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Expressions are derived which introduce an appreciable simplification into the calculation of the thermo-
dynamic properties of solutions of polyelectrolytes in certain cases. For example, for a certain class of theo-
retical models of these systems it is found that the square of the mean ion activity coefficient of a uni-
univalent salt in the presence of polymeric ionsis V3/ f'e=¥/¥TdV . f¢®¥I*¥Tgy, the integration of the potential
¥ being over a region whose volume is the volume of solution per macro-ion, V, and whose symmetry is that
assumed for the polyelectrolyte. The osmotic pressure of a salt-polyelectrolyte system is, ignoring the
contribution of the macro-ion, estimated to be Z; ¢;*tT, where Z; ¢;* is the sum of the concentrations of all
ions at the surface bounding the previously defined volume V. Other relations and various applications are
given. The activity coefficient of salt in the presence of polyelectrolytes, calculated by extending the “parallel
rod” picture of polymeric ions, is found to be in reasonable agreement with the experimental data. The use
of the Poisson-Boltzmann equation to estimate y in these systems is shown not to render inconsistent several
alternative expressions for the electrostatic contribution to the free energy.

INTRODUCTION

HE strong electrostatic fields in the neighborhood
of polymeric ions have been established experi-
mentally and their theoretical description 2 has been
the subject of a number of recent communications.
Relevant thermodynamic data include osmotic pres-
sures, activity coefficients of salts, and titration be-
havior of polymeric acids and bases. Usually these
properties are calculated theoretically by differentiation
of a free-energy expression into which parameters of
the models have been introduced. Because of the fre-
quent complex dependence of these parameters on the
thermodynamic variables such as the moles of the com-
ponents and the volume of the solution, the differentia-
tion may become a lengthy process. A somewhat differ-
ent procedure is employed here for a certain class of
models, in that the last two steps are reversed—expres-
sions are set up for various thermodynamic properties
by differentiation of the free energy, these are then
simplified and the parameters are introduced as a final
step. This procedure effects a considerable simplifica-
tion of the calculation in various cases.

THEORETICAL
1. General

A number of theoretical models of polyelectrolytes
have been advanced'—#; several of these have in common
the following assumptions:

(1) The interaction between polymeric ions is neg-
lected except insofar as the concentration of these ions
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4 Fuoss, Katchalsky, and Lifson, Proc. Natl. Acad. Sci. U. S. 37,
579 (1951).

§ Kimball, Cutler, and Samelson, J. Phys. Chem. 56, 57 (1952).

$P. J. Flory, J. Chem. Phys. 21, 162 (1953).
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determines the size of the electrically neutral volume V
assigned to each polymeric ion (total volume of solution
divided by number of such ions).

(2) The electrostatic interaction between all ions in
this subvolume obeys the Poisson-Boltzmann equation

4
V""I/=—‘5(P+Pp) (1)

where the charge density of mobile ions p equals 3_; cie:.
The charge of ions of the ith type is ¢;, and ¢;, their local
concentration, is given by

o n; exp(—edp/kT) @

f exp(—ey/kT)dV

where #; is the number of these ions in V. The volume
charge density of ions fixed on the polymeric ion p, is
sometimes replaced by a surface charge density. That
is, V3= —4mrp/D is used instead of (1) and a boundary
condition relating the potential gradient and the charge
per unit area at the surface of the polymeric ion is
given. The present approach will apply to both treat-
ments. The subvolume V and the model are chosen with
a certain degree of symmetry such that on the boundary
of the electrically neutral volume V the potential
gradient is zero.

In Eq. (2) the concentration ¢; and the potential ¢
acting on a mobile ion are assumed to be a function
only of the three coordinates defining the position of the
ion in space, the macro-ion being held fixed in this space.
Actually, more rigorously, the potential is a function
not only of these three coordinates but also of the
instantaneous configuration of the other mobile ions.
Similar remarks may be made about the concentration
¢s; the local concentration gradients about each mobile
ion should be considered explicitly. The assumption
made here thus treats the mutual interaction of the
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mobile ions in a more or less approximate manner.’
Correspondingly, the Poisson-Boltzmann equation, as
used here, will give best results when the mobile ion
interacts more with the macro-ion and the many distant
mobile ions than with a local mobile ion. This will occur
when the mobile ions are dilute, which does not imply
that |e/kT| must be small compared with unity.

This viewpoint may also be inferred from the be-
havior of the activity coefficient of added salt calcu-
lated on the basis of Eqgs. (1) and (2). At a given poly-
electrolyte concentration it tends toward unity as the
salt concentration is increased, inasmuch as a given
mobile ion is increasingly shielded by the salt from the
influence of the macro-ion. In dilute solutions experi-
mental data support this expectation. Nevertheless, for
a given polyelectrolyte concentration, as the salt con-
centration increases the magnitude of the activity
coefficient should ultimately approach that observed
for the same salt solution containing no polyeléctrolyte,
rather than unity. This discrepancy is due to the fact
that the local concentration gradients in the vicinity
of each ion are but approximately taken into account.

(3) Calculations of the electrostatic potential are
frequently made for some average configuration of the
polymer rather than for all possible ones. This assumes
that all important configurations of the polymer have
about the same electrostatic free energy arising from
the interaction of the charges fixed on the polymer with
each other and with the mobile ions in solution.

(4) It will be assumed that the configurational en-
tropy of the polymer chain S, and the average local
concentration Cp(r) of groups, neutralized plus un-
neutralized, fixed on the chain depend upon only one
quantity, &, the configurational variable. This variable
may be an average end-to-end distance or the average
radius of the polymer, assumed coiled, and its value
will depend on the thermodynamic state of the system.
It will, for example, increase with increasing charge
density along the chain, i.e., with increasing degree of
neutralization, and will decrease with increasing shield-
ing of these charges from each other, i.e., with increasing
salt concentration. The effect of using a different as-
sumption will be discussed at the end of this section.

In treating this class of models the following contri-
butions to the free energy of a macro-ion and its ac-
companying mobile ions present in ¥ will be considered:

(a) S,, the configurational entropy of the polymer
chain, which is related! to the number of configurations
of the polymer consistent with a given value of 4.

(b) S, the entropy of mixing of the charged and
uncharged groups along the chain.

(c) Sia, the ideal entropy of mixing of the mobile ions.

(d) F., the free energy associated with the reversible
charging of the mobile ions and of the macro-ion, during
which process the polymer configuration and the number
and spatial distribution of ionized groups on the macro-
ion are held fixed.
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(e) X i nud, where p is the standard free energy of
the mobile ion of the ith kind while #; is the number
of such ions in V.

(f) mLaps®+ (1—e)ura®], where us® and pps’ are
the standard free energies of the neutralized and un-
neutralized groups, respectively, « is the degree of
neutralization, and m is the total number of groups on
the polymer chain.

The expression for the free energy may therefore be
written as

F=—=TS8,—TSntFe—TSiut2inud
+mlopl+ (1—a)paa®] (3)

where S, is given by
Sn= —ka,,[a,- lna,+(1—a,) In(1—a)]@V (4)

where C,, is the local concentration of the groups on the
polymer while e, is the local fraction of these groups
which are neutralized. Furthermore, a, is related to the
charge density p, due to ions fixed on the polymer by
the relation, a,Cpep,=py, Where e, is the charge of an
ion attached to the polymer.

If the simplifying assumption is made that the neu-
tralized and unneutralized groups are randomly mixed
then a, becomes independent of position and equal to a,
the degree of neutralization. Thus, S. becomes

Swm=—mk[alna+(1—e) In(1—a)]. ©)

While the calculations given below will, in general, be
performed without making this assumption, the effect
of employing it will be discussed. ,

Various expressions may be used to estimate the
electrostatic contribution F, to the Helmholtz free
energy. Neglecting electrostriction the equations given
below also represent the corresponding contribution
to the Gibbs free energy. F, may be calculated in the
following way® from the reversible work to charge the
entire system in V at constant configuration and
charge distribution of the macro-ion, constant volume,
and temperature. The charging process is performed
in a manner such that at any stage all ions have the
same fraction A of their final charge. The corresponding
values of ¥, p, py, Ci, etc. are indicated by the super-
script, . The charge per unit volume, p'+py, is
(3 ceA+a,Cpe\). When the charge on each ion is
increased by a fraction d\, the charge of those ions
in a volume element dV is increased by (3 :c/e:
+a,C,e;)d\dV ; that is, by (o'+p,)(d\/N)@V. Since
the local value of the potential is ¢/, an element of
work ¥ (p'+p,) (@\/A)dV is done. Summing this work
over all ions, i.e., integrating over V, the total work
done during the complete charging process from A=0

vSee E. J. W. Verwey and J. T. G. Overbeek, Theory of Stability
of Lyophobic Colloids (Elsevier Publishing Company, Inc., New
York, 1948), p. 58.
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tox=1is
A=l

re [
A=0

where E,/ is the electrostatic energy [see Eq. (7)]. If
the polymeric ion had been regarded as forming a sur-
face charge density o over its surface instead of a volume
density p,, then the integral of Y'p,’ over the volume
would become an integral over the surface 4 of the
polymer, /i /ay's’(@\/N)dA. Similar remarks will apply
to all electrostatic expressions throughout this paper.
The final equations for the thermodynamic properties
will be the same regardless of which picture is used.

A second expression for F, may be obtained from the
Gibbs-Helmholtz equation together with an equation
for the electrostatic energy, E,.

d\ d\
f V(o' p)dV = f B2 (6)
v A N A

E~} f o-+o,)dV 1)

Fo=T f:T E.d(—Tl—). ®

The integration in (8) is performed at constant dielec-
tric constant,” and at constant average configuration
and charge distribution of the macro-ion. We note that
the lower limit arises from the condition that F,/T=0
when T'=co.

A third expression for F, may be found by combining
the equation for E, with a suitable equation for the
entropy of mixing, S, of the mobile ions in V.

S=— kY f (c: Inci—c)dV ©)

where the summation is over all mobile ions. If the
total number of ions of type 7 in the volume V is n;, then
the ideal entropy of mixing is

Sia= —kz. (114 lnﬁ—n.-) . (10)
|4

This equation follows from Eq. (9) when one sets ¢;
equal to its average value n;/V. The deviation of the
. entropy of mixing from its ideal value is (S—S;4) and

W A few remarks concerning this restriction of integration at
constant dielectric constant are perhaps in order. If E, were the
total electrostatic contribution E to the energy of the system, then
the restriction would be unnecessary, but E, is actually only a

ortion of E. It can be shown that while (F,./T)/a(1/T)=E,

3(F./T)/9(1/T)]p=E,. Conversely, in order to obtain F, from
E, by integration with respect to 1/T, it is necessary to hold D
constant. The difference between E and E, has been discussed by
N. Bjerrum, Z. physik. Chem. 119, 145 (1926). E may be calcu-
lated by imatiirning an isothermal process in which the ions are held
motionless throughout and estimating the reversible work done
w, by the system and the heat absorbed ¢. by the system in bring-
ing the ions from infinity to their final equilibrium positions. , is
simply — E, while ¢, was comtguted by Bjerrum from the tempera-
ture dependence of w, using the second law of thermodynamics to
be —,8 InD/d InT whence E=g,—w,=E, (149 InD/3 InT).
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we may write as a third expression for F,,
Fo=E—T(S—S:a)- (11)

In view of the questions which can be raised concern-
ing the internal consistency of solutions of the Poisson-
Boltzmann equation, it is of interest to examine the
extent to which the various expressions for F, are ex-
actly equal when solutions of this equation are intro-
duced into them. In Appendix I it is shown that they
are equal,

The third expression for the electrostatic free energy,
Eq. (11), is the most convenient one for the present
purposes and will be used. Before proceeding it is first
observed that Poisson’s equation (1) may be written!!
in the integral form:

1 ro(x")+o,(r")
(r =—-——f——dV- (12)
¥ D |r—r"|
Equation (12) will be used in some of the proofs given

in Appendix I.

In general a thermodynamic function of the system
can be expressed in the terms of partial derivatives of
the free energy, and a first partial derivative can for
example be calculated by estimating the change in free
energy corresponding to an appropriate change in the
thermodynamic state. The calculation is simplified by
observing that in any reversible change of thermo-
dynamic state the contributions to the free energy
change arising from a change in configurational variable
h, a change in the fraction o of the groups on the macro-
ion which are neutralized, and a change in the relative
distribution of the charges over the chargeable sites on
this polymer are each equal to zero. This circumstance
arises since the change in %, ¢, and in the relative dis-
tribution of the charges, occurs automatically with the
reversible change of state and so contributes nothing to
the work done and therefore nothing to the free energy
change. The statement concerning % and « is readily
established by observing that the equilibrium -values
of # and « satisfy the equations (8F/dh}.=0 and
(0F/3a),=0, all thermodynamic variables being held
constant. Thus the change in free energy corresponding
to a reversible change of state equals that calculated at
a given % and q, for

aF  9F
8 =—dort—dl+ (OF)an=(F)ar  (13)
a

The statement concerning the relative distribution
function, a,/c, of charges on the polymer is verified
rigorously for the present model in Appendix II. This
has the consequence that the free-energy change equals
that estimated at fixed %, @, and a,/a. Equations are also
derived in Appendix II for a,/a and for the relation
satisfied by the equilibrium value of 4.

UE g J.C. Slater and N. H. Frank, I'ntroduction to Theoretical

Physt;cs (McGraw-Hill Book Company, Inc., New York, 1933),
p- 217.
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We shall conclude this section with an amplification
of the assumptions (3) and (4) made earlier, and with
a brief inquiry into the extent to which the equations
deduced here for various thermodynamic properties
remain valid when assumption (4) concerning S, and
C, is either dropped or replaced by another. First it is
observed that for a given polymer molecule many
polymer configurations are important and contribute
to the configurational entropy S,. If these all have sub-
stantially the same electrostatic free energy (really,
the same F+4TS,), as postulated in assumption (3),
then S, will depend only on the same parameter,
here &, which characterizes S, for the uncharged
polymer. That is, assumptions (3) and (4) are not
mutually inconsistent. If, further, many of these con-
figurations are substantially different so that ap-
preciable fluctuations of the configuration of a polymer
molecule from the average configurational distribution
function, Cp(r), occurs in time, then it is the parameter
h, rather than the function C,(r) which maximizes the
free energy. That is, in the expression for 6F, the coefhi-
cient of &/ rather than of 6C, is set equal to zero at
equilibrium.

Consider now a different model, one in which all the
important configurations of a polymeric molecule are
very similar so that only small fluctuations from the
distribution function C,(r) occur. It is expected that
these configurations will have substantially the same
electrostatic free energy, and assumption (3) thus
remains valid. In this model C, is calculated by maxi-
mizing the free energy. That is, C, describes that dis-
tribution of groups on the polymer which maximizes the
free energy. This has the immediate consequence that in
a reversible change of state this spatial distribution
function of groups on a polymer will automatically
adjust itself and, like the redistribution of the charges
on these groups, contribute nothing to 8F. This may be
verified by writing, in contrast to the previous model
where S, and C, were only indirectly related (through
%), for this case S,= /' g(C,)dV, where g is a function of
C, alone and introducing this into Eq. (56) for the free
energy in Appendix II. The procedure used there is
then followed except that the variation of the free energy
is computed in terms of 8C, instead of 8k. As before
0F/3a=0 and it is concluded that in this alternative
model the free-energy change equals that estimated at
fixed o, a,/a and C,. These restrictions are equivalent
to constant a, a,/a, and A, since when #% is constant, C,
is constant. Thus, the various equations deduced below
for the thermodynamic properties remain valid if this
alternative model of polyelectrolytes be assumed.

2. Calculation of Activity Coefficients

The chemical potential, and hence the activity coefh-
cient, of added salt may be calculated by differentiating
the sum of all contributions to the free energy with
respect to amount of salt. According to the discussion

R. A. MARCUS

in the previous section, only the derivative at constant
degree of neutralization, at constant polymer configura-
tion, and fixed distribution of polymer charges need be
calculated. When these variables are held constant S,
and S, do not change and, as seen from Eq. (3), it is
sufficient to calculate the changes in F,, —7.S:s and
2inad

Inasmuch as (F.—7TS:a) equals (E,—TS), Eq. (11),
the changes in E, and S will be determined rather than
the changes in F, and Sis. According to Eq. (7) the
change in E, with amount of added salt at constant
volume V may be written as :

$E,=} f (¥ (6p+0p,)+ (0+pp)00 1V

= f (o+pp)80dV = f ¥(@ptopp)dV.  (14)

The second equation may be established by writing ¥
and & in terms of the p’s and dp’s using Eq. (12). At
constant polymer configuration and distribution of
polymer charges 8p,=0 so that

SE.= f YopdV. (15)

The change in S at constant volume may be esti-
mated from (9) to be

‘65=—kz:.'flnc.66,dV. (16)

Using the Boltzmann expression (2) and denoting
JSexp(—eyp/kT)dV by V,, it follows that

ey o
5= — ks f (——+ln——)5¢.dV
kT V;

1 "
=?f¢5pdV—kZi (ln;/—;)f&c.dV (17)

since §p=Y_; eic;. It is noted that n;/V is independent
of position and hence has been removed from the
second integral.

At constant volume dn;=_/dcdV so that from Egs.
(14) and (17) we have

ni
6(E°— TS) = kTZ‘ In;&n.-. (18)

The change in the term }_; #u# caused by the addition
of salt is X u%n;.

Thus the chemical potential of any mobile ion of the
type jin Vis

] n;
pj=—(Be— TS+ i nip®) =p+kT In—. (19)
on; V;
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The chemical potential of any salt, one mole of which
dissociates into v, moles of cations and »_ moles of
anions in this sytem, is therefore

Ny

l’+ "_ '_.‘
p=yu%v_p °+kT ln(—) (—) (20)
Vi V-

where the subscripts + and — correspond to the cat-
ions and anions, respectively.

Defining the mean ion activity coefficient f;. by the
equation

ny

= vy, y_p Ok ]n(—) +("—")Lf,; (21)
\v/ \y

where y=y,+v_, it follows that

=) ()
L 23 — o .
*\v ) \v

It may be verified that making an additional assump-
tion of random mixing of neutralized and unneutralized
groups on the polymer, i.e., setting a,=a everywhereand
so using Eq. (5) for S instead of (4), leaves Eq. (22)
unaltered.

It is interesting to observe that this equation can also
be obtained in a somewhat different, though less rigor-
ous, way. Let us assume that this salt-polyelectrolyte
solution is in equilibrium with an ideal salt solution
containing no polyelectrolyte, where the concentration
of ions of the ith type is &, the two phases being sepa-
rated by a membrane impermeable to the macro-ion in
order to maintain equilibrium. That is, a type of
Donnan membrane equilibrium is set up. Then it is
reasonable to expect that the concentration of ions of
type 1 in any local region of the subvolume V in the poly-
electrolyte phase will be given by c;=¢&; exp(—e/kT)
since ¢;=¢; in the ideal solution where ¢=0. Thus
ni=_0:; S exp(—ey/kT)dV. At equilibrium the activity
of a salt is the same in both phases. That is,

Jer g/ V)+(n_/V)*-= (&) +(22)"-.

Since, as just stated, n;=&V,;, Eq. (22) immediately
follows. _

That the mean ion activity coefficient, calculated on
this basis, is always equal to or less than unity when
both ions of the salt have the same valence, may be
shown by application of Schwarz’s inequality?:
SV - S gdV 2> (S fgdV)2 Setting f=exp(—e/2kT)
and g=exp(—ey/2kT) it follows that fg=1 when
e.=—e_. The integral on the right-hand side of the
inequality then becomes V? while the product on the
left-hand side is V,.V_. That is, V., V_2 V? and, since
v.=v_ here, f, is seen from Eq. (22) to be equal to or
less than unity.

(22)

12 H, Margenau and G. M. Murphy, The Mathemalics of Physics
¢113¢413)Clwmi§gy (D. Van Nostrand Company, Inc.,, New York,
, p. 130.
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A few applications, considered below, may serve to
indicate the ease of a calculation based on Eq. (22) as
compared with one involving a differentiation of the
free energy into which parameters of the models have
been previously introduced.

Applications

A coiled model of polyelectrolyles.—The Poisson-
Boltzmann equation has been solved?” for a spherically
symmetrical model of a polyelectrolyte, using the ap-
proximation that a large number of mobile ions lie
within the coils such that this region is about electri-
cally neutral. The result obtained by these authors for .
the chemical potential of added salt [their Egs. (32)
and (33)] may also be obtained in a very straight-
forward manner by using Eq. (22) here and their Egs.
(23) and (24). This procedure avoids an awkward inte-
gration and differentiation. Actually these two values
for u differ roughly by an additive constant due to a
slight difference in the definition of the entropy."

“Parallel rod” moadel of polyelectrolyles—Recently the
Poisson-Boltzmann equation has been solved®* ex-
actly for the cylindrically symmetric case, no added
salt, in which the polymeric ion assumed to be rod-like
lies along the axis. No exact solution for ¢ is available
for the important case of added salt. Nevertheless the
solution of these authors can also be applied to the
calculation of the activity coefficient of infinitesimal
amounts of such salt, inasmuch as such minute traces
do not affect ¥. These authors, however, did not con-
cern themselves with added salt and did not calculate
any activity coefficient. Using their expression for
¥ [Eq. (33) of reference 4], the product V,V_ was
calculated and it is found after considerable simplifica-
tion that for a uni-univalent salt

- 1—(a/R)?
= M- (e/Ry ]

where a=radius of the rod, R=radius of the cylinder
(xR? is the volume of solution per macro-ion per unit
length of the macro-ion), \*=¢**/DkTk*, there being
»* ions fixed on a macro-ion of length 4*, 8 is the solution

of \*= (14-6%)/{1—8 cot[B8 In(a/R)]) and f, and f, are

functions of 8. Thus
fim 13+82 fom (\*=3)+4+5
Tams) T @I

Depending on the magnitudes of the parameters A*
and a/R, 8 may become imaginary. When g8 becomes

(23)

(24)

13 Osawa ¢! al. use a definition of the entropy of mixing based on
mole fractions while here a definition based on concentrations is
used. The latter is more simply related to the definitions of E, and
F. while the former is more exact but also more awkward. In
dilute solution they differ by an additive constant. In very con-
centrated solutions where a significant difference occurs neither
presumably is especially correct, the effect of hydration and re-
stricted volume on this entropy becoming very important then.
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Fi6. 1. The dependence of the activity coefficient /. of vanish-
ngly small amounts of added salt on the charge parameter \* of
the polyelectrolyte: theoretical, — calc for a/R=¢" and for
a/R=¢"3; experimental, -O- data of f, o5 a are plotted on this
graph using A*= 5.9 as the conversion factor (see text).

imaginary it should be replaced in all these equations
by i|8| and we observe that

cot(3|8| Ing/R)=—1 coth(|8| Ine/R).

Reasonable estimates of A* and of /R may be made
although some uncertainty arises because of the kinked
nature of the polymeric ion. As the degree of neutraliza-
tion @ of polymethacrylic acid, say, increases, the poly-
meric ion becomes more highly charged and stretches
due to the repulsion of its charges. When o exceeds
about 0.35 viscosity and light scattering measure-
ments* indicate that the dimensions change relatively
little with increasing «. The viscosity datal suggest
that for these values of a the head-to-tail length of the
molecule is about half that of the linear chain length;
that is, half the value it would have were it fully
stretched. The question arises as to which length to use
for 4*. The effective surface charge density acting on
mobile ions at appreciable distances from the macro-ion
should be that corresponding to the value estimated
from observed head-to-tail length while the effective
density acting on mobile ions very near the macro-ion
might approximately be that estimated from the total
linear chain length.

This uncertainty in / introduces a corresponding one
in ¢/R and A*. The calculated values of f. are relatively
insensitive to such errors in a/R while the effect of [
of an uncertainty in A* of a factor of 2 may be inferred
from Fig. 1. In the present calculation we shall use the
observed head-to-tail length, so that k/»*=1.25A.
When the concentration of polyelectrolyte is ¢y equiva-
lents per liter, then mR?*s*co=v*, so that when R and %
are in A, we find R=20.6/4/co A. When ¢,=0.05 M, as
in the following data, when R=92 A. The radius, q,
of the cylindrical, charged rod is essentially the distance
of closest approach of the mobile ions to a carboxyl
ion fixed on the polymer chain. If ¢ is about 6 A, then

1 See A. Oth and P. Doty, J. Phys. Chem. 56, 43 (1952).

a/R=¢2"5, Other reasonable choices of @ will have only
a minor effect on the calculated values of the activity
coefficient. When « exceeds 0.35 we estimate from the
previously mentioned head-to-tail length A\*=S5.7q,
approximately.

In Fig. 1 the mean ion activity coefficients of traces
of salt in the presence of polyelectrolyte, estimated
from Eq. (23), are given as a function of A* for ¢/R=¢"
and a/R=¢% In performing these calculations, A*
was calculated for various values of 8, for these two
values of a¢/R, using the equation relating A\* to B,
rather than solving this transcendental equation for 3.
A graphical representation for the dependence of A*
on 8 has been given by Lifson and Katchalsky.!®

Experimental activity coefficients'® have been de-
termined for various amounts of added salt as a func-
tion of the degree of neutralization. These data extra-
polated to zero concentration of added salt are plotted
in the form fi vs A\* in Fig. 1 assuming A*=5.7a. The
agreement with the curve for ¢/R=¢"? is reasonably
good considering the nature of the approximations and
the fact that no adjustable parameters were used. To
obtain exact agreement an arbitrary choice of A*=9.5«
is necessary.

3. Calculation of Osmotic Pressure

The osmotic pressure of a salt-polyelectrolyte system
may be calculated by differentiating the free energy,
as given by Eq. (3), with respect to volume keeping the
amounts of polyelectrolyte and added salt constant.
Recalling from the discussion in Sec. 1 that this deriva-
tive equals that at constant polymer configurational
variable 4, fixed polymer charge distribution and fixed
degree of neutralization, the contributions to the free
energy which may change with volume under these
restrictions are —7T'Sn,, E, and —7.S as defined in
Egs. (4), (7), and (9), respectively. The changes in
these quantities will now be calculated. The contribu-
tion of the motion of the macro-ion to the osmotic pres-
sure will, however, be neglected for the present purposes.

A change in volume 3V will change the potential,
the charge density and the upper limit of integration
of the expressions for S, E., and for S. The contribu-
tion to 8S,, arising from a change in the upper limit of
integration in (4) is zero since the polymer lies within V
rather than on the bounding surface S of this volume.
At fixed distribution of polymer charges, o, does not
change so that the change in the integrand of the ex-
pression for S, is also zero. That is, 85 is zero.

Indicating the values of ¢ and p on the surface of the
volume V by a superscript s we have

28E,= f Y (3p+3p,)dV

+ f (o050 dV -+ ("0, )8V (25)

15§, Lifson and A. Katchalsky, J. Polymer Sci. 13, 43 (1954).
18 A, Katchalsky and S. Lifson, J. Polymer Sci. 11, 409 (1953).
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By expressing & and ¢ in terms of the p’s using Eq. (12),
it is found that

SE.= f (o+ps)o4dV

= [Vortaodav Lo toev. (2

At fixed polymer configuration and polymer charge
distribution 8p,= 0 and since Py lies within V rather than
on its surface .S, p,*=0. Thus it follows that

SE,= f YoodV +-pros V. (27)

We also have from (9)

0S=—kY"; (c;* Incy'— c)—kX f IncdcdV, (28)
Using the Boltzmann expression for ¢i, we obtain

n;
T55=p'¢'6V—kTZ; (c,-'aV-l— f 6c.dV) ln;

+ f YopdV+ETY s c5V. (29)

The change in the number lof mobile ions of the sth
type on; is equal to (¢c;%V+ /dc.dV) and is zero. It
thus follows that

oF= BEG— TBS= —sz, C."&V. (30)

The introduction of solvent to increase the volume also
results in another free-energy change which in dilute
solution becomes u,%n, to a good approximation, u,°
being the chemical potential of pure solvent. Inclusion
of this in (30) and division of the equation by o, yields
for the chemical potential of the solvent T T
+(8F/3V)V s, Vw being the partial molar volume of
solvent. Inasmuch as the osmotic pressure 7 equals
(4"~ 10)/V» in dilute solutions, we have

oF
@1

It may be verified that the additional assumption of
random mixing of the neutralized and unneutralized
groups on the polymer chain leads to the same_equation
for .

The result (31) for the contribution of the mobile ions
is quite reasonable. The potential gradient at the
boundary of the volume ¥ is zero so that the ions there
are, according to the present formalism, not acted on
by any electrostatic forces. That is, the solution at the
boundary is an “ideal solution,” and the osmotic pres-
sure of an ideal solution is £T multiplied by the total
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concentration of its solute.'” Since the concentration at
the boundary is ¥, ¢,* the osmotic pressure is kT ; ¢,*.
This sum is, at least in the absence of added salt, less
than the average total concentration in the solution
so that the osmotic pressure is less than the value it
would have if the solution were everywhere ideal. When
the solution becomes ideal the concentration of an
ion at the boundary becomes equal to its average con-
centration, 7,/V, and the osmotic pressure assumes
its ideal value 3=, (n,/V)kT.

As an application of (31), we consider the derivation
of an expression obtained for the osmotic pressure
using the “parallel rod” picture. By computing the
electrostatic free energy in terms of the parameters,
a/R and M*, of this model and differentiating it with
respect to the volume, Katchalsky and Lifson'® calcu-
lated the osmotic pressure, The differentiation is,
however, a particularly tedious one and an equation
for the osmotic pressure can be obtained much more
simply using (31) and their expression for the concen-
tration. Thus we find immediately

T=v*ET(1— ),/ 2\* (32)

where n,=1/7R%*, the number of macro-ions per cc,
and 8, v* and A\* have been defined earlier. Actually this
equation is slightly different from Eq. (34) of their
paper. This difference arises from a minor error in the
definition there of the osmotic pressure of the un-
charged system, w; [their Eq. (30)] which does not -
take into account the volume of the solution unavail-
able to the mobile ions. Their value of @¢ should be
multiplied by the factor K2/ (R2—a2).

Finally it is to be observed that Eq. (31) is inde-
pendent of Eq. (22) which was derived in the previous
section. These equations are related to the chemical
potentials of solvent and added salt, respectively,
and these are independent. However, any expression
derived for the chemical potential of the polyelectrolyte
would not be independent of these since the Gibbs-
Duhem equation connects all three chemical potentials,

4. Calculation of Titration Curves

It will be assumed for simplicity in this section that
the protons attached to some of the basic groups in
these polybasic acids (or bases) are randomly dis-
tributed among all groups. That is, Eq. (5) for S, will:
be used rather than Eq. (4). This may be regarded as a
type of Bragg-Williams approximation used in the
treatment of order-disorder phenomena. The error
inherent in this assumption for the case where nearest
neighbor interaction between the charged groups of
polyelectrolytes predominates has been considered
elsewhere.!® Under the experimental conditions dis-
cussed there (appreciable added salt present) it ap-
peared to be a fairly good approximation. In the present

" This argument was suggested to the writer by Dr. H.
Morawetz.
' R. A. Marcus, J. Phys. Chem. 58, 621 (1954).
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model the assumption will be the more appropriate the
less ¢ (and therefore, according to (65), ;) varies over
the space occupied by the macro-ion.

It will be recalled that the equilibrium value of the
degree of neutralization « is determined by setting the
variation in the free energy equal to zero, the volume,
salt, number of available protons, and polymer con-
figuration being held fixed. The change in the various
contributions to F, listed in Eq. (3), will now be esti-
mated. At constant polymer configuration S, is con-
stant. The term (F,—TS:4) equals (E,—TS). At con-
stant volume, §E, and S are given by Egs. (14) and
(17), respectively. With the added restriction of con-
stant salt concentration it thus follows that

3(E—~TS)= f Voo dV AT lnlf;—{&m. (33)
H

At constant polymer configuration and assumed random
distribution of neutralized and unneutralized groups
pp changes only because of a change in the total number
of ionized groups. Since the ionized groups are assumed
to be randomly distributed the local concentration of
the ionized groups on the polymer is proportional to
the sum of the concentrations of all groups, neutralized
plus unneutralized. Therefore the fractional change in
the charge density 8p,/p, with change in o is constant
throughout the polymer and is, in fact, equal to the
over-all fractional change in the number of ionized
groups, da/a. That is, 8p, in Eq. (33) is related to da
according to the equation

dpp O

Pp «

(34)

The change in S, given by (5) is
8Sm=—mk[In(a/1—a) e,

while the variation in Y_; % at constant salt is u;%ny.
Observing that [ 8p,dV =e méa= —enbny it then fol-
lows, if the individual ions on the polymer are univalent
anions, say, (e,= —ey), that

a
= [kT In—— (ur®+14"—ur 4%

—a
fl!/lSppdV
"y
4—+2T In— ]611;1 (35)
Vu

ma
f YppdV
any

—In (36)
(1—-a)Vy kT mokT

ie.,

Equation (36) may be used, in conjunction with Eq.
(22) for the mean ion-activity coefficient, to estimate
the activity of some acid such as HCI in the presence

R. A. MARCUS

of a polymeric acid as a function of the latter’s degree
of neutralization, a. For example, the logarithm of the
activity of HCl is

nunc;f:,:’
lna”c;=ln——

uVa

| Aud f’#ﬁpdv (l—a)nc;
=— +ln[ ] 37
kT makT

where V= fexp(ef/kT)dV.

Alternatively, Eq. (36) may be used to obtain an
expression for the dependence of pH on a but there is
some uncertainty arising from the liquid junction
potential, E,, present in the electrochemical cell used
to define the pH. If in the presence of salt Ey, is reason-
ably independent of the degree of neutralization, a, of
the polymeric acid or base, then a calculation of the
change of pH with & only involves an estimate of the
change in —logen with a, for then the pH=—logay
+constant. According to Eq. (19) previously given for
the chemical potential of an ion, —logan = —lognu/Vu
and it therefore follows from (36) that -

f‘l’PﬂdV
a
l—a 23kT 2.3makT

aVe

pH’—‘-‘lOE

}-constant. (38)

Defining the pK of the polymeric acid as pH—loge/1—a
we have to the same degree of approximation

f 172714

pK }constant.
2 3kT 2.3makT

(39)

When the ions fixed on the polymer chain are regarded
as forming a surface charge density ¢ rather than a
volume charge density p,, the integral in (38) and (39)
should be replaced by the surface integral fupodA.

When no added salt is present, it is possible that
depending upon the conditions the change of ionic
concentration accompanying neutralization may have
a somewhat larger effect on the liquid junction poten-
tial than is the case when salt is present. However, in
the absence of added salt the repulsion of the like
charges on 2 macro-ion is usually poorly shielded and the
change of pK with « is generally quite large. Changes in
E; with « are presumably of a smaller order of mag-
nitude. In that case Eq. (39) may again be used.

If in this treatment the simplifying assumption of
random mixing of neutralized and unneutralized groups
had not been made, then an equation similar to (38)
would have been obtained, but with the exception that
(S ¥ppdV)/ (ma)+kT In(e/1—a) would have been re-

placed by 7T InD where D is defined in (66).
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5. Note on the Equilibrium Configuration

In the calculation of the various thermodynamic
properties a knowledge of the polymer configuration is
necessary. Making certain assumptions, a parameter
roughly defining this configuration may be estimated
from viscosity or light scattering measurements, say.
This parameter may, for example, be the radius of the
polyelectrolyte, assumed to be coiled. If, instead, the
polymer is assumed to be rod-like no such additional
information is necessary.

On the other hand, the equilibrium value of a con-
figurational variable such as radius of polymer or
average end-to-end distance may be calculated by
setting the change in the free energy F equal to zero
for any deviation of this variable from its equilibrium
value, at constant composition, volume, temperature,
and degree of neutralization. In Appendix II it has been
shown in this manner that the equilibrium value of %
satisfies the relation

ic,  ds,
kT f In(l—a)—2dy = T=". (40)
i i

A knowledge of the dependence of o, and ¢ on posi-
tion and on 4, and of C, and S, on 4, is needed to solve
this equation. Thus e, is related to ¢ by the relation
(65), ar=De~*e¥!*T/ (14 De~*¥/%T), which can be intro-
duced into the Poisson-Boltzmann equation. This latter
equation may then be solved for ¥(r,k). Estimates of
the dependence of C, and S, on % for the uncharged
polymer can be made and, according to assumption (3),
of the first section, these could be used for the macro-ion
in order to solve Eq. (40) for 4.

When random mixing of the neutralized and un-
neutralized groups on the polymetric molecule is as-
sumed, then it may be verified by using the same pro-
cedure as in Appendix II, only setting a,=« in Eq. (56)
for the free energy there, that 4 is the solution of

dcl’ dSﬁ
ae, Wdhz‘— (41)

dh’

Alternatively, it can readily be shown with the aid of
(65) that (40) reduces to this equation when ¢ varies
but little over the space occupied by the polymer.
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APPENDIX I
Comparison of Various Expressions for Fe
(2) Comparison of Egs. (6) and (8).

When the degree of charging of the entire system is A
the corresponding value of the electrostatic free energy
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will be denoted by F,'. That is, F,/=F, when A=1.
Accordingly, we may rewrite these equations in terms

of F,/:
RN
Fle f 25/, (6"
A=0
1
FreT f E,’d(;), (8"
T=c0

where the integration in (8') is to be performed at
constant dielectric constant D. The superscript ’ will
be used to signify the values of ¥, p, etc. when As<1.
Differentiating the first expression with respect to A

we have
oF, ) 2E;
alr A

and therefore

(i)

Deriving the second with respect to 1/T at constant D

we have
(6(F«'/T)

a(/T) /o

To show the equivalence of Eqgs. (6) and (8) it is
sufficient, therefore, to show that

If at constant D, F,' depends on A and T only through a
variable N?/T, then this equation can readily be derived
by expressing each partial in terms of the derivative
with respect to A2/T:

(0F,’/T) (6F¢'/T) (6}\"’/T)

a /Jr \ayr/o\ an /,
I\ OF./T
T ay/T

(a(jlj/I'T) nD B (aal:\:’//;) D (a::;;);\
aF,//T
=N—— (43)

NYT

The elimination of 8F,"/T/dN*/T from these equations
yields the desired equation. As expected, at constant D
the statistical mechanical expression for F,’/T,

X*‘e,-e,-
F,’=-—kTIn[f~«fexp(—Z -——)
>i |ri—r;| DkT

XdV,-- -dVN/V”] (44)

’
o -

, (42)
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depends on A and T only through a dependence on A*/T
and so fulfills this equation. The integration is over the
coordinates of all mobile ions in V but the ¢ and j refer
to the coordinates of all ions.

The Poisson-Boltzmann equation can be shown to
yield the same dependence of F,'/T on A and 7. We
first observe that )

1 L™ + =4
'.V(f)=——fﬂpp—(r’)dV" (129
D [r—x"|.

where p'=\X;ex/. Since ¢/ depends on M\ and
T only through the variable MW'/T, according to
the Boltzmann expression, c¢;'=n;exp(—ed'/kT)/
Jexp(—Nea//RT)dV, it follows that p’ equals A times
a function of W//T. Let p’=XAf(\'/T). Throughout,
regardless of the value of A and T, the polymer configu-
ration and its charge distribution are held constant
in integrating these expressions for F,'; that is, p,'/A
=q,C, isindependent of A and of T'. Thus it follows from

W 1 V[f /T +ps /A

T DJ T | r—rx"|

that AW/ T depends only on N*/T at constant D.
Since E,/=1 /Y (o'+p,)dV we conclude from

]dV (45)

L M'[ N/ T)+ps'/NIAV (46)
T—zf T fw Pr

that E,’/T is a function only of A//T and therefore,
at constant D, only a function of A?/T. Since

2R d\
e [P,
w0 I A

F./T is, at constant D, only a function of N*/T, since
d\/\ can for integration purposes be expressed in terms
of the derivative of a function (logarithm) of N*/T.
This establishes the statement that the assumption of
the Poisson-Boltzmann equation does not affect the
equality of Egs. (6) and (8).

(#5) Comparison of Egs. (6) and (11)

It has been established in the previous section that
the use of the Poisson-Boltzmann Eq. (1) does not
affect the identity

aF /T dF,
e (Z0T) —re (5
91/T / » oT /o
where F, is given by Eq. (6). Using this result it may be
concluded that it is sufficient to show that [8F./8T ]p
=—(S—S4) in order to demonstrate that the use of
Eq. (1) does not render Eqs. (6) and (11) inconsistent.
The entropy difference (S—Sia) is computed from
Egs. (9) and (10). In the following proof all differentia-

tions with respect to T" will be performed at constant A
and D, and those with respect to A, at constant T and D.
We have from the differentiation of (6)

aF, oy dp’ dp, \ YA
= 4o Nt [ ——= ) |—=dv. @7
aT ff[(p +p”')aT+¢ (aT+ ar)]x 47

Expressing ¢’ and &'/3T in terms of o’ and 3p’/dT
with the aid of (12'), it may be verified that Eq. (47)
becomes

aF, ' 9py \dA
—=2 f f ¢'(—-+-- —dV. (48)
aT aT aT /A

Since the polymer configuration is kept constant in
integrating the expression for F,, 8p,'/0T=0 and

aFa ap' dx
=2 f f v Zay. 49)
aT aT » ,

Since p' is A times a function of A%/T, it may be verified
that
19 9 , A0
R

('/N) (50)
AOT oT 2T oA

by expressing each partial derivative in terms of a
derivative with respect to A?/T. Substituting this into
Eq. (49) and integrating by parts, we have

BF deV Ia'lll ,lll’
p P
——+——)dxdV. (81

T [ e)ee @

This expression may be simplified by employing the
following identity [established by carrying out the
differentiation on the left-hand side of (52) and then
introducing the Boltzmann expression for ¢.]:

a [ a’ll/' I¢,I
S ms IV = — f (p———-l-p—)dV. (52)
oA T ox AT

Integrating this from A=0 to A=1 the left-hand side
becomes k3. ; #: In(V:/V) since V/=V; when A=1and
V/=V when A=0. Thus from Egs. (51) and (52) it

) follows that

f v

ar, V:
=— kz; " ll’l—'. ’ (53)
aT T vV
Since according to (2)
o ey Vs
_——= = Z,’ ¢;ln— (54)
kT kT 7
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it follows that from (53)

aF, ' ) n,‘
—=k3; f ¢ilncdV—EY i n; In—
aT S 4

=k ; f (s Inci—c¢ DAV —EkY (n. ln——n.),

=—(5—S:). (55)

APPENDIX 11

Calculation of Distribution Functions and of
Effect of Redistribution of Groups on 5F

It will be shown here that the redistribution of the
charges on the polymer and, incidentally, the change in
the configurational variable k, both of which accom-
pany a reversible change in state, contribute nothing
to the calculated free-energy change §F, so that éF
equals that estimated at fixed relative distribution,
a,/a and at fixed A.

On the basis of Eq. (3) for F and the various equa-
tions given in the text for the terms which occur there,
we may write

F= f KdV—TS, (56)
where
K=kTC,far Inar4(1—a,) In(1—a,) ]
+i (s ciertarCren) +ETY; (ci Inci—c;)
+ X e+ Colampa®™+ (1—ar)uua®].  (57)

It follows from «,C,= (a,/a)Cpax and c;= (ci/n:)n;
that 8(a,Cp)=aCpé(as/a)+ (a,/a)CréatadC, and éc;
=nd(ci/n:)+ (ci/n)on;. That is, the change in ¢; for
example may be written as the sum of a change in #; at
fixed relative distribution c;/#;, plus a change in the

relative distribution. We may then write for éF,

[l )

K dC,,
6((:,/n.)( ) aC, dh ]V
+3 f (K) agla.citng.codV — T@ (58)
dh

where in the partial derivative dK/d(a,/a), for ex-
ample, a, ¢;/n;, n;, C, and all thermodynamic variables
are held fixed. The variation in the second integral
is performed at fixed a,/a, ¢i/n;, and C,, as indicated
by the subscripts, and only differs from zero when there
isa change in « or in the thermodynamic state. Actually,
because of the equilibrium relation 4F/da=0, it follows
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therefore, that in a given thermodynamic state it equals
zero. At equilibrium in a specified thermodynamic state
oF equals zero and the variations in a,/a, ¢;/n; and C,
are subject to the restrictions of constant number of
each type of ion, and constant number of neutralized
and of unneutralized groups on the polymer. Therefore,
in a given state

1
- f 5(a,C,)dV =0

Y
.

1
~ f bedV=0 foralli (59)

f 5C,dV =0

o

Multiplying these equations by the constants 4, B,
and C, the Lagrangian multipliers, and adding to (58),
where the second integral and 8F are set equal to zero,
it follows that the coefficients of é(a,/a), 6(c;/n:;) and
oh are zero since this new equation is obeyed for arbi-
trary variations in a,/a, ¢i;/ni, and k. [At least these
variations in a,/a and ¢i/n; are arbitrary.subject to
(59) and this limitation may be removed by imagining
V spanned by cells, the integral of X over V becominga
sum over cells, and choosing 4, and B; so that the coeffi-
cient of the variations in a particular cell is zero. The
variations in a,/a and ¢;/n; in the other cells are arbi-
trary so that the coefficients of these variations must
equal zero in these cells too if the equation is to be
obeyed for all variations.] By this process Egs. (60),
(61), and (62) defining the equilibrium a,/a, ¢;/n;, and
I are obtained

aK

+C.,A=0 60
/) »4 (60)
i +B;=0 (61)
a(ci/ny) .

6K [+ 73 dcp dS?
(—-I-A-—-I-C )—dV— T—=0. (62)
o dh dh

Introducing these results for 0K/d(a,/a) and dK/0C,
etc., into (58) it follows that

oF=—A f a(af”)dv—c f 5C,dV

+5 f (K)artacodV  (63)

where we have combined the term involving dK/3(c:/n.)
with the last term in Eq. (58). In Eq. (63) the first term
is really —A multiplied by mé(a/a), which always
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equals zero® while the second term is also always zero. estimated by multiplying

Therefore, De-esH1hT
ep
oF=3 f (K)artacydV =6(F)afac,  (64) T — (65)

which establishes the desired result. both sides of (65) by C,4V and integrating over V,

Introducing expression (57) for K into (60), (61), e ooVIkT
and (62) it follows that « is given by Boltzmann expres- ma= f C,adV=D f - v (66)
sion (2), that . is given by (65), where D is a constant 1+ De—cs¥leT

¥ Actually,

‘ and that / is the solution of
0=md(a/a)=5/ (Cser)/adV =a,Cy*8V fa+ S 5(a,Cp/a)dV
and C,* equals zero since the polymer lies within ¥ and not on

- dC dS
the bounding surface, S, of this volume, so that this expression for f (kT lndr+8y¢)—‘pdV= T—p- (67)
mb(a/c) becomes S G(a.»C,,/a)dV dh ~ dh



