as the initial
point of tunneling the translational-vibrational end point
in the reactants’ channel (P in Figure 1 of ref 15) for the
given n and E. As the final point of tunneling one would
select the translational-vibrational end point for state m
of the products (P’ in Figure 1 of ref 15). [Here, m equals
n in the case of a sufficiently symmetric reaction.] One

R. A. Marcus

would, presumably, for any given (n,m) pair find the path
with the smallest Im fP.dQ, and eventually select that
m for which this Im {P-dQ is also the smallest. Similar
remarks apply to a reaction AC + B — A + CB. In the
case of fully three-dimensional reactions, the local E,(q)
includes an energy for the bending motions of the A-C-B
system, which at large separation distances are AC or CB
rotations.

It is not yet known, in the present absence of detailed
calculations apart from those in ref 15 for collinear H +
H,, how well the above simple prescription applies. It
depends on the very existence of these states of energy
E.(q).
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Discussion

DaviD M, GOLDEN (Stanford Research Institute). If reported
A factors for R + H-R’ — RH + R’ are correct as reported, they
can be understood using simple transition state theory as described
in my paper in this symposium. Does this mean that the dynamic
corrections discussed by Kuppermann and the tunneling cor-

-rections discussed by Marcus tend to cancel each other?

R. A. Marcus. The transfer of a light particle (H) between
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two relatively heavy ones (R,R’) is very different dynamically from
the H + Hy; — H, + H reaction, and should be treated separately.
1 have commented in the paper on tunneling paths for the transfer
of a light particle between two heavy ones. It would be very useful,
of course, to have three-dimensional quantum mechanical cal-
culations for these systems.

J. TROE (Institut fir Physikalische Chemie der Universitat
Gottingen). I agree with your remarks about the importance of
the vibrational adiabatic channel states. Now we have to ask what
is important to do in the future? Certainly we need better
potential surfaces. Then, we have to learn how, with these
surfaces, we can construct a better set of channel states. This
has to be done so that we obtain the best zeroeth order set of
channels for which only a minimum of dynamical coupling is left
over. We also must learn to what extent vibrational adiabaticity
holds for a given set of channel states.

R. A. Marcus. I certainly agree. In the written version of the
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paper, which is an elaboration of the verbal one, it is pointed out
how nonadiabaticity affects possible definitions of the transition
state—leaving one essentially intact but making the other quite
uncertain.

H. O. PRITCHARD (York University). I would like to suggest
that in any reaction for which quantum-mechanical tunneling is
conceived to be an important contributing mechanism, it is going
to be extremely difficult to calculate reliable rates from first
principles. We have recently [M. Kuriyan and H. O. Pritchard,
Can. J. Chem., 55, 3420 (1977)] calculated the energy levels for
H,* with both adiabatic and nonadiabatic (effective) potentials.
Inclusions of the nonadiabatic Born-Oppenheimer corrections
shifts the quasi-bound levels of H,* by about 8 cm™!, but it alters
the lifetimes by as much as a factor of 4. Thus, with less-
than-perfect potential surfaces, the chances of getting reliable

,answers will be worst when the barrier is low and wide, as it is

in a quasi-bound resonance, but will improve somewhat if the
barrier is strongly peaked and very narrow.



