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The semiclassical (WKB) limit of the quantum mechanical expression for the collisional line broedening
crogs section of the microwave spectrum of gaseous molecules is derived. For the present purpose of
considering binary collisions between such species as OCS and CO,, action-angle-like varisbles for the

. classical mechanics of two interacting rotors are developed. Applications can be made to the evaluation of
T, (microwave line broadening) and T, (microwave transient experiments) cross scctions and to
calculations of rotational and vibrational energy transfer for linear molecule-linear molecule systems.

. INTRODUCTION

Molecular rotational phenomena have been treated by
numerous theoretical approaches.‘ In this paper, equa-
tions are presented for a dynamical description of the
classical mechanics of two interacting linear rotating
molecules. Expressions for Ty and 7, cross sections
obgerved in line broadening and microwave transient ex-
periments are then derived. Such theoretical formalism

~has several applications to recent experimental studies

of molecular rotational motion interrupted by collisions.

There is a large body of data concerning collisional
line broadening of the microwave spectrum of linear
molecules in the gas phase'™™° and of microwave tran-
sient experiments.® A semiclassical method (semiclas-
sical in the sense of Refs. 3 and 4) for microwave line
broadening was developed by Fitz and Marcus®™® and ex-
tended to microwave transient phenomena by Liu and
Marcus. 3¢ They obtained numerical results for the
relevant collisional cross sectlons by evaluating semi-
classical expressions using exact real and (via analytl-
cal continuation) complex-valued classical trajectories.
The systems considered were limited to those described
by the linear rotor-atom model (e.g., OCS-Ar). The
expressions developed in the present paper allow this
semiclassical treatment of line broadening and micro-
wave transient phenomena to be extended to a much wider
variety of systems, including the self-broadening of such
molecules as OCS and HCN. 5

In considering an entire vibrational-rotational band in
the infrared absorption spectrum of CO in a high density
of Ar, Koszykowski and Marcus®™ obtained agreement
with experiment using a largely classical treatment for
the rotor-atom system. This method could be applied
to many more cases via a formalism that includes rota-
tion and vibration of the perturbing molecule,

Recently an exponential model has been proposed for
describing molecular rotational energy transfer by
Polanyi and co-workers, ® who have inferred the values
of a parameter in their expression from molecular beam
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measurements, The rotational transition probabilities
predicted by this model have been compared with classi-
cal trajectory calculations performed by Wong.” Asin
the case of line broadening, these theoretical calcula-
tions were performed for a linear rotor—atom model (in
this case, HCl-Ar). By means of the present expres-
sions for the dynamics of two rotors, it is possible to
extend such calculations® to the recently experimentally

.studied® system HCl-HX, where X=F, Cl, Br, orl.

Although the rigid rotor approximation has been im-
posed for the above applications, the formalism permits
the direct inclusion of the molecular vibrational motion
without difficulty. Thereby, problems involving vibra-
tional energy transfer, which is the subject of extensive
experimental study, can be undertaken.® One principal
problem therein is of computational feasibility because
of the large number of vibrational periods which occur
during a typlcal collision.

il. QUANTUM MECHANICAL LINESHAPE

The quantum mechanical line shape expression for the
case where the perturber 18 a linear molecule can be de-
rived by the same methods which have already been ap-
pliad to systems in which the perturbers have no inter-
nal degrees of freedom. 5*"%5¢:% The line shape expres-
sion is given in the present section, and In the next sec-
tion, its semiclassical limit is obtained. As in earlier
work, =%° the subscripts { and f refer to values of
quantitles before and after a spectral transition, respec-
tively, while a primed quantity is understood to be a
postcollisional quantity and the absence of a prime im-
plies a precollisional quantity.

The colliding molecules are assumed to be in the
gaseous phase and are treated as rigid rotors that un-
dergo binary colllsions. As in the previous work, "%?
only one of the molecules (the “abgorber”) in each collid-
ing pair is assumed to be capable of interacting with the
radiation. Other assumptions; including the impact ap-
proximation, have been listed previously. **®°

The quantum numbers which are necessary to describe
the dynamics of two colliding rigid rotors are, in a to-
tal-J basis set, j, j,, I, b, J, and M, and the transla-
tional wave -number k. Here j and j, are the rotational

. angular momentum quantum numbers of the abgorbing

and perturbing rotors, respectively; [ 1s the orbital
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angular momentum quantum number for the relative
.angular motion of the two rotors; h is the angular mo-
mentum quantum number resulting from the coupling of
j, and I(h=],+1); J is the total angular momentum quan-
tum number (J=h+]); M is the projection of J on a
space-fixed 2z axis; and k is the wave number corre-
sponding to the relative linear momentum of the two ro-
tors. ’ .

The ensemble average over perturber properties of

the memory function is given by Fano'®:
{m(w)}=§; pel(EE | miw)| £E 2.1)

in Liouville double vector notation®!!; { and ¢’ are pre-
and postcollisional states of the perturber. In the pres-
ent problem, ¢ includes the relative velocity of the two
rotors, v (via k), and the quantum numbers, j,, & L J,
and M. For a rigid rotor, the Boltzmann distribution
function p; equals p.p,,, wWhere p, and py, are suitably
normalized distributions over the states of relative
translational velocity and the states of the perturbing
molecule’s rotation about its own center of mass, re-
spectively.

Ben-Reuven®™ has given a line shape expression in
terms of the T matrices, and has indlcated its extension
to the cases of perturbers with internal structure. The
former expression, Eq. (30) of Ref. 9(b), can be shown
to be equivalent to Egs. (2.3) and (2. 4) given by Fitz and
Marcus.™® With the appropriate inclusion of j,, the latter
expression for the matrix elements of {m(w)} appearing
in the line shape becomes, in the impact approximation
(i.e., in the w= 0 limit), '

(35 1, O {mlw)H jidp 1. 00

o= if dmptopr pdvs-Koopepd,  2:2)
where 1 and 0 denote the values of the optical transition
parameters K (=j,- j;) and its projection Q on a space-
fixed £ axis, and where'?

Ope =£z ;Z,;. pypl= 1)1 (27, 41) (20 +1)
!;l,"f’

J 4y K\ {J, I K
) . .
X {J« Jr h} {J‘G i K LI
— (T I,| S| 3yt o) CGH5VR'Ty] 813yt ) *] -
(2.3)
In Eq. (2.8), k equals pg, the momentum for the rela-
tive translational motion of the perturber and absorber,
in the units of =1 used throughout this paper. Any _
parity quantum numbers needed to describe the states of
the absorbing rotor can readily be included at this point.
The factor 8+, expressed as ( FHUR Ji| 3dpthdy) equals
Oyg9 ‘6,",’6,.,6,,.,, and similar remarks apply to 8,,.
Conservation of total angular momentum during the
collision requires that J;=J}, J,=J}, and thus the
primes are deleted from these variables.

For the specific case of nonoverlapping lines for a
rigid rotor that undergoes the spectral transition j;— j,
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and undergoes collisions with other rigid rotors, the
electric dipole (microwave) absorption spectrum for
such a system, in reduced units, has an intensity given
by the following expression®™®: :

Hw) = (/m)m| Gy | ] 15,012

Py Pr
x[w-wo-d—iw*w+wo+d_iw] . 2.4)

In this equation, d and w denote the shift and width, re-
spectively, of the j;—j, line, and p, and p, are normal-
1zed Boltzmann factors. Here,

(2.5)

where N, is the number of perturbing rotors per unit
volume and the bracket indicates the average over rela-
tive velocities shown in the integral in-Eq. (2.2). The
044,41 18 given by (2. 3).

w= id=Ny(voy 1)

i1l. SEMICLASSICAL LIMIT OF THE LINESHAPE

The semiclassical limit of the quantum line shape ex-
pression is obtained by introducing semiclassical expres-
slons for the 6— j symbols and the S-matrix elements in
(2.8), by converting the quantum numbers there to their
classical analogs, and by converting the sums to inte-
grals. In units of =1 which are used throughout this
paper, the relationships between classical momenta and
quantum numbers are given by'

f’g-'-‘k, i¢=f¢+%, ;p"jp""%,
I=1+%, h=h+}, Ji=di+t.

Similar expressions hold for j, and J,. For use In ex-
pressions soon to be given, one defines two other classi-
cal angular momenta 7=5(j, +7)-and J=4(J;+J,). The
momenta j, 3, 7, ki, J, and Py are the total coupled vari-
ables and have conjugate coordinates gy, Qs dipy G0 Q1
and R. These coordinates are simply related to a set of
q'sby ;=G - Rw,i/1#, where w; 18 an angular {requen-
cy; g is a constant of the motion, to be evaluated where
the lnteraction potential of the system 18 negligible; 7 is
the relative velocity at R; and v is the relative velocity
at infinite separation, R==, [For detalls on the g;'s,
see Appendix B of Ref, 5(b).] The g,’s provide an un-
amblguous way to compare trajectories tndependently of
the starting and end points of the trajectory, i.e., Ris
sufticiently large that the potential is negligible.

(3.1)

The symmetrized semiclassical expression for the 6
- j symbol in (2. 3) 8%

Jp Ji KU ywesgergex
{f‘ I h} b

-

(g +3p+ D W+, + DIP250) ,  (3.2)

‘where £ is the angle between J and § (vectors whose

magnitudes are J and ), ** A is J,~ J, b 18 j,—j;, and

d 18 a reduced rotational matrix,'* Analogously defining
&' as jj—ji and £’ as the angle between J’ and §’, one
finds an analogous expression for the.second 6-j sym-
bol in (2, 8), but now with primes on ji, jp h 8, and &.
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The first S-matrix element appearing in the line shape expression Eq. (2. 3) can be written semiclassically as®

-®L 0 k) |
Nﬁw EJ” Wy, i’n)

(G U |7 5.3, 0m) = ): l

exP(iFA(?L?’?ﬁ'Jqufly,mtEc) +iZ 3+ 7')) .

(3.9)

where @, equals g,/27 and is introduced for notational brevity. ** F‘ 18 the generating functlon'®!" for transforming
from precollisional values of §;, ],, l, and  to postcollisional ones j,, j,, l and /' and is glven by

F=FFRTR T ES; 75, Thd E,)

i' 7‘ . ‘:
“=a ) qdl- | Gndii- | audh
ft @ " Gnd, _[;, a0

7‘ -~ )ﬁ' o }’ 3 - Y -~ -~ - -~
=) ’ Gy, dj, = f RdPyg - f 4r,4J; =V cos™ Ph/l2u(E} - BJi® - B /® + Tcos™ Pp/[2u(E - Bji - BHI/2,
A Py ] .

(8.4)

where R 18 the distance between the centers of gravity of the two rotors, While £} = £, and J}= J,, the different sym-
bols are retained to obtain the appropriate derivatives. [The derivatives of (3. 4) with respect to PR and P}, are

zero, as indeed they must be.] The integration path used in Eq. (3.4) is the classical trajectory that goes from (7,
J,, 14 7;, 0 Ey) to (7} ¥ 3,, l h J,, E;). There are usually several such trajectories, which may be real or complex,
and one sums over them, as lndlcated by the label 2, », 10 (3. 8) (each describes a stationary phase pomt of an inte-
gral expression for S) The F, in (3.4) is a generating function which glves barred variables, e.g., g, and gj, as

8F,/83, and - 8F,/83,, respectively.

One does not need the individual S-matrix elements, but rather products as indicated by Eq. (2.3); thus this ex-
pression can be simplified. The exponent resulting from the product

s | 878 g, dn) Citgst 1| 871 dgdp th)*

is the left hand s}.de 95 the following expression: The right hand side is obtained by expanding F, and F} about a com-
mon value, 7=4(j,+ J), etc., and retainlng only the leading terms,

A A anoa

iF.(j’,j“,’i'ﬁ’J.E,, jd,th,E‘) iFHTRT T Ey; 545, Thd,E})

’i‘;‘ (4= ]{)*‘1

(J« jf)"'i‘f(tfl J;)HT'(J' ,)+i

(E, ~E))+ z (E; -E;)-29%, (3.5)

where 2& I8 the lmaglnary part, if any, of the difference in Fy's. All derivatives and & are evaluated at intermedi-
ate values of the momenta, e.g., at 7=%(j, I+ ],), and at values of §*, J, and E similarly defined.

Equation (3, 5) here is the same as Eq. (3. 6) given by Fitz and Marcus, ® go their subsequent treatment of the ex-
ponential of the products of the S-matrices applies here equally. Thereby, for the present higher dimenslonal case,

one finds that

Gapr | ST i, Y CHA TR | ST 530 '
= l 8(?’ 73] ?: h')/8 (_h Wiy Wy, wn)[ “1g!(0192)-20 , (3.6)

where

0y +6,=q;8" - qs5+Agh- q.r)+wx(El E,) - wg(E{ ~ E}) .
(3.7

In order to yield the cross section Gpqe g0 1n (2.3), th)e
expressions in Eqs, (8.2) and (3, 6) are substituted into
Eq. (2.8), and the sums over I, ¥, h, K, j,, j, are re-
placed by integrals. By a change of variable (as in par-
tial averaglng)" the Jacobian in (3. 3) can be reduced
from four dimensions to one, just as in the case of a
structureless perturber where the reduction was from
two to one®*d:

G(Q'! ZI 71 ﬁl) -1 d}{

8(’—0!: '77#! Eh _“.’u)

afi -1
= Ew_’| d‘l—vhd-!z"ﬁ!' .

(3.8)
Application of semiclassical theory to the problem of
two rotors now involves searching for stationary phase
points in one dimension, specifically for the trajecto-
ries fromthedesired 7 to the desired 7.

r

In classical mechanics 7/ and the other angular mo-
menta in (3. 8) are not restricted to quantized values;
hence the latter three are continuous functions of the w;.
In studying a particular collisional transition j~j’ [7 is
related to j as in Eq. (3. 1)], trajectories are computed
to determine numerically the functional dependence of
7 on %, and one evaluates 87'/8%, in Eq. (3. 8) as the
slope of such a curve at the desired value of 7' for the
given (y, Wy, Wy, 5> b J, Y %, J). If there are several dif-
ferent values of such w,’ s that result in that particular
value of 7, the contributions to the S-matrix element are

.additive as implied by the sum in Eq. (3. 3).

By use of Eqs. (3.8) and (3. 8), the standard relations
for manipulating the 6 - 7 symbols, !* and the symmetrized
semiclassical limit of the 6 — j symbols, *® one cbtains .
the semiclassical limit of the relevant cross section
0y 4,414 Biven by Eq. (2,3) as®™

Opr g =2m J; S(b) bab , (3.9)

where the impact parameter b=1/Py=1/puv, and
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FIG. 1. Thé angles v, v,
and  that desoribe the rela~-
tive orientation of the two
interacting rigid rotors.

R denotes the separation
between their ceaters of
masa situated at points H
and Hj.

- - -~ .i A
Ste) = jo By, I ’ _ dhth/28,)

g/
7"

(3.10)
Here,
=2 |87 /4%,| * exp(~ 28)D5. () 8.11)
m 7,
D ylapy)= ’i, e' Cr98ag (£)af, (") . (3.12)

The p, tn Eq. (2.2) and the pj, above are the standard
distribution functions, (u/27kT)*/®exp(~ uv®/2kT) and
(27,B,/kT) expl- B,/kT), where B, is the rotational con-
stant of the perturbing molecule and where u i8s the re-
duced mass of the relative motion. The %’s denote
¢/27s (as before), and D 18 a rotation matrix which was
shown®*® to describe the effect of a collision in causing

- phase shifts a and ¥ in the final and initial planes of ro-
tation, and a reorientation angle 8 between those two ro-
tational planes. '

Each of the other quantities in Eqs. (3.10) and (3.11)
has a simple physical interpretation, e.g., 187"/8%,1™!
X exp(-23) is the semiclassical probability that a transi-
tion j~7 will occur for that particular trajectory, i/23,
18 (22+1)/(21+1) (24, +1), 1. e., the probability of form-
ing a state of given k for given values of j, and I, The
quantities tn Eqs, {3.11) and (3. 12) are evaluated for
trajectories where 7 has a mean value (j, +7,)/2.

For the case of nonoverlapping lines, 4% one needs
only the expression where jj=4; and j;=j,. For the case
of an electric dipole allowed transition, one has § =5’
=K=K' =1 in Egs, (8.9)=-(3.12). The various expres-
sions in the present paper are applied subsequently® to
calculate microwave line brdadening cross sections,

The actual numerical evaluation of the microwave
spectral linewldth in Eq. (2.5) via Eqs. (3.9)-(3.12) re-
quires that the postcollisional values of the total-J cou-
pled action~angle variables (§/, p') be determined from
speclfied precollisional values of these same variables
(g, 5). This can be achieved by computing exact classi-
cal trajectories (i.e., by numerically integrating Hamil-
ton’s equations of motion) for those specified precolli-
stonal conditions and a specified intermolecular potential
function. In principle, Hamiiton's equations can be inte-
grated in terms of the (g, §) variables, yet in practice
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this is sometimes not advisable since computational dif-
ficulties arise whenever certain momenta attain values
near zero and the conjugate planes of motion concomi-
tantly become undefined.

Such difficulties can be avolded by first transforming
the (g, p) to center-of-mass Cartesian coordinates and
momenta (£,7), as in Ref, 18, Upon numerical integra-
tion of Hamilton’s equations in terms of these Cartesian
varlables (£, 1), as in Appendix A, the postcollisional
values of the Cartesian variables (¢/, n’) are trans-
formed, again by equations in Ref. 18, to postcollisional
total-J coupled action-angle variables (7, ') for use in
evaluating the expressions in Eqs. (3.9)-(3.12).

Further discussion of the computational aspects in-
volved with the use of exact dynamical trajectories in
calculating Ty (linewidth)and T, relaxation ¢ross sec-
tions, together with numerical results, s given in the
next paper of this series.> The sampling method for
evaluating these cross sections is described in Ref. 18,

APPENDIX A: INTERMOLECULAR POTENTIAL AND
CONSTRAINED EQUATIONS OF MOTION

The relative orientation of the two rotors, and there-
fore the intermolecular potential for two rigid.rotors, 1s
completely specified by the intermolecular separation
distance R, the angle ¥ between the absorber’'s axis and
the line of centers, angle 7, between the perturber’s
axis and the line of centers, and angle ¥ between the ro-
tor’s and perturber’s axes, as shown in Fig. 1. To de-
scribe the potential itself uniquely, it suffices to specify
these variables and to define the angles In the [0, 7] in-
terval.

One can integrate the equations of motion in action-
angle variables, using the relation between v, 7,, and
¥ and those coordinates, given later in Part II of this
series,* I, instead, the trajectories are computed in
Cartesian coordinates and momenta (£, n) in terms of
which the angles %, ¥, and ¥ are simply expressed, one
first transforms the variables (g, ) to the uncoupled
variables (g, p) and then to the Cartesian variables (£, )
as Eqs. (A14)~(A17) of Ref, 18. The angles that deter-.
mine the intermolecular potential are easily expressed
in terms of the c. m. Carteslan coordinates §;:

§18g+Eabp + £k

¥ =areeos GE g 7 (ghe 1+ EDYTS L)
i ARTERTIN
¥y =arccos (ES+Es+ ) /° (q+ g+ £ T (a2)
_ 5151*5;5;*‘5;%5 ‘ )
y=arccos (Er+Es+E3)y /°(E(+E5+5) /" ° (A§)

In terms of Cartesian coordinates and momenta (£, n)
one computes the classical trajectories by numerically
integrating Hamilton’s equations of motion for the case
of a constraint (here, a rigid rotor constraint):

Ei=n/my li=lto9), a4)
and

M =-8V/85, 208, li=1t09), ' (AB)
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where
A=l enta+nde)/@rin,)  (i=1103,7t00),
A =0 (i=41t06). a8)

For i=1, 2, 8, the absorber indices, j=1, p=#, and
ry=7 and for {="7, 8, 9, the perturber indices, j=7, K,
= y,, and 7;=7,. ‘The orbital motion i8 not constratned,
thus for i=4, 5, 6, A\;=0, g;=p, and r,=R. The A, de-
fined in Eq. (A8) in terms of precollisional dynamical
variables, 1s seen to be the initial rotationial kinetic en-
ergy of the absorber divided by its moment arm squared
and ), is the analogous quantity for the perturber.
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