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The impact approximation is applied to the classical binary collision operator making it possible to derive
an expression for the dipole correlation function for real systems in a form which is computationally
traétable and contains no adjustable parameters. Trajectory calculations are performed (in order to
evaluate the microscopic expression for the relaxation parameter in the correlation function) for the system
CO in dense Ar gas. Comparison is made with experimental data and excellent agreement is found for
certain densities when a quantum correction is included. At higher densities (i.e., p~''’ < “the range of
the potential) one approximation is not valid and comparison with experiment illustrates this point..

. INTRODUCTION

The connection between spectral lineshapes and time
correlation functions is well known, }* The usefulness
of this connection as a means of predicting line shapes
depends upon the availability of theoretical techniques

to predict molecular motion. Even for a very dilute gas "

where only isolated binary interactions contribute the
dynamics often cannot be solved exactly, although there
have been many approximation methods developed quan-
tum mechanically,’ semiclassically,*'® and classicaily, ®
Alternative and popular approaches to the approximation
of molecular motion are the so-called relaxation time
models. %" Instead of attempting to calculate directly
the result of molecular collisions the relaxation time
models make basic assumptions about the motion (often
time involving at least one adjustable parameter) and
from there calculate the time correlation function and
the spectrum. Common models in the current literature
include the extended rotational diffusion models called

J and M diffusion originally derived for linear molecules
by Gordon.? Also derived for rotational diffusion is the
Fokker—-Planck model of Fixman and Rider® which ap-
pears to work better than Gordon’s,’ but the parameter
in the latter has been microscopically calculated.® The
purpose of this paper will be to introduce an approxima-
tion which makes it relatively easy to calculate the re-
laxation parameter in the rotational correlation function,
by numerically following the results of classical binary
collisions,

The necessary definitions and theory are summarized
in Sec. II, where use is made of techniques used by
Chandler’“ to derive J diffusion for hard sphere sys-
tems. The impact approximation is made to evaluate the
binary collision operator, making it possible to arrive
at expressions which are relatively straightforward to
evaluate. The sample calculation is discussed in Sec.
IIl and the results in Sec. IV. The comparison of the
results is made in the frequency (rather than time) do-
main since this is the experimental observable and it is
therefore desirable to compare well with it, although
a time-domain comparison is also made, This theory
is classical, .so one immediate problem when comparing
to experiment is that the predicted spectrum will show
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little asymmetry while the observed will be quite asym-
metric. A quantum mechanical correction motivated by
Schofield* and correct to order!® i is applied to the
classical calculation, This correction correctly ac-

counts for much of the observed asymmetry. The range

‘of validity of these calculations as well as some applica~

tions to other types of relaxation phenomena is discussed
in Sec. V. Calculations are planned for vibrational de-
phasing.

ll. THEORY
A. The binary collision expansion

We consider an argument which parallels the one used
by Chandler for hard spheres.!® Consider a system
made up of N particles with pairwise additive potentials.
The Bamiltonian for this system can be decomposed into
two parts

H=H°+H‘, (2. 1)

where H, denotes the Hamiltonian for the system when
the particles do not interact and

H, =E Uylry-ry)
7]

with Uy,(r, - r,) being the interaction potential between a
particle at position r; and a particle at r,. The propa-
gation of a dynamical variable A is given by

Aty=e™A( =0), (2.3)

where L is related to Liouville’s operator by a factor of
v=1. Taking the Laplace transform of Eq. (2.3) gives

A(s)=[s-L]*4=G(s)A, 2.4)

2.2)

where G(s) is the resolvent operator for the N-particle
system. The dependence of G(s) on the coordinates and .
momentum of the N-particle system has not been explic-
itly shown. If one decomposes L into two parts (L, and
L,) corresponding to the Hamiltonian H, and H,, one can
write G(s) as™

Gls)=Gy(s)[1 - L Go(s)]™,

where Gy(s) =[s = Lo]™! is the resolvent operator for
propagation in the system with no interactions, that is,
for free-particle streaming, The binary collision oper-
ator T,(s) is defined by'®

~

(2.9)
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Gc(s) =Go(3, a)—Go(S, a)Ta(s)Go(s, a)’ (2- 6)

where @ denotes a pair of molecules, and Gy(s, @) the
two-particle free-streaming resolvent operator, Ex-
panding the denominator in Eq. (2.3) and using Eq. (2.6)

gives the well-known binary collision expanslon““’

G(s)=Gols) = 2 Gols)TalsCuls) + I
. aby

X Go(s)T,(S)GO(S)T,(S)GQ(S) teee, (2‘ 7)

where 7, like @, represents a pair of particles, The
impact approximation can now be made which neglects
incomplete collisions, and thereby T,(s) is replaced by
its value at zero frequency T,

To(s)impectaee®t o, (2.8)

Since the impact approximation considers only complete
collisions, once a pair of @ particles have collided and
then undergone free-particle motion they will not as an
isolated pair undergo a second collision with each other.
Thereby,

T,Go(s)To=0. 2.9)
The resolvent operator can now be written as
-1
Gls)= (s-Lo+ZT..) . (2.10)
a

In arriving at this expression for G(s), Eqs. (2.9),
(2.8), and (2.7) are combined in a straightforward man-
ner. Comparing Eq. (2.10) with Eq. (2.4) shows that
in the impact approximation

LsLy=2.T,.

This result will be used in Sec. II. B.

2.11)

B. Approximation for the memory function

The miemory function of a time correlation function is
defined in terms of its Laplace transform as'®

C(s)=[s+M(s)™. (2.12)

Following Mori, Zwanzig, and others™ it can be shown
that the memory function for a dynamical variable u can
be written as

M,(t)=(Bue*Bu) , . (2.13)

where B denotes (1 -P,)L and is a projection operator
defined by its operation on arbitrary x as

P,x=(u.-x)u/lu.u).

Specializing Eq. (2.13) to the case where u is the dipole
moment'? operator, it can readily be shown'’ in the case
of a rigid rotor that u has a constant magnitude, and so
(1-P,)L u equdls the value of du/df at ¢ =0, which will
be denoted by w. Introducing a double bracket notation,
one has

ML) =(B){(e®)) ,

where ((A))=(w » Aw)/{w?). For exponential operators
one has (e.g., Ref. 18)

" (2.14)

(2.15)

1217

(e y=exp), Kt "/nl, (2.16)
nsl

where the K, are cumulants, for example, K; = {(BY

and K, =(( B®)) - (( B))*. The memory function Eq.

(2. 15) can now be rewritten'® using Eq. (2.16)
M,y = M) egpz; (K, - K5 "/n!, 2.17)

ns

where MY(¢) is the zero interaction memory function

(i.e., ideal gas) and the K® is the zero interaction

cumulant. ! Comparing Egqs. (2.11), (2.16), and (2. 18)

and noting that u and w are perpendicular vectors (since

ful is constant) one obtains for the » =1 term in Eq.
2.17) .

M(B)= M) exp(-«za: T,» /)
= MY(t) exp (:;t) .

Cumulants vanish®® if any one of the quantities then be-
come uncorrelated; this implies that keeping only the
n=1 term from Eq. (2.18) is equivalent to considering
only binary collisions and neglecting correlations be-
tween successive collisions.!® The T, between absorb-
ing and perturbing molecules gives the same results for
each o, and so one can write

! =<<§; 1‘,,)) =(N-1)%T§§=9Q.

w, is the angular velocity of a given rigid rotor 1, and
Ty, is the binary collision operator for collision between

(2.18)

(2.19)

particles 1 and 2, while T, is Ty, i=2,...,N. The
Laplace transform of Eq. (2. 18) is
M(s)=MYs+77). (2.20)

Inserting this into Eq. (2.12) gives after some manipula-
tion

0 =1
Culs)= ITC“%%T—)—F,

TC(s+1” (2.21)

where Cg(su—") is the Laplace transform of the free
rotor dipole correlation function shifted by 7! along the
s axis. The parameter 7°! must now be calculated and
Eq. (2.21) will be the approximate dipole correlation
function for real systems. .

C. The binary collision operator

The binary collision operator for hard spheres, both
rough and smooth, is well known.!*!* A derivation is
given in Ref. 15(b) and the extension to molecules within
the impact approximation is described here. From Eq.
(2. 6) it is seen that the binary collision operator Tols)
obeys the following equation

Go(s) = Go(s) == Go(s)Ta(s)Gols) . (2.22)

In time-space the left-hand side of Eq. (2.22) operating
on the angular velocity of the rotor w is

(e¥* - e*")w =0, (no collision) (2.23a)

Lfor times ¢ such that there has been no collision. For
~ times ¢ long enough for there to have been a completed
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collision one would have instead of Eq. (2,23a)
(2.23b)

where ' is the post-collision value of w. Equations
(2.23a) and (2,23b) can be combined into a single equa-
tion, Eq.(2.25) below, as follows. If one supposes that
a collision has occurred when the distance of closest
approach (r,) has been reached one can'® require, as a
condition for a collision in time ¢, that z,<z<z,+ 1,1,
when z is the coordinate along the relative velocity di-
rection v, in the usual collisional impact parameter co-
ordinate system and z, is the value of z at the “instant
of collision.” If ©(x) is a step function equal to unity for
x>0 and zero otherwise (the following function is unity
when z lies inside the above interval and zero other-
wise)!*®

(" - e"*")w =w’'-w, (complete collision) ,

e(z,w,t-z)-e(z,-z)=J;'dfv,6(z,+v,-r-z). (2.24)

One can now combine Eqgs. (2,23a), (2.23b), and (2.24)
into a single expression valid for all time

(Pt - ePot )y =(j°“d1’ Vo8(z, +v,7 -z)) (w'-w).

Simple manipulation and the insertion of the operator S,
which replaces the precollision momentum with the post-
collision value giveg!*(®1%®

(2.25)

(eL,' ~e'w= J; ‘ dr e"'o'[ﬁ(zc =2)y(Sq - 1)131'0“")“’ .

(2.26)

Transforming Eq. (2.26) back to Laplace transform
space, using the convolution theorem and comparing
with Eq. (2.22), one sees that

Ta=-0,0(z,-2)(S,-1). (2.27)

This expression enables one to immediately write the
relevant integral for this calculation®®

(0o Tyls)w)={we T,w)=-fdpfdranv,,

X f(plg(r, Aoz, ~2)w- w'—;g,

(2.28)
where p, r, and §) represent all of the momenta, rela-
tive translational coordinates and internal coordinates
such as Euler angles, f(p) is the Boltzman momentum
iistribution function, g (r, ) is the coordinate proba-
sllity distribution function, V is the volume, and w is
the precollisional angular momentum, while «’ is the
ostcollisional one (apart from a constant factor of the
moment of inertia), For a rigid rotor atom § involves
mly the angle between the axis of the rotor and the line
sonnecting the atom with the center of mass of the ro-
‘or, For a vibrating molecule § would also include the
ribrational phase. The only difference between Eq.
(2,28) and theé hard-sphere result is the dependence of
he collision distance on initial conditions and the need
‘0 use exact numerical dynamics in order to evaluate
Ve,

When evaluated for the rigid rotor-atom system
3q. (2.28) becomes, using cylindrical coordinates for
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dr(=bdbdpdz, where ¢ is the angle about the z axis)

l-
(w.T,,w)=,—f2wbdbdpdnv,f(p)g(r,,n)w.-"’—V—“’.

(2.29)
i1 CALCULATIONS

The functional form of the intermolecular potential tobe
used as well as the coordinates necessary to describe
the motion have been discussed extensively elsewhere.
The potential was of the form

U(R,7)=4¢{(0/R)** = (6/R)®[1+a,Py(cosy)]}, (3.1)

where the R is the distress between the atom and the
center of mass of the rotor, and ¥ denotes the angle the
axis of the rotor makes with R, The parameters used
were € =110 °K, 0=3.59 A; a, calculated from Eq. (3.3)
of Ref. 4(a) using the parallel and perpendicular polariz-
abilities in Ref, 21, was 0.18, for CO-Ar. The molec-
ular parameter for the rotor used was® 7, (the distance
between the carbon and oxygen atoms) = 1.13 A; the
moment of inertia and rotational constant were evaluated
from this 7,.

“The radial distribution fuiction used was that calcu-
lated from the standard first order density correction

eulr, @) =" (1ep [ardosus),  ©.2)
where f,, =(e™®/""mr? ~ 1), and the other terms have
their usual definitions, 8=1/kT and U(ry,) is given by
Eq. (3.1) for CO-Ar. The Ar-Ar potential parameters
in Eq. (3.1) are @,=0, € =124 °K, and ¢=3.42 A, One
should note that although this correction was used, its
effect was negligible on the 14 A calculation and was
much less than the numerical error in v~ at 143 A,

IV. RESULTS

In order to calculate the spectra, Eq. (2.29) must be
evaluated to obtain ™. The integral was evaluated nu-
merically using Monte Carlo techniques. The points
needed for the Monte Carlo evaluation were generated
by choosing random initial conditions in action-angle
variables for the rotor atom then integrating the equa-
tions of motion numerically, in Cartesian coordinates,
through the collision to find the postcollisional rota-
tional angular frequency vector. *® The equations of
motion were integrated in Cartesian coordinates after
choosing the initial conditions in action-angle vari-
ables. *™ The numerical error in this evaluation of 7™
was about 10%.

Comparison with experiment at this point would be
poor because the classical correlation function is even
in time and real. Therefore, it will produce a spectra
without a large asymmetry,?® while the experimental one
is asymmetric. The imaginary part of a time correla-
tion function is simply related to the real part!! for
quantum mechanical systems by the following formula

ImC(t) = - tan [(#/2kt)8/ 3¢ ]ReC(t) , 4.1)
where Im and Re refer to the imaginary and real parts
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¥IG. 1. Experimental and theoretical infrared spectra of CO
in Ar at 14 A, 7! from Eq. (2.19) is 6.4x 107'? 5 for this
density. The experimental points are denoted by -x-x-, the
theoretical spectrum without quantum correction by smail
dashes, and the theoretical spectrum with quantum correction
hy large dashes.

of the time-correlation function, respectively. The re-
lationship of Eq. (4.1) leads naturally to an approxima-
tion of the imaginary part simply by using the real clas-
sical correlation function; this leads to the following ex-'

pression for the Fourier transform of the quantum cor-
relation functions®* -

Con(w)=e™ /BT Cqy (w). (4.2)

yielding thereby a physically expected Boltzmann factor
for the P and R branches, There have been other ap- -
proximations suggested!® but Eq. (4.2) is correct to or-
der A, with higher order terms contributing little for
this system. This approximation has been tested on
other infrared spectra with success.

The spectrum predicted at two densities are plotted

]
04 [+ 3
10 12
—oz -
-04r Time —=
- 0.6 -

FIG. 2. The real part of the time correlation function obtained
from the spectra in Fig. 1, plotted vs the time in picoseconds.

The experimental polnts are indicated by circles and theoretical
curve by a solid line.
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FIG. 3. Experimental and theoretical infrared spectrum of
COinArat143 A, v°!'is6.3x10°" s, Symbols are the same
as in Fig. 1.

in Figs. 1 and 3, along with that predicted by the correc-
tion given by Eq. (4.2) and the experimental data points®
taken from dense gas measurements. The real part of
the time correlation function predicted is compared with
the Fourier transform of the experimental spectrum in
Fig. 2,

V. CONCLUSION

The quantum corrected spectrum is shown in Fig. 1.
The real part of the time-correlation function obtained
from the spectrum and shown in Fig. 2 shows good
agreement between the theory and experiment, there
being no adjustable paramaters, The observed spec-
trum, which is a low resolution envelope, is essentially
the same in the wings of the band at densities of 14, 143,
364 and 510 A.?* Similar behavior was found in our
calculated spectrum at low densities. The main fune-
tion of the pressure broadening of the entire band is the
filling in of the center of the band, where there was no
absorption at low pressures. This portion of the center
of the spectrum was matched well by the theory, as in
Fig. 1 for 14 A Ar. The quantum correction given by
Eq. (4.1) accounts for much of the asymmetry: The R-*
branch envelope matches almost exactly except in the
wings, the P branch does not match as well, so the ex-
perimental data does not fit Eq. (4.1). Other experi-
ments® have shown excellent agreement with Eq. (4.1).
so the present rather old experimental data may be some-

what suspect in this respect. ‘

At higher density of 143 A of Ar a discrepancy appears
at the band center. Here, one must evaluate some of the
approximations made in view of the physical situation.
The cross sections for rotational energy transfer are
expected to be large enough that the impact parameters -
which give rise to appreciable probability can be com-
parable with p~3/% at 143 A, since p™/*=7 A there, When
this_is the case the impact approximation must begin to
break down, since the rotor is essentially now never un-
dergoing free rotation. The results at 143 A are shown
in Fig. 8, and in fact, the agreement near the band cen-
ter is not nearly so good as at 14 A,
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The independent binary collision (IBC) approximation
may also account for some of the discrepancy. At
higher densities the probability of finding more than two
particles within the range of the potential becomes ap-
preciable (the “range” would be the distance at which the
potential is at least several percent of the rotational en-
ergy). Under these conditions the concept of isolated and
independent binary collisions is no longer valid. A
check of the IBC approximation has been made® for the
bard-sphere fluid by a comparison to molecular dynamic
studies in Ref, 10. It was found that the IBC expression

“ has errors in the rotational time-correlation function of
about 10% at liquid densities, (For the hard-sphere
fluid, the impact approximation itself is automatically
fulfilled since hard-sphere collisions are impulsive.)

The approach used in this paper may well work at
higher densities for calculations involving only a dynam-
ical variable related to the vibration motion of a mole-
cule. The vibrational coordinate changes much more
rapidly than translational or rotational motion and except
at very close distances the potential varies much more
slowly as a function of the vibrational coordinate. The
impact approximation should remain valid to higher den-
sities as should the IBC approximation. In order to test
this idea a calculation of vibrational phase relaxation is
planned,
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