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Abstract

Semiclassical studies on molecular bound states, molecular callisions, and time-
dependent dynamical systems are described. Several methods have been evolved for
determining the action variables of nonseparable bound state systems, and thereby

for calculating their quantum mechanical eigenvalues. Nonresonant and resonant sys-

tems are included, and surfaces of section in higher £>2) dimengional as well as in
two-dimensional systems are obtained. Further, trom he Fourier transform ot an

autocorrelation function the molecular spectrum can be determined directly from a
trajectory. The effect of an oscillating electric field on a molecule is discussed
semiclassically with a view to obtaining a relation between the classical mechani-
cal and quantum mechanical treatments.

1. Introductory Remarks

In the present paper we would like to describe some recent results obtained in the
semiclassical theory of bound states of molecules, molecular ¢ollisions, and time-
dependent phenomena. The theory permits one to use classical mechanical trajec-
tories and quasi-periodic concepts to calculate quantum mechanical properties.

In the treatment of molecular collisions [1], the semiclassical wavefunction
¥{q) of the coordinates g is expressed in terms of the phase integral S along a
trajectory

¥(q) ~ |det 325/3qaP| exp(iS/a) (1.1)

q
S=/ pdq+ po-qo - (Mn/2) (1.2)
9o

Here, p is the N-dimensional momentum conjugate to the N-dimensional coordinate q,
with initial values of (po,Qo). Mn/2 is the accumulated loss of phase due to the
trajectory having been reflected from caustics or having passed through foci. The
determinant in (1.1) is an N x N one. P denotes a set of constants of the motion--
usually the action variables for the N-1 bounded degrees of freedom and the total
energy E. (There is one unbounded coordinate, a radial distance coordinate, in
molecular collisions.) & is Planck's constant divided by 2m.

Wwhen there is more than one topologically independent trajectory that proceeds to
q, ¢ consists_of a sum of terms of the above form. The wavefunction over all space
is obtained by appropriate choice of the gqp's. The action variables contained in P
are the classical analogs of the quantum numbers n, and usually equal (n+%)h, depen-
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ding on the degree of freedom.

The semiclassical theory has been extensively reviewed for elastic collisions
[2]--i.e., collisions which involve no interconversion of translational and internal
motion. In most elastic collision studies it was possible to separate variables in
the classical motion and so obtain p as a function of q. Since 1970 the major de-
velopment [1] has been in the treatment of inelastic collisions [3]. Here, in these
no longer separable systems the classical mechanical equations of motion are now in-
tegrated numerically using computers to obtain p(q). Once the wavefunction for the
collision has thereby been determined one can calculate any desired properties
associated with the collision, such as transitijon probabilities from one internal
state of a molecule to another of its states. Some of these transitions are classi-
cal dynamically-forbidden but not energetically-forbidden, and then one uses tra-
jectories in which p 15 a complex-valued function of q. One then obtains transi-
tion probabilitfes which are exponentially small,

We focus our attention in the present paper, however, on some results for bound
state rather than collision problems, and finally we consider briefly a time-depen-
dent problem such as occurs for a molecule in an intense coherent or incoherent

light pulse.

2. Bound State Problems
In 1917 £INSTEIN [A] pointed out that to quantize a system one should find the topo-
logicaily independent canonical invariants-- the ¢ p.dq cqual to (n+8)h, where 6

is a known constant, typically 1/2 for nondegencrate vibrations. 1I.e.

ép'dq v (niﬂ’)h (1 = ]!"'lN)' (2-])

i
where ci are the topologically independent paths and N is the number of coordinates.

KELLER showed how to obtain in this way the quantum mechanical eigenvalues of
the systems in which a particle moved in various shaped regions of constant poten-
tisl enerqgy inside and infinitely high at the boundary [5]. Until recently no
method was avallable for determining these ép.dq integrals for nonseparable two
or more dimensional systems when the potential energy function is smoothly varying.
An exarple of 2 trajectory for such a system naving a Henon-Heiles Hamiltonian
(2.2) is given in Fig.1 for the case of ingoumensurate w, and wy.

Ho= 5(p, 7+p "t "xPho y?) + Ax(y?sixt) (2.2)
2

Fig.1 Trajectory for the Hamiltonian (2.2), with w, and wy incommensurate.
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By integrating along the caustic in Fig.l from A to B and back and also from A to C
and back, EASTES in this laboratory was able to evaluate for the first time the two
independent phase integrals [6]. Using an iteration procedure it was possible to
find trajectories at energies such that (2.1) were simultaneously satisfied. There-
by, the quantum mechanical eigenvalues were determined.

The topologically independent paths C, are also depicted for the Fig.1 system in
Fig.2. NOID [7]) made use of Poincaré qufaces of section to evaluate the phase
integral. E.g., for the surface of section at y = 0 it is the area under the curve
of p, versus x. Results for the eigenvalues obtained in this way are given in

Tabl® 1. Other methods [8] for obtaining the eigenvalues have been developed since,
The methods tend to complement each other each other. (Table I is at end of paper.)

0]

A B
Fig.2 Topologically independent paths C, and C, for calculating action integrals
for the trajectory in Fig.l

One sees from Fig.1 that when w_ and w_ are incommensurate the anharmonicity
in (2.2) causes only a minor distoftion of the original box-)ike shape and, cor-
respondingly, only minor energy transfer between the degrees of freedom x and y.
The situation is quite different when w_and w_ are commensurate. When w_ = w
the trajectories are either of the ]ibrSting of precessing type, an examp?e ofY
the latter being given in Fig.3. Curvilinear (e.g., radiuszconstant) and recti-
linear (y = 0) surfaces of section were used to obtain the phase space data to
evaluate the topologically independent phase integrals and ayain evaluate the
quantum eigenvalues thereby [9].

Fig.3 Trajectory for the Hamiltonian (2.2) with wy = Wy

Another example showing extensive energy sharing between the x and y coordinates
is the Fermi resonance case (w_ = 2w ). Here a secular term in the anharmonic
contribution can be shown to afise (%nlike the w, = 2w, case) and to cause the
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extensive distortion, as in Fig.4, again unlike the w, = wa case. Because of the

shape of the region swept out in Fig.4 one surface of’section was selected along a

parabolic coordinate curve, and the other at y = 0, to evaluate the two independent
phase integrals, and, thereby, to evaluate the quantum eigenvalues [1o].

W\ 30 1y

X
Fig.4 Trajectory for the Hamiltonian (2.2) for the Fermi-resonance case, w, = Zmy

We have extended this surface of section method to higher dimensions [(11]. Where-
as before we noted, say, the value of p_ and of x each time the trajectory crossed
the y = 0 axis in a positive direction, now we note each time the value of xyz along
the trajectory passes through zero, then collect the x = 0 cases and, for plottingp,
vs 2,y occurring in the small interval (-e,e), withp, >0, p, > 0. In practice the
phase integrals were evaluated in action-angle coordfnates rfther than conventional
ones to reduce the number of points needed for the evaluation. The entire proce-
dure was also applied to four-dimensional systems as well. The quantum mechanical
energy eigenvalues were again evaluated by iteration, using (2.1).

A direct method for evaluating the quantum mechanical spectrum (differences of
energy eigenvalues) from classical trajectories has also been developed here [12]:
one computes an autocorrelation function such as {x(0)x(t)> from the trajectory,
and takes the Fourier transform. A suitable form for the spectral function I{w)
which avoids the averaging over initial phases in { ) was shown to be

T
Ho) = g5 110 3 (1 [ x(elexp(-tut)de]?) (2.3)

where the remaining averaging now appears only in some statistical mechanical en-
sembles (e.g., a canonical one). An example of a spectrum for a finite trajectory
time T is given in Fig.5 for the function x(t)+y(t). The spectrum is seen to con-
sist of sharp lines, as indeed it should in the quasi-periodic regime. Results
comparing these semiclassical spectral lines with the quantum mechanical ones are
given in [12] for this two-dimensional system. Analogous results were obtained
for three-dimensional systems also [12].

In the “ergodic"2 region the spectrum obtained by us was "broadened" under low
resolution (cf [12], but with increasing length of trajectory time the spectrum

2Throughout this paper the term ergodic has been used somewhat loosely to mean a
system reaching most of the energetically accessibie phase space. It is still
accumed that the time-averaas averaae eouals the averaae over that space.
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appears, increasingly, to consist of sharp lines.)

T(w)

. LA L 1

(A

Fig.5 Power spectrum I(w) of the function x(t) + y(t) for the case of two dimen-
sions and the Hamiltonian (2.2), in the quasi-periodic regime

An example is given in Fig.6 for the system with the Hamilton{an (2.2) and at an
energy for which one has exponential separation in time of neighboring trajec-
tories. Three spectra are given, corresponding to three initial conditions at
the same energy (11]. The trajectories for the spectra in Fig.6 were for long
times, but nevertheless back integrated to two places (and conserved energy to
seven places). Spectra for increasingly short times back integrated of course to
more figures, but became increasingly less “"structured." We have not yet run a
spectrum which is a phase space average of these spectra. Unlike the quasi-
periodic case the spectral intensities are approximately independent of the ini-
tial conditions at the given energy. The spectra are seen to consist of numerous
"Jines", perhaps evidence for CHIRIKOV's idea of overlapping resonances. (Reso-
nances typically introduce additional lines.)

I¢w)

——

(A)

Fig.6 Legend as in Fig.5 but for the ergodic regime: the three spectra are for
trajectories of a given energy but different initial condition

In the ergodic regime we find that trajectories at different initial conditions
with the same total energy yield spectra which become increasingly similar the more
the trajectories are able to average over all of phase space: If the trajectory has
not been allowed sufficient time to pass through a large portion of phase space, the
spectrum is still broad, and a longer trajectory would yield a somewhat different
spectrum. Presumably the length of time needed for the spectrum in the “ergodic"
regime to be independent of initial conditions at given energy is the recurrence
time. Application of the spectral method to determine energy distribution of high
energy molecules among various normal modes was made in a recent classical trajec-

tory calculation [13].
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3. Time-Dependent Problems

We cuonsider here the motion of the atoms in a molecule under the influence of an
oscillating electric field, a light pulse for example. The pulse may be coherent
or incoherent. In either case the Hamiltonian for the motion of the molecule will
depend on the coordinate q. the momenta p and, now, explicitly on the time t. One
can show that the appropriate semiclassical wavefunction now for the time-dependent
wave equation is again given by (1.1), but with S given by

t
S=7p-dq+poqo - [ H dt, (3.1)
Qo 0

and the P's now all being initial action variables. The average semiclassical
value of, say, x(t), is given by

(x(th = [ [¥(a:t)]® x da, (3.2)
where ¢ is the semiclassical wavefunction,
|det 325/9q3P|exp(iS/4)
|det 3q5/99]exp(iS/h), (3.3)

where P denotes the initia) action variables for this bound state system.

Vselart)

One can then show that the (x(t))Sc in (3.2) is equal to its classical value,
1

(x(t) = [ x(t) dgo (3.4)
)

where the integration is over initial phases (initial angle variables) of the
classical motion. I.e.,

(x(thg, = (x(th (3.5)

The conditions used to obtain (3.4) from (3.2) were (i) to neglect tunneling, if
any, along the trajectory, i.e., to neglect the case where p in (3.1) is complex-
valued over some portion of the path, and to consider the case where det|3q/3q,]|
had no zeros. Remarks similar to those about x apply to any other functions of the
q and p, such as that portion of the energy Hmo] of the molecule not explicitly
involving the oscillating electric field.

ooy (D g = (g (8D ¢ (3.6)

The result (3.5) helps explain the similar behavior reported by Dr. Lamb at this
conference, where he compared classical and quantum mechanical results for an
oscillator in an oscillating electric field. As he suggested, one should compute
(x(t)) . by averaging over initial phases wo, rather than begin with the oscillator
classifally at rest.

The derivation of Eq. (3.6) also provides some justification for the recent
classical trajectory treatment of the behavior of a polyatomic molecule CH;CL
under the influence of an intense oscillating electric field [14].

Further studies {15] utilizing these concepts are currently being performed in
an attempt to characterize the effects of ergodicity on a classical calculation of
infrared multiphoton disassociation.
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4. Erqodic Wavefunctions

We have made both a classical traj

variational calculation using the Hamiltonian (2.2) with w

the motion is quasi-periodic and trajectories which resem
comewhat similar to those in Fig.4.

this energy region occupy a simi
in Fig.7.

function occupies a correspondingly larger region
(11]. Further aspects of this behavior are curre

ectory study as well as a quantum mechanical

The wavefunctions correspon
larly shaped reg
he classical moti

of configuration space_in Fig.8
ntly being examined [ol.
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Fi :7 A wave function.for the Hamiltonian (2.2) at an energy where the ¢lassical
motion is quasi-periodic, for the Fermi-resonance case

= 2w._. At low energies
bfe cured rectangles are
ding to a state in
jon of configuration space, as seen
At higher energies t ion becomes stochastic and the wave-
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Fig.8 Legend as In Fig.7, but for the case that the classical motion is "ergodic"

Additional studies [16] using a numerical integration of the time-dependent
Schrodinger equation for a system in the presence of an external laser field have
been done at various values of the laser power and frequency. The wave functions
have been observed to change from a localized type to one spread out with many
ripples, after the system has absorbed sufficient energy from the field.

5. Concluding Remarks

In the present paper we have surveyed some recent results of semiclassical theory
of anharmonic systems. The results draw on some of the classical concepts being
treated at this conference.
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TABLE 1

Comparison of the semiclassical and quantum
energy levels for various systems

System Quantum Eigenvalues Uncoupled
w2 qy’ numbers '
T (n_.n) Quantum Semicl. A=0
x_ Y

0.29375, 2.12581, 0,0 0.9916 0.9920 1.0000

1,0 1.5159 1.5164 1.5420 .
-0.1116, 0.08414 2,0 2.0308 2.0313 2.0840
0,1 2.4188 2.4198 2.4580
0.36, 1.96 0,0 0.9939 0.9942 1.0000
-0.1, 0.1 1,0 1.5809 1.5812 1.6000
2,0 2.1612 2.1616 2.2000
0.49, 1.69 0,0 0.9955 0.9954 1.0000
1,0 1.6870 1.6870 1.7000
-0.1, 0.1 0,1 2.2781 2.278% 2.3000
2,0 2.3750 2.3751 2.4000
1,1 2.9583 2.9588 3.0000
0,2 3.5479 3.5480 3.6000
0.81, 1.21 0,0 0.9980 0.9978 1.0000
1,0 1.8944 1.8944 1.9000
-0.08, 0.1 0,1 2.0890 2.0889 2.1000
2,0 2.7899 2.7900 2,8000
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