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The T, (microwave line broadening) and T) (microwave transient experiments) collisional cross sections are
obtained by Monte Carlo trajectory evaluations of semiclassical (WKB) expressions for those quantities
derived in a previous paper in this series. The calculated values of the cross sections presented here yields
the relation T,~T; (within standard error) for the systems OCS-OCS, OCS-N;, OCS-H,, .
OCS-CO,, and HCN-HCN, a result which agrees with recent experimental findings. Reasonable
agreement was also found between the calculated values of the T, cross section and those observed -

spectroscopically.

I. RELAXATION TIMES
A. Expression for T, relaxation time

In a previous publication,! referred to as Paper I, a
semiclassical expression was developed for the cross
section describing the microwave line broadening phe-
nomenon for two rigid rotors. In the present paper, the
results of Paper ] are used to compute Ty, and T cross
sections for several collision systems. Comparison of
the calculated results is made with experimental data
and with gther results.?»® The numerous experimental
and theoretical investigations in the field of microwave
line broadening have been discussed in several compre-
hensive review articles.! Reference will also be made
to previous applications of semiclassical dynamical the-
ory to this field by Fitz and Marcus,® and by Liu and
Marcus,® of which the present work is, in part, an ex-
tension.

For convenlence and brevity, a-glossary of symbols
used in this paper is given in Table I, and a list of mo-
lecular parameters used in the calculations in Table II.

Collisions between two rigid rotors were treated
semiclassically by Liu and Marcus,® who assumed that
the perturbing rotor could be approximated as a struc-
tureless (atomlike) particle. This assumption was rea-
sonable in the case of the nonpolar rotors in Ref. 6(b)
{as comparison with the present results shows), but in
other cases, especially where a dipole-dipole interac-

tion is important, the structureless approximation can-

not be made, and it becomes necessary to take into ac-
count the full collision dynamics of two rotors.

In Paper I, a cross gection, denoted by o',,,‘,‘, was
first obtained for a given relative velocity of the colli-
sion partners for the broadening of a spectral line j; = jj.
One can define a velocity-averaged cross section, @,
given as

a’:"(”‘b.,;;)/(ﬂ) ’ (1‘ 1)
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where ( ) indicates a Maxwell-Boltzmann average over
the relative velocity . The quantity commonly mea-
sured in pressure-broadening experiments is the line-

.width parameter A, in units of frequency per unit pres-

sure. It is simply related to o":

TABLE 1. Glossary of symbols.

————

————

a as a subseript, refers to the absorbing molecule,
P as a subscript, refers to the perturbing molecule,
a

are the parallel and perpeadicular components of tke
diagonalized polarizability tensor that characterizes
a linear (or symmetric top) molecule,

a equals (o"+2a%/8.
Aa as defined for linear molecules and symmetric tops,
equals o —a?,

€, 0 are the familiar parameters for the Leanard-Jones
(12-6) potential.

o also denotes a cross section (no confusion is likely
to arise).
c i3 the velocity-averaged cross section.
is the distance between the centers of mass of the
. collision partners.
Ry 15 the value of R at which the numerical integration

of the trajectories i8 begun,

are the three angles desoribing the relative orienta~
tion of the two linear rotors, as depioted in Fig, 1
of Paper I.

18 the gas density in molecules per volume and per
torr,

is the average relative velooity of the collision
partaers.

18 the semiclassical rotational angular momentum
which equals j+1/2 where j i the quastum oumber,

~

f, %, h, and Jare similarly defined.

are the angle variables that are constants of the
unperturbed motion and are conjugate to angular
momenta,

q are angle variables that inorease linearly in time,

z 18 a sum over all stationary phase points that con-
B.P. tribute to a particular expression,

¢' b ) ‘Y’

<

L)
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TABLE II, Moleoular parameters.

o at K B €/k o

A3 Y] (D) {om™) CK) A
HCN 3,92 1,92 ° 8,00 1,4784®> 569,10° 3,68°
ocs 8,79 4,04 0.709  0,20286° 335 4,13¢
CO, 8,04% 1,91* 0O 0.3895° 189! 4,486!
N, 2,226 1.68% 0 2,010 47.6'  3.85°
H, 1,006* 0,7033% © 60, 80° 370" 2,928

*Landolt-BSrastein, Zahlenwerte und Funhtionen (Springer,
Berlin, 1950), Band I, Teil 3, p. 510,

G, Herzberg, Infraved and Raman Spectva of Polyatomic
Molecules (Van Nostrand, New York, 1945),

°R. C. Reid and T. K, Sherwood, The Properties of Gases and
Liquids (McGraw-Hill, New York, 1966), 2nd ed,

9, A. Marshall and J. Weber, Phys. Rev. 108, 1502 (1957),
*W. Gordy, W, V, Smith, and R, F. Trambarulo, Microwave
Spectroscopy (Dover, New York, 1953).

%J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecu~-
lar of Theory Gases and Liquids (Wiley, New York, 1967),
N, J. Bridge and A. D, Buckingham, Proc. R. Soc, London
Ser. A 285, 834 (1866). Whenever feasible, we have cor-
rected the a’s reported in this reference for optical disper~
sion, ’

%G, Herzberg, Spectra of Diatomic Molecules (Van Nostrand,
New York, 1950), 2nd ed.

A =nlvoy,, ) /21 =nfvo) /27 . (1.2)

For the sake of uniformity, all results from other
sources, theoretical and experimental, have been con-
verted from linewidths to cross sections for comparison
in this paper.

In the bulk of the literature,>*" A is expressed in
units of MHz Torr™ and then 27Ap =1/T,, where p is
the pressure of the perturbing gas. No confusion should
occur with the use of the symbol A as a relaxation ma-
trix element in previous papers in this series® and in
Eq. (1.10), to be given shortly.

Equation (4.9) of Paper I gives oy, ,, and then, by Eq.
(1.1), 7 is obtained

Fo2n L “Stwds, (1.8)
where )
s © ° 2 ;" i 33
$) = fo , dum’p,j; djpy, J;b-?' dah(h/215,)
ii s Aa 2 ‘
xj'Mdjwzhj) fo G, /2n)
ar - ar )
<[ e [ g a0 -P), 0

where P’ is the probability of a j~7 transition, modified
by a reorientational and dephasing factor D}, and is
given by (1.5) for a classically allowed transition:

P'= 2 | 8'/o@,/2m)| "Dy (apy) . (1.5)
Here, j is the absorbing molecule’s angular momentum,
j, is that of the perturbing _molecule, { is that of the or-
bital angular momentum, I is that of h, where h=§,+1,
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and J is the total angular momentum (J'= j+h=j +§,+1),

7y fos I, £, and 3, are related semiclassically to the an- °
gular momentum quantum numbers [e. g., 7= (j+3)il;

p, and p, are Boltzmann distribution functions given in
Ref. 18 or Part I, and a and y are phase-shifting angles
and B the angle or reorientation between j and J’ [Fig. 3
cf. Ref. 6(a)l. As in Paper I, prlmed quantities are
postcollisional,

The S(b) in Eq. (1.4) is the usual collision “efficiency
function,”*? and is marked by a bar to indicate that it
is, like 0, a velocity-averaged quantity. In Ref. 18 of
Part I, the eight integrations in the expression for &
are changed to obtain a form more convenient for Monte
Carlo evaluation by introducing a parameter B, One
finds (writing G as @y, since it also determines a life-
time 73 in microwave transient experiments®?),

Gry = I J‘(ﬂBz/xb)(l P;,-)dx,

where the x variables are defined in Ref. 18 of Part I
and where

X =dxg, dxy, A%y, d%y, dxydx ; A%y d%y (1.7)

In the “primitive semiclassical approximation,” P}, for
classically allowed trajectories is

Pj;=Re)_ |85/ a(q‘,/z'ir)l -1 D}, (aBy),

where Re denotes “the real part of.” The sum Y, . is
over all trajectories (real or complex valued) leading
from state f of the absorbing rotor to the same postcol~
lisional state f'(=f). The semiclassical action § is the
average of ], and j, and thereby, in units of #=1 used in
this paper,

7=l +i)+1, ¢ )
where the radiative transition of the absorbing molecule

is between the two quantum states: {~f. Inthe micro-
wave dipole absorption spectrum, Jy=f+1.

(1.6)

(1.8)

When the problem has additional symmetry [symme-
try in the intermolecular potential with respect to some
or all of the 7 variables in Eq. (1.4)], interferences oc-
cur and Eq. (1.8) is replaced by

P}z =Res)_ | 87"/0(g,/29)|" D}, (apy) . (1.10)

In such a case, the integration region in Eq. (1.4) is ap-
propriately reduced. The significance of the symmetry
number s, the value of which determines this reduced
region of {7 »d1dy, »4») space implied in Eqs. (1.8) and
(1.10) to be sea.rched for stationary phase points, is ex-
plained in greater detail in Appendix A.

B. Expression for 7, relaxation time

In addition to the measurements of line broadening re-
laxation times (commoniy designated as T3) a relaxation
time 7T,, associated with equilibrium in the population
of the levels of a two-state system, - has also been mea-
sured recently.? The cross section described by Eqs.
(1.2) and (1.3) is Op,, while now a similar expression
for G 0z, is discussed.

J. Chim, Phys., Vol. 67, No. 10, 15 November 1977
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By Eq. (3.12) of Liu and Marcus,®®

T s = Dot D prarr = Boisr) - (1.11)

Equation (2. 2) of Ref. 6(a) gives the A in terms of S-ma-
trix elements, which when combined gives for the rhs
of Eq. (1.11):

#(1- IS“I’+1 - |S,,|’+|Su|’+ IS,,la)
9%(2-P“ -P”+P‘!+P,‘) . (1. 12)

This expression can be simplified as follows: since
P, =P, and since it is a good approximation to replace
P,; and P,, each by a mean valued Pj,j, where j is de-
fined by Eq. (1.8), and approximate P,, by Pj,3,,; simi-
larly, one obtains

1 1
Or, =J; ) L (mB%/x,)(1 -P;.3+P;';.1)4x , (1.139)

where dx is given by Eq. (1.7).

In the “primitive semiclassical approximation,” the
P’s, vis-2-vis the P"’s in Eq. (1.8), are

p=Y |8f'/e@g,/2m| ™,
Do

[or multiplied by exp(- 2®) when the trajectory is com-

plex valued***]. In the case of additional symmetry al-

ready mentioned in Sec. I. A, Eq. (1.14) is replaced by

P=SZv |af’/a(§,/2w)|" »

where the symmetry number s and the reduced integra-
tion region are discussed in Appendix A.

The derivative is evaluated with trajectories leading
from § tof or tof +1, as indicated by the subscripts on
the P's, and the sum is over all such trajectories. In
Gy,, there exist no effects of phase shifting or reorien-
tation as are present in G, via the rotation matrix ele-
ment D, (aBy) in Eq. (1.8). Thus one has in Eq. (1.13)
an integrand which is evaluated by the Monte Carlo
method for choosing precollisional values of dynamical
variables and by varying g; systematically to locate ou-
merically real or complex-valued stationary phase
points such that §' =7 (or § +1, for Pj3,). InEq. (1.8)
for Gy,, one needs only the plot of f' ve g, torj’'=§.

(1.14)

(1.15)

Upon comparing the integrands for the G, and Grz ex-
pressions, one would expect these two cross sections to
be approximately equal whenever a § =7 +1 collisional
transition is either strictly forbidden, as it is for the

" nonpolar interaction potentials,®® or when there are
many readily-accessible postcollisional states. [In
either case, for 6,‘ to nearly equal E,.: it is necessary
for ReD};(apy) to be almost unity, as is found to be the
case in most collisions at 300 °K.]*® Indeed, Liu and
Marcus® found G, and G, to be equal within 10% for the
systéms that they studied.

Il. INTERMOLECULAR POTENTIALS

_ As already noted, Liu and Marcus®™ treated the per-
turbing rotor as a structureless particle. A potential
function for that model which includes a repulsive core
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and London dispersion interactions,
the latter is® :

V(R,¥) =4¢ [(E")m - ( }—g—)a [1 +a,Pa(cos-y)]] .

To obtain € and ¢ for two nonidentical colliding mole-
cules, the usual combining rules' are employed:

with anisotropy in

2.1)

€= )2, o=(0,+0,)/2. (2.2)
The anisotropy parameter a, is given as'®
a,=00,/3G,, 2.3)

where Aa and @ are defined in Table I; a, depends only
upon the properties of the absorbing rotor by this model.
The potential which is analogous to Eq. {(2.1) but which
includes the full dynamics of two rotors is'®

Vatos (R 7> ¥ps ¥) = [cy (cOBY = 3 cosy cosY, )

+cgcosdy +cgcosty, +c,J/RS, (2.4)

where .
e =c'(a} = 7)o} - 3)/3, (2.52)
cg=c’(dl - ada; , (2. 5b)
cy=c'(ay - ap)ay (2.5¢)
oy =c' (a0 +pa3) , (2.5d)

where o" and a* are defined in Table I and where
! =~ 2¢0%/(a,a,) - (2.5¢€)

Actually, the potential previcusly used [in Refs. 3(a)-
3(c) and in other references cited in Ref. 4(a)] did not
have ¢’ given by Eq. (2.5e), but instead

c' S=- (3/4)1519/(15 + I’) ’ (20 6)

where I, and I, are ionization potentials. This latter
potential represents a weaker interaction than does Eq.
(2.4). For example, ¢’ by Eq. (2.5e) is about 1.8
times larger than the same quantitiy by Eq. (2. 6) for
OCS-N;. The constant ¢’ in Eq. (2.5e) was chosen as
a clear extension of the form of Eq. (2.1).

The reduction of Eq. (2.4) to Eq. (2.1) is evident
when isotropy of the perturber is assumed (l.e., @,
=al=a}, the rotor~atom model).

In this paper, Eq. (2.4) is used, plus the repulsion
term 4¢{c/R)2 for the intermolecular potential. When
both the perturber and absorber have permanent dipole
monllents, the dipole—dipole Hamiltonian [e. g., Ref.
4(a)

Hyq= o1, (cosy - 3 cosy cosy,)/R®
is included.

11l. METHOD OF CALCULATION

The T, cross section given by Eq. (1.6) and the Ty
cross section given by Eq. (1.13) were computed. The
real and imaginary parts of the former give, respec-
tively, the width and the frequency shift of the spectral
peak.’

(2.7

. For a particular collision system, the integrands of
Eqs. (1.6) and (1.13) were calculated by assigning val-

J. Chem. Phys., Vol. 67, No. 10, 15 November 1877
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ues to the eight x variables there, and evaluating the in-
tegrals by the Monte Carlo method. After the initial
conditions were chosen at random, the classical equa-
tions of motion were solved numerically. By increasing
gy, the precollisional barred angle variable conjugate

t0 §, in increments of 7/12, a grid of the postcollision-
al semiclassical action of the absorbing rotor, j’, was
generated numerically as a function of g, for each set

of the eight x variables.

When real stationary phase points occurred (i.e.,
when there were real valués of 'q', for which f ! equals
{), the 18f'/8g,| appearing in Eqs. (1.6) and (1.13) was
evaluated at each such real stationary phase point of
which there were usually two or four. The contributions
to the calculated results are simply additive as indicated
by the sum over stationary phase points 3,,,, in these
same equations. The rotation matrix element D}, (aBy)
that includes the effects of phase shifting and reorienta-
tion was also evaluated for use in Eq. (1.6). If there
were no real stationary phase points, a parabola was
fitted through the highest {or lowest) three points in the
§' v8 §, grid. When this curve failed to cross the value
{, the computer program searched for points of closest
approach to this value. ¥ none were found within one
action unit, the elastic probability P} ; was taken as
zero. If the curve had a point of closest approach within
one action unit of §, the familiar Airy function theory'*+™
was used to treat the two complex conjugate values of g,
that are roots (stationary phase points) to the §* v8 g,
plot analytically continued into the complex plane. In
such cases, theJ,., 187'/87,!"! appearing in Eqs. (1.8)
and (1. 14) was replaced by (7/2)!8f"/8g,|"p"® A(p),
where (4/3)p*"® equals Im[A(7,) - A(F*)], for a complex
root 7,. The function A has been explained in detail
elsewhere.>® :

The value of the symmetry number is determined by
the symmetry properties of the intermolecular potential.
When the anisotropy of the potential function is confined
to even Legendre polynomials P, (cosy) (e.g., the rotor—
atom model), g, and g, + r result in identical collision
dynamics and the 7/ vs 7, grid need be calculated only
over the [0, 7] interval, In Appendix A, it is shown that
these conditions, which result in s =4, hold also for the
dispersion interaction in the rotor-rotor system in Eq.
(2.4). Insuch cases, interference effects result in the
collisicnal selection rulei Af'=f-§'=0, +2, etc., and
the Pj,j.4 in Eq. (1.13) is identlcally zero.

For the polar systems, HCN-HCN and OCS-0CS, the
inclusion of the dipole—dipole term, Eq. (2.7) intro-
duced a P,(cosy) dependence, and the potential is not in-
variant when g; is increased by 7. This necessitates
computing the §' value over a 7, interval of [0,27], and

s is found in Appendix A to equal 1.

The relatively weak dipole—dipole forces for OCS8-
OCS were found to result in near symmetries for many
trajectories. In this case, the grid for the system was
taken over the g, interval of [0, 2], and the symmetry

- number, s equal to 2. (This way would be used also to
treat nonpolar systems having Af =0, £ 2 if the grid were
increased to [0,27].) Both the formal inclusion of the
partially symmetry-breaking dipole-dipole forces and

4n

the numerically resulting near symmetries and the con-
commitant interference effects were approximately
taken into account in this manner.

The g variables appearing in Eq. (1.4) and which were
chosen at random as initial conditions are constants of
the two rotors’ motion in the absence of intermolecular
interaction, They are canonically conjugate to the pre-
collisional angular momenta and are simply related to
the more familiar ¢ variables (which vary linearly with
time in the absence of interaction), as in Ref. 18 of
Part L,

For computational purposes, a collision trajectory
was begun with an initial value of the intermolecular
separation R set equal to the value R,. At this point
conversion to the unbarred angle variables was made
using Eq. (B12) of Ref. 18 of Part I and then, as dis-
cussed elsewhere in that reference, to Cartesian coor-
dinates in order to integrate Hamilton’s equations nu-
merically. (Alternatively, integration in action—angle
variables could have been performed.) When the post-
collisional separation R’ again equals R, all of the - °
postcollisional values of the dynamical variables have
been computed, particularly f ’. The criterion for
choosing R, for each system studied was that, at Ry, the
maximum intermolecular potential energy be less than
1% of the average relative kinetic energy at 300 °K.

The actual values of R, used for the systems listed in
Table II were, respectively, 25, 35, 85, 60, and 120
a.u.

One hundred points were selected for the Monte Carlo
averaging over the eight x variables, and a ' vs g, grid
was generated for each point of integration. The stan-
dard error, 8, associated with the Monte Carlo evalua-
tion of each cross section is given by®>!?

& ‘{; @, - /nln-1), 3.1)
where G equals either Gy, or Gr,, and 0, the contribution
to that quantity from an individual point of Monte Carlo
integration. The interval [G—8, +8] is, therefore,
the “68% confidence interval.”!® Extending the interval
to [G-26, 5+28] increases the confidence to 95%. In
this paper, results are reported with standard error + 3.

In generating the f'vs @, grid, it was cbserved that
in nearly every trajectory the intermolecular distance
R decreased monotonically to a minimum value and then
monctonically increased. Deviations from such behav-
for are examples of orbiting motion or of the formation
of complexes during the collision. Since orbiting occurs
only for low kinetic energy, it may be assumed that the
contribution from orbiting resonances to the energy-
averaged cross sections at room temperature is small,
For the nonpolar systems OCS-N, and OCS-CO,, such
trajectories did occur, and those with more than five
turning points in the R motion were rejected. The set
of initial conditions that gave rise to these rejected tra-
jectories were not included in calculating the averaged
results, in order to reduce computer time. (Some tra-
jectories evidenced 60 or more turning points.) Detatled
examination of such trajectories revealed that grids

J. Chem, Phys., Vol. 87, No. 10, 16 November 1977
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TABLE III. Results,

Il

Cross sections (X9

System Transition Gy, (calo) ReGy, (cale) ReGp, (exptd
OCs~H, 1-2 41+4 49:4 85+2%
OCS-N, 12 113+8 1218 1494
0C8-CO; 1-—2 188+16 2065+18 199+ 5*
0C8-0C8 1--2 24124 227+19 2494 2%
HCN~HCN 0-—1 52962 598+ 62 711+ 228°
*Reference 7(a),

®An average of 2432 of Ref. 8(c) and 25422 of 8. C. M.
Ladfendifk, Ph.D. dissertation, Utrecht, The Netherlands,
1973, In Ref. 8(c), Gy, =234218 3%,

A, G. Smith, W, Gordy, J. W. Simmons, and W, V. Smith,
Phys. Rev. 76, 1524 (1949),

composed of f ! values arising from trajectories with dif-
ferent numbers of turning points did not exhibit notice-
sble discontinuities. Furthermore, when such grids
were compared with nonorbiting, non-complex-forming,
grids generated from similar initial conditions (i.e.,
similar b and pp), the occurrence or nonoccurrence of
orbiting or complex-forming motion was seen to make
very little difference in the contribution of such trajec-
tories to the calculated resuits.

Thereby, 2% of all sets of initial conditions were re-
jected for OCS=N;, 12% for OCS—CO,, and none for
OCS-H;. For the polar systems, trajectories with more
than 15 turning points were rejected, thereby leading
to the omission of 13% of the sets .of initial conditions
for OCS-0CS and 11% for HCN-HCN. This general in-
crease of incidence of orbiting and complex forming
with strength of interaction is to be expected, but ap-
pears to play no important role in the present approxi-
mation in line broadening in the systems studied.!

When the j* vs g, plot just barely intersects the de-
sired postcollisional value of j/, yielding stationary
phase points so close to each other that interference oc-
curs, a uniform approximation should replace the primi-
tive semiclassical (PSC) value used in the present work.
(Under such conditions the PSC value can exceed unity.)
For simplicity, the term 3., |8/*/3(7,/2m)|~'D}1(aBy)
was replaced by this quantity divided by 3,.,,19/'/8(,/
27)1*? to avoid values exceeding unity. Better still
might have been to simply replace it by unity in such
cases (as in previous papers® of this series). Which-
ever of these two schemes of normalization of probabili-
ties is chosen, the effect on the.values of the Ty and T
cross sections is negligible (that is, much smaller than
the standard deviations in the calculated results).

The necessity of including complex stationary phase
points in evaluating the probabilities, in the use of the
Airy function as described earlier in this section, was
found to be more frequent in computing the P3,3.4 term
in the rhs of Eq. (1.13) than for computing P3,j, for the
polar systems. Complex stationary phase polnts aris-
ing from points of closest approach within one action
unit of the desired §/ value occurred for 11% of all tra-
jectories {for both Gy, and Gy,) for OCS-CQy, 18% for
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OCS-N;, and only 1% for OCS~H,. For Gy, in the polar
systems, they occurred in 7% of all trajectories for
0OCS-0CS and 5% for HCN-HCN. For 0,,, however, the
frequency was 46% for OCS-OCS and 87% for HCN-HCN.

IV. RESULTS

The collision systems and spectral transitions of the -
absorbing molecules studied, together with the calcu-
lated Ty and T, cross sections, are listed in Table II.
The calculated results contain no adjustable parameters.

The computed values of the cross sections ReGy, and
Gy, are relatively close to each other, which indicates
little phase shifting and reorientation effect in the colli-
sions. These values are also in reasonable agreement
with experimental measurements of the T; linewidth,
considering that the only anisotropic terms included in
the intermolecular potential were the dispersion (Eq.
{2.4))] and dipole-dipole [Eq. (2.%7)] interactions. In
general, the calculated cross sections were about 15%
smaller than experimental values. In the case of small
cross sections, one would also expect important contri-
butions from short range (repulsive) anisotropies as
well as from the attractive forces such as those arising
from molecular quadrupole moments. The calculated
frequency shifts, Imoy,, are relatively small as is also
found in experiment. They are scarcely larger than
their standard deviations and are not given here. The
Monte Carlo standard errors, 5, for ReGy, and for oy,
are about equal to, or smaller than, 10% of those values,
which s a good indication of the general validity of the
sampling techniques employed in these calculations.

Earlier, Liu and Marcus® had treated the OCS=N;
system by approximating Np as a spherically averaged
particle (an atom), For the 12 transition of OCS,
their theory results in a Ty linewidth of 118+ 9 A%, This
value compares well with the result in the present work,
12128 A%, obtained without this approximation.

It is difficult to thake a meaningful comparison with
previous theoretical work in the literature because of
differences in the intermolecular potentials used. Most
such calculations have been based on the Anderson the-
ory® (linear trajectories, a perturbation treatment for
rotational—-translational collision dynamics, and a cutoff
imposed at small impact parameters whenever the in-
elastic collisional probabilities exceeded unity), or via
a related perturbation approach.’ In the case of HCN-
HCN, a calculation including only dipole—dipole forces .
has been reported by Murphy and Boggs.>® Their T
cross section is 597 A‘, which is in agreement with the
present result, 598 A2, Perturbation theory works well
at large impact parameters, and with the aid of a cutoff
or other approximation at smaller impact parameters
appears to be quite satisfactory, at least in this exam-
ple. However, if one attempted to calculate inelastic
collisional probabilities for multiple quantum transi-
tions, appreciable errors would be expected.

Molecular quadrupole moments have frequently been
included in linewidth calculations.®* In fact, these
quadrupole moments have been calculated, via the An-
derson theory and via another perturbation approach,’®
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qj-plum -~

FIG.-1, Angular relations between the various planes of rota-
tion associated with the angular momenta for use in examining
symmetry properties of the intermolecular potential function in
Appendix-A, Cf. Fig. 5 of Ref, 18 of Paper I, where the g's
are the present g’s.

:

by choosing values that result in optimum agreement be-
tween calculated linewidths and experiment. However,
the product, Qocs* @x, Where X=0CS, CO;, N, or H,,
that appears in the quadrupole—quadrupole interaction®**
determined by this procedure is sometimes too high by
factors ranging from 3 to 10 when compared with later
actual measurements of @ for these molecules.'® The
quadrupole interactions evidently contribute relatively
little to the linewidths when dipole—dipole and dispersion
interactions_are larger.

In summary, the calculations of the linewidths are in
reasonable agreement with experimental results. The
calculated Ty and Ty cross sections were found to be
equal within standard error. It would be interesting to

"explore the contributions from shorter-range anisotro-
pies to these and other cross sections, especially in
systems where the long range anisotropies are relative-
ly small.

APPENDIX A: SYMMETRY CONSIDERATIONS

The summation 3, ,. |8j'/8(g,/2n)|™! appearing in Eq.
(1. 5) has a simple interpretation as explained in Secs. I
and Il In actual computations, however, use was made
of symmetries of the two potential functions (with and
without the dipole-dipole interactions) and the interfer-
ences arising from these symmetries to reduce the vol-
ume of g;, gy, @ 4, Space that is to be searched for
stationary phase points. In order to consider this in de-

FIG, 2. Angles defined for use in Appendix A. Cf, Fig. 1.

4473

FIG. 8. Additional angles defined for use in Appendix A, Cf.
Figs. 1 and 2.

tail, the potential functions are first examined, in par-
ticular their dependence on the angles EP ds E,’, and
@, conjugate to the angular momenta I, j, 3»» and ke

Equations (2.4) and (2.7) give the potentials in terms

“of ¥, 7,y and ¥, and these angles are expressed in terms

of the four g variables: The procedure is fundamentally
straightforward but involves a large number of spheri-
cal trigonometric manipulations. The various rotational
planes are depicted in Fig. 1, and various angles ),
[IRKAT etc., are defined in Fig. 2. One can rather
easily show

cosy, = €084, C0Sq, +8ing,, sing,(k? - % - 73)/(213,) . (A1)

Incidentally, the ¢’s in the present paper wers denoted
by §’s in Paper I, but the carets are now deleted for no-
tational brevity.

Similar expressions for cosy and cosy are obtained
in a less direct manner. First, angles a;, a;, @y By
B, 6y, and 6, are defined as shown in Figs. land3. It

is evident that cosa, =m,/j, cosa, =imy/l, cosa,=my/f,
and that the following relations hold:

cosé, =~ cosD cosq, ~ sinD sing; cos(r ~ ay), (A2)
and

cosp, = (- cosq, — cosb, cosD)/ (siné, sinD), (A3)

where D, as well as A, B, C, and E, are defined in
Fig. 4 and, analytically, in Ref, 18 of Part L. Next,
one obtains

FIG, 4. Additional angles defined for use in Appendix A, Cf.
Figs. 1-3,
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cosy =cos(g, + B) cosf, is the term which contains the product cosy cosy, cosyp.
One finds that this term, and hence the entire dispersion
+sin(g, + B) sin6, cos(a; +8,) . . (a9) potential, is invariant under any one, and hence any two,
Similarly, one finds or all three of the substitutions (A8).
cos, =~ cosg, cosE — sing, sinE cosay, (a5) Recalling from Paper I that ¢, =g, =C, one finds that
cosB, = (cosg, + cosb, cosE)/(sinb, sinE) , (A6) neither y nor ¥, and hence no potential expressed in
d cosy or cosy, has a simple symmetry property when
an ‘ : g,(=C) is changed by #. This means that any search for
cosp = cos(q,’ +4) cosf, stationary phase polnts must be conducted over the full
0, 27] interval of g,.
- sinlg,, +A) sin6,cos(a, + B) . (an) [o, 2r] I
Now, ‘one notes that the substitution ¢, ~¢, - 7 results The 7, 7, 1 g, space is next considered as a cube with
in 6,~ 6, -7, but that it leaves 8, unchanged. Similarly, eight octants. Since the dispersion potential (e. g.,
the substitution ¢,~¢, -7 results in 6, ~ 8, - 7 but §, is OCS=N,) is invariant under any or all of the substitu-

unchanged. Also, it is evident that A, B, C, D, E, o, tions Eq. (A8), all octants are equivalent and one can

a;, and a, that determine the relative orientation of the search the g, 7,,, and g, dimensions each in a [0, 7] in-

planes of motion are not changed by such substitutions. terval for stationary phase points that contribute to an
S-matrix element and then take the effect of interfer-

seel:z tt}llzeatdt:z e::li;'tl;; ie:l?;nf‘::: tt:) Ybﬁql‘ng;iz; do;‘:r ences on o from the eight octants into account.s This
symmetrical behavior for any or all of the substitutions, method has been explained by Fitz and Marcus™ one
. considers the integral expression for an S-matrix ele- .
Q=Q=7, 4=q;=T, q;,~q;, =T, (A8B) ment!!
|
M3 ;e Ll Sl Gl G AP — = — .1/ 44

G| it = [ [ 060l /0G0, B |2 et iy i iy | (a9)

wliere

- - . < A = . Pr i -
a=g,(f =§)+q,, (=73 + @b = 1)+, (- 1") - j’ deg-ji q,()a i)
R

7 . ; . H . .
-f; q,(t)dj(t)-J;:‘q,,(t)d 7,8 'fs ay(t)dh(t) + sn(l+ 1" +1). (A10)
Applying the symmetry properties of Eq. (A8) to this expression, one obtains
ar ar 2r 2r s o ‘.'u_'_'—'-
) da.j; 'di,L di”cfo 4,7’:(1_,,6!'(?-? N1 +e It (1 +e -§ ’)L quJ; dq, Io dq’fo dg,, . (A11)

This expression thereby contains the selection rules that ({-{"), (f-7"), and (j, - ;) must each be even. Asa
consequence, the S-matrix element for a particular f ~§" elastic collision vanishes for 3 of all the I’ and also for
§ of the f}, and that for those values for which it does not vanish, one multiplies by 2%, i.e., by 8, the contribution
from one octant. The 3, , in Eq. (1.5) implies that the root search is over [0, 27] for each g differential. When
this 18 reduced to a [0, 7] interval for g;, g;,, and g, the integral is changed as follows (before the partial averag-
ing discussed in Sec. IV of Paper I):

ST I B 2 1 artrtrts RN
d I at'’ airl” dh (7" i /oG A
Io 7h L ”f.;,-n 2, Gan 20T @t Wl

© _re - - - ;poi.' - 8)(8 PP - - 1al
= aJ _g_dltj' 3 -II dh 8(""1'5')/9@ q
fo J; 3 b #j, 15,=i1 (er)l e I J 3 A, lqpl

gl,;laf ’/ai,|“) after partial averaging. . (A12)

=[] @y [ e (3

Pe

The factor of (4) in Eq. (Al2) serves as the symmetry number of Fitz and Marcus.}

One may verify by similar arguments that when the dipole-~dipole potential 1s included, it is necessary to scan
two octants of g;, g, . space and that a symmetry number of 1 is appropriate for such a case. The intervals
searched then are, respectively, [0,27), [0,7], and [0,7]. :
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