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ELECTROSTATIC FREE ENERGY AND OTHER PROPERTIES OF STATES HAVING NONEQUIL-
IBRIUM POLARIZATION, II, ELECTRODE SYSTEMS®

R. A, MARCUS
Department of Chemistry, Polytechnic Institute of Brooklyn, Brooklyn, N.Y.

ABSTRACT

“in certain electrode processes involving electron transfer mechan-
Isms, a portion of the dielectric polarization is not in electrostatic
equilibrium with the charge distribution, In the present paper expres-
sions are deduced for the properties of such systems. These properties
include the electrostatic free energy, entropy and energy, and the spa-
tial dependence of the inner potential. The method of images provides a
convenient means for determining the electrode charge distribution, due
account being taken of its quantum limitations,

These expressions have been used to formulate a quantitative theory

of overvoltage for electron transfer electrode processes.

INTRODUCTION

In some processes such as light absorption a transfer of charge be~
tween species may occur sO rapidly that the solvent molecules do not have
time to instantaneously readjust themselves to the new charge distribu-
tion. Again, in the intermediate states of such reactions the electrical
polarization of the solvent medium will not be in electrostatic equilib=
rium with the charge distribution. Recently, expressidns were obtained
for the free energy and other properties of states having nonequilibrium
dielectric polarization [1]. These expressions were used to develop a
quantitative theory of the rates of electron transfer reactions in solu-
tion [2,3]. Electrode systems were explicitly excluded from considera~
tion there because of the special conditions prevailing at electrode~
solution interfaces. In the present paper these conditions are discussed
and the expressions deduced (1] in Part I are adapted to electrode sys-
tems, The expressidns obtained have been used to devise a quantitative

theory of overvoltage [4],

#0ffice of Naval Research, Technical Report No. 11, Contract Nonr 839(09),
Task No, NR 051-339,
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THEORETICAL

The properties of nonequilibrium systems to be considered include
their electrical polarization, the spatial dependence of the potential,
the free energy, the entropy and energy, Throughout, the definitions
and, with minor modifications, the symbols will be similar to those em-

ployed in Part I. For brevity, some familiarity with them will be as-
sumed,

U- and E~-type Polarization

As in Part I, the total dielectric polarization P(r) at any point r
o~ o .
is written as the sum of two terms:

Hr) =2elr) + 2(2) (
where fe(ﬁ)' the E-type polarization (usually electronic), is in electro-
static equilibrium with the electric field strength, E(r), and has the
value given in Eq. (2)* below [4a], The function P, s not in electro-
static equilibrium, but in any physical problem it wnll either be known
or will appear as the solution of some variational equation {2], The

value of the function‘fe(r)”depends; through E(r), on the charge distri- -— <=
bution and on the function Pu(z).

.-Pe(:) = E(r) {2}

where ¢, the E-type polarizability is related to D
refractive index [1].

op’ the square of the

s'ome = DOP -1 . ¢ [3]
The U~type polarizability o, depends on DOp and on D, the static dielec-
tric constant [1].

& =D =D . [4]

Oriented Solvent Layer at Electrode-~Solution Interface

It is usually supposed that an oriented solvent layer exists at the
electrode~solution interface and, for simplicity, that it Is thin and
non-polarizable {5]. 1In this case it simply produces across the inter-
face a fixed potential difference, X, whose magnltude.depends on the sol-
vent, on the electrode, and on the temperature, In the text, X is treated

*Note- To avoid confusion with references, equations are referred to by
( ) in the body of the text.
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as being Independent of the average electrode charge density, but in Ap-
pendix V we consider the modifications to be made when X varies with this

quantity,

The Electrostatic Potential .
In any system each central ion under consideration is usually treat-

ed as a sphere having a surface charge density o(r) equal to the fonic
charge divided by its area. The remaining fons are described in terms of
some continuous volume charge density p(r). There will also be a surface
charge distribution on the electrode su;?ace.

_As in Part I, the potential can be expressed in terms of contribu-
tions from the charges and from the polarized volume elements. The po- -
tential arising from these contributions - the charge distribution, the
oriented dipolar layer at the interface, the polarized medium - is the
same as the "inner potential' ¢(r) discussed by Parsons (5] and Lange {6].
Wwith the exception of the B term, we have from Part. 1,

- o{c') =_[‘-'-§$_-§-7‘-|-dv..+j‘]%(_§—|—ds + j’P(r) v mdwa 1s]

r 4

where v is the gradient operator and where

] =X, (electrode phase)
and
g =0, (solution phase) . o]

The volume integrals are over the entire volume of the dielectric, The
surface {ntegral is over the surface of each central ion and over the

surface of the electrode

Tim-rds—- TQ(—')-rds+&]—‘-l)-]-ds . (71
f r-% jons |5° r | A N

To make maximum use of Part I, it is convenient to define a function
¥(r), which 1s Identical withthe potential employed in Part I,

Wr) ze(r) -8 - | - 18]
For the electric field strength E(r), we have

Er)=-w=-9 . (9]

Electrostatic Free Energy

The electrostatic free energy FS of an electrode system Is the re-

versibla work required to charge up the system to its final configuration,
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in the presence of the fixed oriented solvent layer at the electrode-
solution interface., The method used in Part I for calculating Fo wWas
based upon finding a reversible path for charging up the system to the
final nonequilibrium state and then computing the work done during this
- charging process, As discussed in Part I, Fo is glven by

F, = F + kT ? [ < nfc,/c %) dv (10]

where ci(r) and ci° denote the local and average concentration of the ith

ionic species, F is the reversible work required to charge up the system
when all the ions are held fixed in their final configuration,

F is computed by a two-stage charging process employed in Part I,
-the work done during each stage being calculated from the equation

wz‘]“[cplgdxdv+‘”)‘dadkds , (1]
\

where \ is increased from 0 to | during each stage and where ¢ denotes
the value of ¢ at any A,

Introducing Eqs. (6) and (8) into this expression for W, €q. (1) ...
becomes

w-j[zy d).d\:+jj¢’~ dxds+xj‘j d) ds [12]

where M indicates integration over the electrode surface only. Eq. (12)
differs from the corresponding expression used in Part I only in the last
term., For this reason the formula deduced in Part I for F.by this two=
stage process will also differ from the one for electrode systems in this
.term alone, -and we find [7]: '

= ;—_[' [“P’EC'PJ'(E'Pu/“u) +E "E /4n]dV + X [ ods {(13]
where Ec(f-) is the electric field which this given fonlc and electrode

charge distribution would exert in a vacuum,

nEc(':) = - vr,[f]-‘%(%dv +f E_;, ds} . [14]

On the electrode, this o(r) arises from all the induced charges, in-
cluding those induced by the polarized dipoles, Ffor later applications
it will be convenient to define a function E (r) which depends only on.
the ionic charges in the solution and on the surface charge density av(;)
which they would induce in a vacuum, The potential ¢v(£‘) in that system
must be a constant on the electrode, Ev(s') and ¢v(5') are given by
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Efn') ==-9.%(c') | [15]
p 1) a(r)
W) =TT e [1¢)

where pv(s) = p&:), and where cv(z) and o(:) are equal on the surface of
each central ion but differ on the electrode, They differ there by an
amount equal to surface charge density induced in the electrode by the
polarized dielectric, i.e,, by 3(5)_

It is shown in Appendix I that Eq. (13) can be rewritten in terms of

1
F=gl Pk, B (EB/my) + EEfamlav + X { cds . {17]

Entropy and Energy of Nonequilibrium Systems

When the E-type polarization is electronic and the U-type s atomic
plus orientation, there will be an entropy change when the ions and (out-
side of the oriented solvent layer) solvent molecules form the final
speci{fied configuration from the initial random one, This change is
.given by Eq, (18) (cf Eqs, (33) and (25a) of ‘Part I). There will also
be other entropy and free energy terms arising from interactions of the
molecules in the oriented layer, with each other and with the electrode.

W
S¢ = - (27;053 -k % I <, Ln(ci/ci°)dv , [18])
’

where W, is the work done during the first stage [1] of the two-stage
charging process, §v°, the value °f,§V at the end of this first stage,
is related to the charge distribution at the end of this stage, p°Q:)
and a°(s}. by equations similar to (15) and (16}, Methods are discussed
in Part I for computing this charge distribution and for computing wl.
The corresponding contribution U to the energy of the system is

Us=F,+Ts, . . , [19]

-

The Equilibrium State

It can be shown from Eq, (13) for F that the function‘fu(s} assumes
its equilibrium value augﬁz) when this free energy expression is mini=-
mized with respect to the vector point function.?u(z). A procedure
closely related to the following will also be adopted in a later paper

for finding the most probable intermediate state i1 some electrode pro-
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cesses.,

In Appendix Il it is shown that at-fixed charge density on each ion-
ic surface,

6Fy = [(-E+p /o, )+ 80 AV + ?-“"T in(c;/c;%) +e(@<p )] be; dv (20]

where Py is the inner potential of the electrode,

Fe is @ minimum, and therefore &F is zero, for fluctuations &P, and
bc.(r) from the equilibrium state, The fluctuations 8 (£) are subject
only to the restraint of constant number of particles of each ionic spec-
ies, Iaci(z)dv = 0 for each i, Multiplying the latter set of equatlons
by individual constants and adding to the equation bF, = 0, we obtain an
identity which can be satisfied for all arbitrary variations qu(:) and
5ci(£) only if the coefficlents of these quantities are everywhere zero,
We deduce in this way, that at equilibrium,

{21}

KT 4n c; + eim + constant = 0

Integrating c, over the volume, the constant can be evaluated, and

we obtain -~ - .. S . : e
-eiw/kT
Gi=n® Ny (22]
- i
v, = J’ e av {23]
where ni"is the number of ions of type I, '

Eq. (24) for the Fe-value of equilibrium systems, Feeq’ can be de-
duced directly from Eqs. (10) and (12), or Indirectly from Eqs. (13),
(21) and (22) when Eq. (33) is used to transform the integrals in Eq.-
(13).
| Fo = L[ opdv+ & [ opds +X [ ods + KT S n; 2n /Y,  [24]
e 2 2 4 " i i

In some applications of these results we shall have occasion to ap-
ply Eq. (24) in a different but entirely equivalent form, deduced in Ap-
pendix IV,

- Field Equation and Boundary Conditions

By operating with Vr'z on Eq. (5), a differential equation can be
obtained for © identical with Eq. (43) of Part I, except that ¢ there is
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replaced by ®. As in Part I this equation reduces to Poisson's equation
when'fu assumes its equilibrium value,

The boundary condition for this equation which prevails at any in-
terface can be obtained from Eq, (5) by the method employed in Part I,

It is identical with Eq. (46) there, except that again § there is re-
placed by ¢, At the interface of any conductor the boundary condition

is a special case of this relation and is given by Eqs. (55) and (48) of |
Part I (where ¥ is replaced by ¢). These boundary conditions reduce to
the usual ones when P ~assumes its equilibrium value (cf Part I).

The boundary condition for ions was also discussed in Part I, As
noted there, a ‘'pseudo-point charge approximation' is commonly employed
for computing the electrostatic potential in ionic solutions. Specifi-
cally, for any specified ionic configuration, it is commonly assumed in
systems having equilibrium polarization that the potential due to these. _
charges, in a solution of dielectric constant D, is (I/D)th of that in a
vacuum, If o is the polarizabillty, we have for such systems,

W) = 4,(r)/0 =y (r)/(1+im) [25]

and therefore for ¢ we have

o) =5 _?,(f g [(REreses o [26]

For systems having nonequilibrium polarization, a method of employ-
ing an analogous approximation was devised in Part I. An equivalent but
simpler procedure for applying it was used in the Appendix of Reference
2 and In Reference 4: The problem is expressed in terms of an equivalent

equilibrium one, and Eq, (25) is then used.

Electrode Charge Distribution and the Method of Images

The surface charge distribution on the electrode will be such as to
satisfy the condition of zero electric field strength on the electrode
and the boundary condition at large distances from it. The electric field
strength at large distances from either electrode frequently has some
known, constant value, This is zero in the presence of sufficient salt,
since the effects of the electrode charges are then neutralized within a
short distance from each electrode, In this case, each electrode and its
nearby dielectric can be regarded as a separate, elecirically neutral
subsystem, Indeed, it is usually treated in this way in discussions of

properties of the electrode double layer. The following expressions for
the electrode charge distribution, derived for this condition of zero

-
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field strength in the body of the solution, can readily be adapted to the
condition of constant but nonzero field strength, A constant charge den-
sity is merely added to one electrode and subtracted from the other,

In systems having equilibrium polarization the method of images {8]

- can be used to determine the charge distribution [9], The same method
is also suitable for systems having nonequilibrium polarization,

For simplicity, we consider a planar electrode, i.e,, any electrode
whose radius of curvature is appreciably greater than the thickness of
the double layer, Let the electrode~dielectric interface be situated in
the plane x = 0, and let the dielectric occupy the semi-infinite region,
x> 0, As before, the coordinates of any point in the dielectric will be
specified by the vector r drawn from any arbitrary origin to the point,
The coordinates of the "'image' point having the same y and z and differ-
ing only in the sign of x will be specified by a vector r, . Mirror im-
age functions BLSin)’ E(Lin) and f(;,q) will then be defined in the reg-

jon of negative x, according to Eq. _¢7). They are undefined in the reg-

fon of positive x, i.e., in the dielectric,
E(Si = p(f)v 5(:']“‘) =U(£)

- _ . [27]
Px(ﬂim) =" Px‘.:)’ Py(.';im) = Py(.f)' Pz(slm) = Pz(:)' :

v cemamay,
- Ve

The last three expressions relate the three comporents of the vectorlf to
those of P. In Eq, (27) o refers only to the surface charge density on
the central fons and not to that on the electrode,

Applying the method of images, the electrode charge distribution
which satisfies the condition of constant potentiél on the electrode M
and in the body of the solution obeys the following equation,

r. p(r _

]
.9 dv . {28
'Eim‘s.l im ' )

In Eq.'(28) r and r' denote any points on the electrode surface M and in
the dielectric medium, respective]y. The first surface integral is over
M and the second is over the surface of the mirror image of each central
ion, The volume integrals are over the entire mirror image of the volume,
of the dielectric,

Using Eqs. (S) and (27) it is seen that the electrode charge dis-

tribution specified by (28) satisfies the condition of constant poten-
tial on the electrode, (When the field point r' is at the electrode-
o~
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solution interface, its distance to any point in the dielectric equals
that to the latter's mirror image.) Because of Eq, (27) the total charge
in the dielectric is equal and opposite to the total image charge, which
in turn equals the total electrode charge, Thus, the condition of elec-
troneutrality in the region containing the electrode and the nearby di-
electric is also satisfied, thereby fulfilling the condition of constant
potential in the body of the dielectric,

Evaluation of Some Integrals

In some applications of the equations of this paper we shall have
occasion to make use of the following surface integrals (29) and (30).
Treating the surface of an lon as a sphere of uniform charge density
it can be readily shown that
'j‘ o ds
J‘ gds _ ion =% | [29]

-‘-.
jon 10°'] r

where r Is the distance from the center of the ion to the field poiant,
and where q is the ionlc charge, '
similarly, it can be shown that

o 5(£im)dsim q

J Tre=c'[ T r.
ion':im L "

(30]

where r, is the distance from the field point to the center of the elec-

trical image of this ion,

APPENDIX I. PROOF OF EQUIVALENCE OF THE FREE ENERGY EXPRESSIONS, EQS.
(13) AND (17)

Eqs. (13) and (17) for F differ only in their first two terms, the
difference being equal to

E 2-E 2 ,
JZ_JA [~v4n~c - E.Ev + £¢§c]dv . ) [3']

el 2.g 2 E ). . .
Writing E *-E.° as (EV Ec) (gvfgc) and collecting terms, this becomes
%’f (E,E)-(-PeE /4m)dV + % JUE,E)-EJem oV . [32]

Mow, the following general equation, applicable to any system, was

established in Appendix I of Part I,
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- I(ﬁi‘fc'/4ﬂ)'§cjdv = f@’ideV + jq;'cj das (33)

where the superscripts i and J designate functions of the same or of dif-
ferent systems, and where any potentials involved in (33), directly (;yi)
or indirectly (1‘,' , U -’) are continuous functions.

we apply this equation to the first integral of (32). As a special
case ?f Eq. (33) we can set ch —-Ev-gc We will then have pj =p,P = 0,
and ot = 3,~C» all of these terms havi{;g been defined earlier (cf Eq.
(16)€f). Again, we can set 3' =P, Ec'
Thus, with the aid of Eq. (33) and these substitutions the first Integral
in Eq. (32) becomes

N
xfc and, therefore, §{ =4¢.

%-f v(o~0)ds . | (34]

On the electrode surface § equals a constant t{rM, and I(c -g}dS equals the
charge induced by the dipoles of the polarized medium, In magnitude this
charge equals that of the dipoles, zero, so that (34) vanishes, .
Making the following substitutions "in Eq, (33) in order to evaluate =

the second integral of (32), Ee . EE. (i.e., pJ = p,~p = 0 and ol =
ov-a), N’ =0, ‘Eci =E, (and, therefore, ] vv), and using arguments
analogous to those above, it may be verified that this integral also van-
ishes,

Thus, Eqs. (13) and (17) for F are equivalent,

APPENDIX II, PROOF OF EQ. (20) .

We find from Eqs. (10) and (13) that
= ]
By = OF + kT Z J e /c;%) bc, dv [35)

where

2-§C b.Erc 2P
6F = -J‘[ P- 8 ~E " 6P +—==-5p ~E: 6P P - 8E]dV +X [b3 ds . [36]
Oy M

& &C +0C w

\

Introducing the value of &P computed from Eqs. (1) and (2), we obtain
1 .
oF = .2-.]. I -P+E /2m) o€, -(Ec'*g-zfu/au)' ¢, '(a'efc"fu)' 6E]dv *Xf & ds .
M
A (37]
In Part I it was shown that 6fu and 65 are not independent. From Eqgs.
(1), (36) and (38) there, we find
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f(c,"efc"'fu)' 65 dv = j‘[g bfc + (E.Ec). 53u] dv . (38]
Eliminating the §E term between the last two equations, we obtain
8F = I( -3-4»5:/417)- 6E. dV + I -E+£u/au)- 6P, dV + X }[; & dS . [39)

The system is electrically neutral, so that at fixed surface charge den-

sity on the central ions,

Jwds=-xn[e bc;dv . {40]
M ]
Introducing Eqs, (40) and (42) (below) into Eq. (39), we obtain Eq. (20)

for bFe.

APPENDIX III, TO EVALVATE [{ P~E_/4m)- 8E _ dV

J

setting as a special case of.Eq. (33), fcj 5§c, we have p’ = &p

and oj = &, Setting “Ec‘ =E. ‘F_’.' =P, and §' =y there, we obtain
- J(p-E_s4m)- 6E_ oV = [yop dV + [yt dS . 41

On the electrode surface § Is a constant, ("M' On the surface of any
central ion, & = 0. Thus, the surface integral In Eq, (41) becomes
¥y [ & ds. As discussed in Appendix I, such an Integral cannot have any
M

contribution arising from the bP(f)'s. It can only be different from
zero if there is a net change in the Tonic charge in solution. It will

equal -\;;Mfap dV and therefore -g'/M}i: eiJ‘&ci dv,

Introducing these results into Eq. (41) and alsoc expressing the §'s
in terms of the @'s, we obtain

- J(p-E sum)- g€ av =z [(o=py +X)e;bc, av . {42]

APPENDIX 1V, TWO EQUIVALENT EXPRESSIONS FOR F_ FOR SYSTEMS HAVING EQUIL~
" IBRIUM P AND c;

An expression equivalent to Eq. (24) but more convenient for certain
applications in equilibrium systems will be deduced. We shall also have
occasion to use {t indirectly in nonequilibrium systems, as in Reference
4, |

Introducing the equilibrium relation (21) into Eq. (39) for 8F, and
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at the same time computing @ kT 2‘rci-bnci/ci° dv), < being given by the
i

equilibrium relation (22), we obtain at fixed n
eq = - - - | -
5F, J(p-€_sam) a§c+x£mds Jotp dv .
Using Eqs. (8), (40) and (41) this becomes
eq _
8F, ' = [ @t ds .

Thus, by charging up all the surfaces we obtain

eq o=g
Fe = J‘ f Wo ds ’ [43]
g0 S . .

which is the desired relation,

Since the Boltzmann relation was used in deriving Eq, {43), the
mobile ions continually r;adjust their configuration throughout thls
charging process, This differs from the process used In Eqs. (10) and
(12), where the configuration of these fons is fixed,

APPENDIX V. MODIFICATIONS IN TREATMENT ARISING FROM ANY DEPENDENCE OF
X ON MEAN ELECTRODE CHARGE DENSITY

In the present paper, it was assumed that X, the potential drop at
the interface due to solvent-solvent and solvent-electrode interactions,
was a constant, HoweVer, recent studies [10] on the equilibrium prop~
erties of the electrode double layer suggest that the degrée of orienta-
tion of the solvent molecules at this Interface (and hence X) depend on
the electrode charge density.

It is interesting that this degree of orientation did not appear to
vary with the salt concentration over the concentration range studied
{10]. The close approach of ions could affect this layer by interacting
with the solvent molecules directly and by changing the local electrode
charge density, (The local surface charge density induced by an ton in«
creases as the ion approaches the electrode,) The average distance of
approach, the thickness of the electrode double layer, depends, of course,
on the salt concentration. Thus, under the conditions studied, the degree
of orientation (and therefore X) depended on the mean electrode charge
&ensity, o say, but not on any local fluctuations caused by the close ap-
proach of the ions,

These considerations suggest that as a first approximation we treat
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X as a function of g, and not of these local fluctuations. In this case,
we note thai Eq. (S) for the potential will be unaffected. However, the
free energy expressions (13), (17), (24), and (43) do change for several
reasons:

(1) x.[ods should now be replaced by Ijk(g)dc(z)ds.

(2) The molecular interactions of the solvent molecules in the in-
terfacial layer, with each other and with electrode, give rise
to an additional free energy term., This extra term depends on
the average degree of orientation of the molecules in this ’
layer, and therefore on the mean electrode charge density. We
shall write this term simply as g(d).

Integrating the first term over the electrode area, we note that

fdo(r)ds equals dq, where dq is the total increase in charge when an

S
amount do{r) Ts added to each area element. Thus, we obtain for the sum
of both terms: '

[ x(3)dq +g(a)

and remark that o equals q/S.

In any electrode process to which the present nonequilibrium treat-
ment will be applied, there will usually be a transfer of a few electrons
“ scross the interface, ~Clearly, such fraﬁsfers have but a negligible ef-
fect on the average electrode charge density. Thus, the contribution of
the above sum to the free energy of the system, when.the electrode charge
differs from q by some small amount &g, is simply

a9 = = =
on(c)dq +x(0) & + g(o) .
q=

That is, in such processes, this sum is a tinear function of q, over
the small &q's Involved, and will be written as '

X""(a) "'.X'(g) Jads . [44]

since q equals Ibds. In summary, wherever a term X.rUdS appears in a
free energy expressions, it should be replaced by (44) when X varies
with ;.

In any physical process, only fre€é energy changes are important.
The first term in (44) is the same in the initial and final states of
any step in the process, and so contributes nothing to the free energy
change of this step, The second term, in effect, replaces the term
X fods in.the various free energy expressions which occur In the text,
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The variation processes in the text are performed at fixed §, so that
in those equations X should merely be replaced by X'.

In application of the present work to the theory of overvoltage [4],
we shall see that the term X (treated as a constant) cancels out in the
final equations for the free energy change of forming the activated state.
so, therefore, does %'(g).
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