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Abstract

Some results on the classical mechanics of anharmonic vibrations in several-
dimensional systems are summarized, and their relation to unimolecular reac-
tion rate theory and to infrared multiphoton dissociation of molecules is
discussed. Quantum connections are considered using semiclassical theory.

1. Introduction

The anharmonic behavior of vibrational systems has been the subject of in-
tense classical mechanical investigation in recent years [1], and some of
these results and their application will be described in the present paper.

It is known from analytical arguments (KOLMOGOROV-ARNOLD-MOSER Theorem
[1]), and further corroborated by numerical studies [1], that at low energies
the behavior of anharmonic systems is highly regular. One has "anharmonic
modes"”, characterized by certain constants of the motion, the action varia-
bles J, [2]. Thereby, the region of the phase space occupied by any stable
system in this energy region in the long-time motion is determined by the
J.'s (or in a degenerate case by one or more canonically conjugate angle
vidriables also [2])). At high energies, numerical studies indicate that the
size of the phase space region covered by the trajectory is determined, in-
stead, only by the total energy (and presumably in 3-D by the angular momen-
tum J, and any of its space-fixed components J,). We shall term the low and
high 3nergy regions "quasi-periodic" and “ergoaic." respectively, and con-
sider implications for unimolecular reactions and for infrared multiphoton
dissociation.

2. Description of "Quasi-periodic" and "Ergodic" Regimes

Considerable insight into the behavior of anharmonic systems is obtained
from classical mechanical trajectories. The latter in turn are computed
by numerically integrating Hamilton's equations of motion using the Hamil-
tonian for the system. An example of a trajectory for the Hamiltonian
2 2 2.2
He=hlp,m +p" +u X"+ wyyz) + ax(y? + yx), (2.1)
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where Py and p_are the x and y components of momentum, is given in Fig. )
of [33:* At 1o¥ energies the trajectory sweeps out, when w_ and w_ are in-
commensurate, a rectangular-like region in xy space, the bSundari®s of the
"rectangle" being termed the “caustics”. The "rectangle”" is contained with-
in a curve for which H = E (an e))ipse-shaped curve) and touches it at the
four corners of the “"rectangle”. Thus, the trajectory under these condi-
tions does not cover all of the configuration space energetically accessible
to it. At these energies where such trajectory figures are obtained, action
variables Ji (cyclic pdq path integrals along a path q) can be defined and
computed, e.g., as in [3-9].

In contrast, in the high energy regime the trajectory appears to cover
the available configuration space (and indeed the energetically available
phase space), and to depend only on the energy E, and in 3-D also on J, and
J,. Thus, the long-time statistical behavior of the system is very di?ferent
ifi the two energy regimes: 1in the quasi-periodic case only a limited portion
o: the energetically accessible phase space is sampled, for any given value
of J.'s.

i

When there is an internal resonance in the system, e.g., when w_ equals

w in (2.1) (a 1:1 degeneracy) the behavior is quite different: iff the case
ot w *uw and A = 0 the trajectory is a periodic one, an ellipse. Whereas,
with™) = 0, the trajectory thereby covers a “one-dimensional® domain, in the
case of A ¥ 0 it ultimately covers a two-dimensional region. An example is
given 1n Fig. 3 of [5], which uses (2.1) with w_* w . Here, the trajectory
sweeps out a two-dimensional circular regfon, a¥ a r¥sult of precession of
the ellipse due to the anharmonic coupling term.

There is thus a marked contrast in energy sharing behavior between the
trajectories for incommensurate w_and w_ and for w_ = w . In the first
case the y- amplitude (i.e., the ¥ertica¥ distance Betwefn parailel “caustic”
lines) hardly varies with time. Thus, there is relatively little interchange
between the “energiss" of tae x- and y-degrees of freedom. The zeroth order
action variables J_~ and J_ = are almost constant. In the w, * w case, the
system fs sometimed vibratYng mainly along the x-direction,”*some¥imes mainly
along the y-direction, and sometimes in between. Thus, in this case there
is extensive energy exchenge betueen the x- and y-degrees of freedom. The
unperturbed constants J " and J " are no longer even approximate&y constants
of the motion, although’certain'related unperturbded constants J_- and J,°,
based on polar coordinates, can be approximately constant in thé perturged
system. Similarly, trajectories for a 2:1 resonance (Fermi resonance where
w = 2Qy) show significant energy sharing [10,11].

tnergy sharing certainly occurs in the ergodic regime, but as discussed
above it can also occur in the quasi-periodic regime between degrees of free-
dor for which there is an interna) resonance. However, in the latter case
there are constraints, e.g., in the 1:1 resonance the maximum amplitude for
a given energy depends on one of the action variables. There is no such
constrafat in the ergodic case.

The phase-averaged behavior in the quasi-periodic regime is characterized
by the action variables, and that in the ergodic regime only by the energy,
and in 3-D also by the angular momentum and by one of its components. Since
the behavior in the quasi-periodic and ergodic regimes can be quite different,
it s usefu) to examine a characterization of some of these differences. They
occur in (1) the "Poincaré surfaces of section*, (2) the rate of separation



of adjacent trajectories with time, and (3) the vibrational spectrum associ-
ated with trajectory. We consider each of these differences in this order.

A Poincaré surface of section [1] is a plot wherein each time a trajec-
tory crosses, say, the y = 0 line with y>0 the value of p_ and of x is re-
corded. Such a plot for the system discussed earlier in ¥he quasi-periodic
case with incommensurate w_and w_ gives a series of points which ultimately
form an ellipse, as in Figh 3 of {33. The value of J, is obtained by evalu-
ating the area, ép dx, of such a plot. The same value for J_ would be ob-
tained for points for which y<0, and also at any other line § = constant, as
long as that line crosses the same caustics. Similarly, each time the tra-
jectory crosses the line x = 0 one obtains J  from a plot of p_ versus y.

In the case of resonance systems (e.g., w, ="w, and w_ = 2uw,) {t was useful
to introduce curvilinear surfaces of sectfon s§ as to*obtaif Poincaré sur-
faces which correctly intersected the caustics [5,10,11].

In the case of the ergodic regime, the Poincaré surface of section dis-
plays a shotgun pattern fl], rather than forming the smooth “"curve" which
characterizes the quasi-periodic case, and the simple phase integrals 9pdq
(action variables) are believed to be undefined.

In the quasi-periodic regime adjacent trajectories separate on the average
(in an oscillatory way) linearly with time, while in the ergodic regime the
separation is exponential {1]. Some question on the use of this criterion
for distinguishing between the two regimes has been raised in [h2].

The vibrational spectra associated with the trajectories in the two dif-
ferent regimes are described in the next section.

3. Vibrational Spectra

Recently, the spectral intensity function I{w) associated with the vibra-
tional trajectory has been computed [13]. The spectral intensity for any
function p of coordinates and momenta is related to the autocorrelation
function {u(0)u(t)) in a standard Fourier integral manner. For purposes
of calculating 1(w) from trajectories, it was shown that [13]

lw)= 3= :Tum% 177 u(t) exp(-iut)dt]? . (3.1)

The behavior in the quasi-periodic regime is characterized by the property
that any function of coordinates and momenta can be expanded in a Fourier
series containing a number of fundamental frequencies equal to (or less)
than the number of coordinates, and containing combinations and overtones
thereof [2]. The number of fundamentals is less only in exactly degenerate
systems. The spectrum described by I(w) is thereby a line spectrum, as in
Fig. 3 of [13] for the Hamiltonian (2.1). Line spectra were also found in
our studies for the other quasi-periodic systems, such as those for the 1:]
and 2:1 resonances.

In the quasi-periodic regime the spectral intensity function 1(w) depends
on the initial conditions, e.g., on the values of the action variables Jx
and J_ at any given energy: The magnitude of I{(w) at an w equal to the
frequxncy for the x-motion in the w_ ¥ w_ case is small when J is small
and conversely. The frequencies thémseiVes also depend somewhdt on the J's,
because of the anharmonicity.



In the ergodic regime the spectrum is different in two respects: it is
"broadened" [13,14] and, at any given initial energy, it is approximately
independent of initial conditions. (It would be exactly independent if T
in (3.1) were large enough and if the system were really in the ergodic
regime.) The “broadened" spectrum appears to consist of many Vines, which
may reflect the presence at these high energies of many internal resonances.
CHIRIKOV has postulated, in fact, that ergodicity arises from the overlap of
internal resonances [15], and has suggested a semiquantitative criterion for
onset of ergodicity.

We consider next some quantum aspects of these classical results, using
both semiclassical and quantum calculations.

4. Quantum Aspects

In the quasi-periodic regime, the existence of the action variables per-
mitted semiclassical methods to be used to obtain the quantum mechanical
eigenvalues [3-11]. It was possible, for example, to evaluate two topologi-
cally independent $pdq integrals, i.e., the action variables, from trajec-
tory data described in Sec. 2 for a two degree of freedom system, either by
integrating along the caustics or by evaluating the areas of the Poincaré
surfaces of section [3-5). The second method has been extended to higher
dimensions [14,16]. Setting these integrals equal to their semiclassical
values (n_ + %)h and (n, + %)h for vibrations, an iteration procedure led
to integr3l values of the quantum numbers n_and n . The eigenvalues for
the energy are the energies for which n and n_ ar¥ simultaneously integers.
The agreement between these semiclassicil eige¥values and the quantum mechan-
ical ones was reasonable, and other methods have also been presented [6-9].
Both nonresonant [3) and resonant [5,11] cases can be treated by the
trajectory method.

In the quasi-periodic case the region occupied by the trajectory, i.e.,
the region bounded by the caustics, describes the “classically-allowed"”
region for the wavefunction for the given eigenstate. Inside the caustics
the wavefunction is oscillatory and outside the caustics it vanishes ex-
ponentially. When, as in the Fermi resonance case, this classically-allowed
region was curvilinear in shape (a bent rectangle), the region occupied by
the oscillatory portion of a purely quantum mechanically calculated wave-
function occupied a similarly shaped region [11,14].

To obtain semiclassically from trajectories the frequency appropriate to
a quantum mechanical transition (nx,n ) - (nx+1, n ), it sufficed, by a
correspondence principle argument, to’obtain*the r&levant classical fre-
quency corresponding to a classical state (n s, n ). It agreed well with
the quantum mechanical frequency for the abolle traWsition, calculated using
a large basis set to locate the eigenvalues. (1t also sufficed, in the
process, since the perturbation was not very large, to use a trajector
corresponding to the relevant values of zeroth order action variables.
Similar remarks applied to the other transitions [13].

This spectral method for eigenvalue differences, i.e., for frequencies,
is much faster computationally than that of the direct determination of the
individua) eigenvalues. An example for a system with a Hamiltonian of the
form (2.1) but for three degrees of freedom is given in Table 1I of [13],
and the agreement was quite reasonable.
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In the ergodic regime on the other hand, it has not been possible thus
far to calculate eigenvalues semiclassically. Nevertheless certain classical
and quantum properties can be compared. The wavefunction shows some tendency
to occupy all of the classically-allowed region energetically accessible,
just as the ergodic trajectories did, and further calculations are in prog-
ress [11]. This behavior contrasts with the behavior of the wavefunction
in the quasi-periodic regime described earlier, where both the trajectory
and the wavefunction “occupied” a region determined by the individual action
variables rather than only by the total energy (and, in a 3-D system, by
angular momentum and one of its components). Some predictions of other as-
pects are given in [17].

A comparison of the classical and quantum spectra in the ergodic regime
is also of interest. In the absence of well-defined action variables J and
J, in the ergodic regime, a procedure similar to that used in the quasi-
pgriodic case has not yet been devised for calculating an ergodic regime
spectrum semiclassically. A rather oversimplified procedure of choosing
an energy region E: Aw, where w is the largest frequency and then calculat-
ing all possible quantum mechanical transition frequencies for energy levels
in that energy domain has been explored [14]. It yields a number of spectral
lines which are in the same region as those in the ergodic classical spec-
trum, and with somewhat related intensities, but much fewer in number. Thus,
there is some connection between quantum and classical spectra in the ergodic
regime, but details are not yet well understood. The similarities do sug-
gest that classically-computed trajectories for infrared multiphoton dis-
sociation are useful for understanding dynamical aspects of that process.

We turn next to some implications for unimolecular reactions and for
infrared multiphoton dissociation.

5. Implications for Unimolecular Reactions

For unimolecular reactions one can envisage two limiting forms of a theory,
ergodic and quasi-periodic [18]. In the ergodic regime the long-time be-
havior of a bound state system, we saw, is determined by its energy E, total
angular momentum J and any component J_, and similarly for a dissociating
system. A dissocigtion rate constant ka.J ,J.) for such a system depends
on those constants. In a strong collision ?heﬁry the unimolecular reaction
;ate constant kun is then given as a function of pressure p and temperature
by

Kyni(PsT) = f...fk(E.J¢.Jz) D(E.J¢.JZ.T)dEdJ¢dJZ/[1+k/up], (5.1)
where p(E,J,,J_,T)dEdJ dJ_ is the thermal equilibrium probability of finding
the molecul® ifi the inferfal (E,E+dE), (J .J +d) ) and (J,,J,+dJ ), and w

is the deactivation collision rate per unit pressure. RREM fheofy [19-22]
uses (5.1) together with equilibrium statistics to calculate p and transi-
tion state theory to calculate k.

i

In the quasi-periodic regime the long-time behavior of a bound state
system we saw, is determined instead by its action variables, whose total-
ity is denoted by J and two of which are J, and J_. When a molecule is in
an unbound state (i.e., dissociates) only 3¢ and 3 among the J's are pre-
cisely defined. Thus, use of the other J's becomeé an added approximation,
even if the molecule behaves most of the time in some quasi-periodic manner,

and even if those J's are defined by simulating the actual potentia) by a
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bound state potential. With this approximation for defining the J's, and
assuming a kinetic formalism similar to the above for the ergodic case, k
would, in a quasi-periodic theory, depend on the J's and be written as k(J).
A's%;on%]ggllision unimolecular reaction theory for the quasi-periodic regime
yields

kyni(PoT) = Joont K(9) p(3,T)AI/DT + K(I)/wp), (5.2)

where dJ represents N.dJ; and p(J,T)dJ is the thermal equilibrium probabil-
ity of finding the molecule in (J,J+d)). If k(J) were only weakly depen-
dent on J at the given E,J,,J_, one could replace it in (5.2) by its average
value, k(E,JyJ,), i.e., b$’ 2

k(E.J¢,Jz) = [...0 k(J) dI/f.../dd, at fixed J¢.J2,E (5.3)

(The integration volume in J-space in (5.3) is r-3 fold dimensional, for a
system with r rotational-vibrational degrees of freedom, in virtue of the
three constraints.) Integration over J in (5.2) then yields

J...0 p(d,T) d) = p(E,JO.Jz,T) dEdJ¢sz (5.4)
for given J¢.J ,E. In (5.4) the integration is over the J space contained
in dEdJ¢sz. fq. (5.2) then yields the ergodic regime (5.1).

However, if k(J) fluctuates greatly with J at fixed (E,J,,J ) the quasi-
periodic and ergodic regime theories could differ substanti31l§ as a function
of pressure, and some calculations on this aspect are being planned.

N. B. SLATER's theory of unimolecular reactions [23] is a harmonic oscil-
lator approximation to the quasi-periodic theory described by (5.2). His
vibrational amplitudes a. are closely related to the action variables J
(J$c a.? in the harmonic approximation). One major difference arises i
the role of degeneracies. If a system is degenerate throughout its motion,
its trajectory covers a fewer dimensional region than it would if non-de-
generate (as in the case described earlier in Sec. 2 with w, ° W and A = 0).
Thereby, in such a degenerate case, a SLATER k, averaged at'a pa¥ticular
energy, is very different from the ergodic k at that energy. A small amount
of anharmonicity to break this degeneracy would void this aspect of the
purely harmonic oscillator theory, even apart from the question of whether
a quasi-periodic theory for k would be appropriate.

There have been extensive tests of unimolecular reaction rate theory,
using thermal rate data and using chemical activation results, e.g. [20-22].
The principal uncertainty in such tests lies in knowing the molecular pro-
perties of the transition state for the reaction. Typically, in the case
of vnimolecular reactions one chooses the properties to be consistent with
A_, the value of the pre-exponential factor for the limiting high pressure
unimolecular reaction rate constant. Since there are a number of vibration
frequencies which may be changed substantially when products are formed from
reactants, and hence perhaps also when the transition state is formed from
reactants, there is a lack of uniqueness in the values of the frequencies
of the transition state to be selected so as to be consistent with the value
of A_. However, it appears that some reasonable latitude in this choice
largely leaves the pressure dependence of k ni unaffected, provided the
choice always has the same A_, e.g., [24]. "



This relative lack of strong dependence of calculated pressure behavior of
k . on the detailed choice of frequencies, subject to the constraint of
cBRlistency with A_, is also reflected in the classical 1imit of the RRKN
expression: here, regardless of the values of the uncertain frequencies,
there is only one unknown parameter in the classical limit. for a aiven
activation energy and number of transition state vibrational coordinates,
and taking, as in RRKM, all vibrations of the molecule to be “active”.
This unknown parameter is then determined uniquely by A_ in this classi-
cal 1imit, and so even in the near-classical case there will be some in-
sensitivity to choice of the transition state frequencies, provided the
choice is consistent with A_.

The chemical activation and unimolecular reaction rate data find a con-
sistent explanation, using such transition state frequencies [20-22].

Further results on unimolecular reaction rate theory are available from
energy distributions of products of molecular beam reactions involving for-
mation of intermediate complexes [25-27). Here, when the.transition state
is “loose"” there are no “"exit channel effects” and the energy distribution
in the products becomes a fairly direct test of the energy distribution in
the transition state, namely whether or not it is statistical (ergodic) and
the test is, importantly, under collision-free conditions. Results for such
“loose" transition states tend to support RRKM Theory in the cases studied
having large vibrational energy.

There have been many classical trajectory tests of RRKM Theory, e.g.,
(22,28-30]. RRKM behavior is frequently observed. However, when there
are groups of very unequal frequencies, energy sharing between the groups
can be slower than otherwise and could be rate determining, depending upon
the energy, as expected from the results in Sec. 2.

6. Hultiphoton Infrared Dissociation

Recent experimental results in infrared multiphoton dissociation have been
interpreted on the basis that the major part of the process occurs in the
ergodic regime of the molecule (e.g., use of RRKM Theory) [31,32]; the
initial absorption steps are, in effect, in the quasi-periodic regime. The
results of trajectory calculations [33] for several-dimensional systems are
interesting in this regard. In the quasi-periodic regime one expects the
energy of the molecule in the oscillating electric field to be somewhat os-
cillatory with time, accepting and giving back energy to the electric field.
At high energies, when the energy of the vibrationally-excited bond passes
more to the other degrees of freedom, and when the molecule also passes
into the ergodic regime, the absorption of energy is expected to be less
oscillatory. Such behavior is found in the trajectory studies in [33] where
2 molecule CD; C) was simulated (Fig. 4 there).

Various features of the process for €D, C1 were evident: for the tra-
jectories used (1) the dissociation depended on the energy absorbed rather
than on peak power, as in ergodic-type theory [31]; (2) the energy distri-
bution tended to be equilibrated among the various degrees of freedom in
107! sec, shortly after the pulse began to decay away; during the pulse
the distribution was nonrandom, being very high in energy in the pumped mode;
(3) the use of two laser pulses produced enhanced dissociation, a weak pulse
being on resonance and a strong one off resonance. Results (1) and (3), and
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equilibration in (2), are consistent with experimental results in other
systems.

One may well inquire, however, what significance the classical trajec-
tory results imply in a quantum world. The remaining portion of this paper
will be devoted to this question, and in particular to the way in which the
molecular energy changes with time. If H, is the Hamiltonian of the mole-
cule {the total Hamiltonian H being Hy, plus the field-molecule interaction)
the molecular energy at time t will be defined as Eq(t):

Eq(t) = f¥*{a,t) Ho(g.p)v(a,t)da, (6.1)

where q denotes the totality of coordinates (which we'll choose as "angie"
variables) and p are canonically conjugate action variables. and p denote
the approximate corresponding quantum mechanical operators [34%.

The semiclassical wavefunction can be written as [35]
v(q,t) = (3q0/3q)" exp (i W/4) (6.2)

where 340/3q is a determinant, Qo is the initial value of q, W is the solu-
tion)of the time-dependent Hamilton-Jacobi equation, and equals (one can
show

W(a,t) = 7t (pa-H) dt' + paqs - H{to)to
= 73 pda - sy H(t')E' + pedo - H(to)ts, (6.3)

where terms such as pq are an abbreviation for a sum Ip.q; over coordinates.
Eq. (6.2) is the wavefunction if interferences are negléc{ed. These inter-
ferences result from the occurrence of several branches of W [35] and hence
of y, which in turn arise when q is not a monotonic function of qo, €.9.,
when the determinant 3q,/3q changes sign.

Introduction of this wavefunction into (6.1) yields
Eq(t) = J H_(q,P) dqo, (6.4)

when W is real-valued in the integration region (no "tunneling"g. This,
is seen to involve an integration of H (q,p) at time t over the initial

E

pﬂases Qo, and is none other than the avePage classical energy E. of the
molecule (averaged over initial phase) at time t. Thus, under tﬁe above
approximations one has

Eg(t) = Ec(t), (6.5)

a result which is not surprising in virtue of the approximations made (no
interferences and no "tunneling”).

A numerical comparison of quantum and classical calculations of the
energy absorbed, averaged over a pulse, has been described as a function
of the field frequency for systems with one degree of freedom [36]. The
results were fairly similar, apart from the occurrence of some quantum
“resonances” which might be a reflection of neglected interferences. Clear-
ly numerical comparisons of quantum and classica) calculations for higher-
dimensional systems are desirable.
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In conclusion, one caveat in the use of (6.5) may be raised. A wave-
function such as (6.2) is well behaved in a quasi-periodic regime. At
high energies the ergodicity leads to a very scrambled nature of the tra-
jectories. (A laminar travelling vibrational wave in the quasi-periodic
regime thus presumably becomes a turbulent one in the ergodic regime. )
This trajectory behavior probably also leads to numerous places where 3q./3q
changes sign, and so to many terms in the semiclassical wavefunction.
These would give rise to interferences (e.g., cross terms in y*y) in com-
puting an integral such as (6.1), interferences which would tend to cancel
because of their large number. If so, one would then again be left with
(6.5). Semiclassical theory in the ergodic regime remains to be better
understood, however. For example, although there are now a variety of
techniques for calculating eigenvalues of nonseparable vibrational systems
in the quasi-periodic regime, there doesn't appear to be a successful semi-
classical calculation of an eigenvalue in the ergodic regime.
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