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THEORY AND APPLICATIONS OF ELECTRON TRANSFERS AT ELECTRODES AND IN SOLU-
TION

R. A, MARCUS . .
Department of Chemistry, University of Illinols, Urbana, Illinois 61801

ABSTRACT

The theory of simple electron transfers at electrodes and in solution
is reviewed, and various thermal fluctuations of coordinates leading to
electron transfer are described, A simplified derivation is given of the
free energy of such fluctuations, Implications of the theoretical equa-
tions for experiment are described, some of t relevant results having
been summarized recently in Dahlem Konferenz Phys, Chem, Scl, Res, Rept,,
1(1975)477. They include relations between rate constants of cross-
reactions and self-exchange reactions, between rates of reactlions at elec-
trodes and those in solution, nonspecific solvent effects, chemllumines~
cence, and other properties, Approximate equations of the BEBO type are
also given for Tafel slopes, Bronsted slopes and rates of cross-reactions,
for systems involving rupture and formation of bonds.

INTRODUCTION

The theory of reactlons at electrodes has much in common with that
of reactions in solution, The electrode behaves as one large reactant,
one with speclal properties: it has numerous electronic energy levels and
the energy of those levels is controllable by the electrode potential,
Just as one reactant in solution may bind the other, the electrode may
adsorb the other reactant,

In the present paper we shall be concerned principally with simple
electron transfer reactions at electrodes and in solution, reactions
which involve no rupture or formation of chemical bonds, Elsewhere (1]
we have discussed reactions Involving rupture of a chemical bond at an
electrode M, e.g,, Eqs. [1])-[2), and for brevity omlit a discussion of this
topic here,

Hs0  + M(e) = H,0 + H = M (m

HsO" + H = M = H0 + Hy + M* (2]
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A simple electron transfer reaction at an electrode can be written
as
A(ox) + Mne) =Ared) + M , (3]

while a simple electron transfer between species A and A, in solution is
represented as

A(ox) + Ay(red) — A (red) + Ay(ox) |, [4)

where (ox) and (red) denote the oxidized and reduced forms of the two
chemical species A, and A,. The lonic charges on these reactants are
usually about one to three, though sometimes as high as four and some-
times as low as zero, The solvation energies are therefore very large
and thelr fate during the course of the reaction must be analyzed care-
fully,

POTENTIAL ENERGY CURVES, SURFACES, FLUCTUATIONS, AND RATES

1t s useful to examine first the vibrational motion within the re-
actant In Eq. [3], considering initially the case of one vibrational co-
ordinate q, (The same plot suffices for Eq. [4] also,) A plot of the
potential energy U versus q for the system on the left hand side of Eq.
[3] is labelled R in Fig. 1, and a plot of U versus q for the system on
the right hand side of Eq. [3] 1s labelled P (2,3].

There are many electronic states of the metal--a cont inuum of them,
Thus, Fig. | for the reaction in Eq. [3] should consist of many parallel
curves, vertically displaced from each other, one for each electronic
state, However, one can show [3,4] that the electrons donated from the
electrode M to A(ox) In Eq. [3] come from levels near the Fermi level,
and most of them donated from A(red) to M in the reverse reaction go into
levels near the Ferm! level, Thus, it suffices to confine our attention
for the present purposes to the two curves in Fig. 1 and take the energy
level of the electron in the metal as the Fermi level, The following
analysis then applies equally well to reactions [3] and {4],

several facts are noted:

(1) The minima of the two curves occur at different values of q, re~
flecting the fact that the equillbrium bond length In Aox is
different (usually shorter In the case of transition metal lons
and a metal-ligand bond) from that inA__,.

(2) The relative helght of the two minima AU® depends on the elec-
trostatic pQtential, the P curve being lowered vertically
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POTENTIAL ENERGY U

| 1 L
NUCLEAR CONFIGURATION Q

Fig. 1. A plot of the potential energy U of the system consisting of
reactants plus solvent (R), along some coordinate q, and of the system
consisting of products plus solvent (P), holding all other coordinates
fixed, for reaction [3] or [4].

relative to the R curve by making the electrode more negative,
i.e., by decreasing e(mn#ps) where the @'s represent the po-
tentials of the metal and solution,

(3) When the difference of equilibrium bond lengths Aq® Is less, for
a given AU®, the barrier height AU* is less,

(4) When the P curve is lowered relative to the R one, the barrier
height AU¥, corresponding to the intersection of the R and P
curves, is reduced,

The two curves have further properties: When the reactant Is far
from the electrode the appropriate curves in Fig. | merely cross in the
intersection region (dotted lines there), When the reactant is close to
the electrode, the electronic interaction of the orbitals of the reactant
and the electrode perturbs the dotted line curves, particularly near the
point of Intersection, At that point the unperturbed R and P electronic
quantum states are degenerate, and the degeneracy Is broken by the Inter-
action, The new curves are the solid curves, The energy of the maximum
of the lower solid curve Is less than that at the Intersection by an
electronic Interaction energy €,2, the !'resonance energy,'
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When ¢,2 is zero (e.g., large separation distance between electrode
and reactant) a system having a potential energy curve R will undergo
thermat fluctuations of the vibrational coordinate q, but not transfer
to the P curve even on passing through the intersection region, When ¢,
is nonzero, there Is a coupling of the electronic orbitals of the react-
ant and the electrode, and there Is a nonzero probability x of going from
the R curve to the P curve when the system passes through the intersec-
tion region, When g,2 Is small the reaction has a small x and the reac~
tion Is termed nonadiabatic, When x is of the order of unity the reaction
is adiabatic, The electronic factor x can be calculated by the Landau-
2ener=-Stueckelberg formula [5), or by a more numerical ﬁuantum mechanical
computation (8], if ¢,, and the properties of the R and P curves are known,

One notes from Fig. | that a fluctuation of coordinate q is needed
for the electron transfer to occur: Not only must the reactant-electrode
distance, or In Eq, [4] the reactant-reactant distance, become sufficiently
small for electronic orbital overlap to occur but also the transfer does
not occur at the equilibrium value of q for the R-curve, Only by absorp-
tion of light could the system move from the R curve to the P curve at
this q. Otherwise the vibrational momentum p, given by /2mE<U), would
not be conserved during the electronic transition and thus the Franck-
Condon principle would be violated. However, at the crossing point this
momentum p is substantially conserved,so the transfer from the R curve to
the P curve can occur,

A simple calculation provides an estimate of the barrier helight AU%*
in Fig. 1: It will be assumed that the resonance energy ¢, is small
enough that the helght of the crossing-point Is approximately that of the
maximum of the lowest solid curve In Fig. 1. We let the potential energy
of the R and P curves be approximated by

u'(q) = 3 Ka-a0")? [5]
uP(q) = '2" K(q-qoP) 2 +au® (6]

where qo' and qoP are the equilibrium bond lengths for the A(ox) and
A(red), respectively. AU® Is negative in Fig. 1, and [s a linear func-
tion of ne(¢mdps) In the case of reaction [3], At the Iintersection of
the dotted curves we have

, (7]
%

' =P

an equation which can he solved for the value of q, q° at the Intersec~



166

tion. Introducing this q% into Eq. [5] one obtains ultimately

au* = (% ;/4) 11 + (aU2)1% (8]
where
A = -;- k(agq®)? , 8q° =q% - q°" | {9

\/4 Ts actually the barrier height when the AU® In Fig. | is zero,

The rate constant kr would be given by the collision frequency Z per
unit area of electrode per unit time in the electrode case and per unit
concentration per unit time Iin the homogeneous case, multiplied by the
Boltzmann factor exp{-AU#/RT), by a Boltzmann factor exp( -w' /RT) for
bringing .the reactant to the electrode, and by x:

k. =x 2 exp[-(w'+aU%)/RT] . (10]

Here, w' Is the work term, If any, required to bring the reactants to-
gether to some separation distance R. When such work terms occur, the
AU® in Eq, [8] is replaced by AU,°, the AU at that separation distance R.
Thus, Eq. [8] is replaced by

au# = (3,74 11 + (8U /)] 2 ([,

AUR° = aV° + WP - wo, \ (12

where AU? is the AU at infinite separation and wP s the work to bring
the products together to the separation distance R.

The above calculation of AU* is classical, and indeed élasslcal
mechanics Is commonly used nowadays to treat reactive collisions, by cal-
culating the trajectories of all the atoms of a reacting mdlecule or pairs
of molecules during a collision, However, for some problems a quantum
mechanical treatment is needed, for example for treating a protonic vibra-
tion In Eq. [1]. A quantum treatment is given in Refs, [7,8], other ap-
proximations being i{ntroduced as well,

The results In Eqs. [10]=[12] were derived for the case of one vi-
bration, The derivation can be extended to all the vibrations of the re-
actant(s) in Eq. [3] or [4]. The potential energy curves of Fig, | are
replaced by potential energy surfaces, plotted as a function of all the
q's in the system rather than just one, If there are N q's, the inter-
section which Is a point in Fig, ! becomes a hypersurface of N-1 dimen-
sions in the N-dimensional case, The coordinate q In Fig, 1 then repre-
sents some path In the N-dimensional q-space and the R- and P-curves are
profiles of the actual potential energy surfaces plotted along that path.
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In effect, xi'becomes a sum of terms of the type in Eq. [9], summed over
all vibrations, i.e,,

A = 3Tk (80,07 (13)

and k, is related to the force constants of a bond kir and kip in the
oxidized and reduced forms [3]. A somewhat more sophisticated treatment
of XI is given in Ref, [3], leading to ki being a certain average of k,r
and k|Pf

There remain the solvent fluctuations outside of the inner coordina-
tion shell of the reactant in Eq. [3) or reactants in Eq. [4]. Here, the
potential energy functions do not depend on the solvent coordinates (ori~
entations, translations) in the simple quadratic fashion in Egs. [5] and
[6] and of Fig. 1. The treatment of the solvent coordinates is corres-
pondingly more complicated, However, one feature is immediately clear:
Just as a thermal fluctuation of vibrational coordinates was needed to
reach the intersection region in Fig, I, a suitable thermal fluctuation
of solvent orlientation coordinates or reactant's vibrations also permits
the system to reach the N=I dimensional hypersurface (the intersection
}egion). A statistical mechanical treatment of the free energy associ-
ated with these fluctuations is given in Ref, [3]. Dielectric continuum
theory also permits an estimate of the latter to be made, and was first
given for the homogeneous reaction case in 1956 [9], and in ONR Technical

Report No, 12 (presented elsewhere in this volume) in 1957 for the elec-
trode reactlion, Eq, (3].

The intersection region in Fig, 1, now for a generalized coordinate

q and a many-dimensional configuration space, is reached by a thermal
fluctuation of coordinates q from thelr most probable values, Such a fluc-
tuation produces a correspondln§ thermal fluctuation in the solvent di-
electric polarization function, In the intersection region this polari-
zation is appropriate neither to the charges of the reactants nor to those
of the products but rather to some compromise,which depends on AU® or more
generally on a free energy of reaction AG®' or in the electrode case on a
half-cel! potential E minus the standard potential E°', E-E°'. This di-
electric polarization was termed nonequillibrlum polarization [9] and In-

- deed the original dlelectric continuum (nonstatistical mechanical) derl-
vation [9,10] was concerned with fluctuations in solvent dielectric pol-
arizatlon,

It is Instructive to give a somewhat simpler derivation of the free
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energy change needed to reach the intersection reglon by these fluctua-
tions of solvent dielectric polarization, This derivation is given in
the next section,

1
SIMPLIFIED DERIVATION OF NONEQUILIBRIUM POLARIZATION EXPRESSION

We consider the homogeneous reaction system Eq. [4] first and then
indicate the modification for the electrode case Eq. [3]. We denote the
charges by e; and radil by a for reactants | and 2 (1 = 1,2), and add a
superscript p to the e; to denote charges of the products. The statlc
dielectric constant of the solvent medium is denoted by D and the square
of the refractive index (the "optical dielectric constant“) by D op’ The
separation distance is denoted by R.

A nonequilibrium dielectric polarization of the medium can be pro-
duced in a reversible manner by a two-step charging process. Since each
step is reversible, the free energy of formation of this nonequilibrium
system, i.e., the free energy of this polarization fluctuation, can be
calculated in a relatively straightforward manner, The two-step charging
process is the following, at a given separation distance R.

(1) Change the charge of each reactant | from e; to e;', e’ being

so chosen to produce the desired orientational-vibrational di-
electric polarization,

(2) Change the charge of each particle i back from e;' to e, hold-
ing the above orientational-vibrational dielectric polarization
fixed,

The details of the calculation are as follows, where the electrostatic
potential in the solvent medium at any point r Is denoted by W(;). '

Step |
The value of e, and ¢(:) at any stage v of the charging process are

denoted by e‘v and wv(z), respectively, They are given by

WM(r) = —’—" -'z';; ' (18]
e'v =e; + v(e"-ei) , [15]

where r; Is the distance from the fleld po!nt.z to the center of ion |,
v varies from O at the beginning of the charging process to | at the end,
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and e'\’ can be written, thereby, as In Eq, [15],

The potential at the surface of fon | due to the medium and to fon 2
Is obtained by replacing r, by a, inEq, [14). &,Y, the potential there
minus the sel f-potential, is obtalned by subtracting e,\’/ai from [14]:

v Y
v_ & &1
¢ =5 rz +a_:_(0 ) . [16]
s s
The average of §,” over the surface of fon | Is denoted by S,\’ and is
found to be '
Y v
Vo, eVl
3 -DSR-Fa—'L(Ds ') . [17]

The average leading from Eq. [16] to [17] will be recognized as the well-
known electrostatic result [11] that the average value of a 1/r, poten-
tial from a uniform distribution over a sphere is 1/R.

When 3§,V fs multiplied by an increment of charge d(e.\’), i.e,, (e,'-
e,)dv, and integrated over v from 0 to ! and when the same integration is
performed for fon 2, and both terms summed we obtain the work term NI
required in charging step I:

I )
Wy =J §Meitoe))dy + [ §,Y(e,'-er)dy . (18]
0 )
Egs. [17]-[18] yield immediately

Wy = eifeyte; dey ;eR‘Ae + [e e, + %(Aen) z](Fl"' ‘)3!"'*' [e2te, +%(Aez)2](51—' ');!'2‘
s . s s
| {19]
where :
de; =e,' -e, [20]

When e, and e; are both zero, the /R term becomes the usual coulomb repulsion
e,'e.'/DsR, the 1/a, term the well=known Born charging term for ion |
(e '?%/2a,) [(I/Ds) -1], and the 1/a, term the Born charging term for ion 2,

Step 2
The charges are now given by Eq, [21], where y goes from O to 1.

e‘v =el' +v(e'-ei') "o [21]

If ¢4(r) denotes the potential at the end of step | and §¥(r) the poten-
tial at any state y of step 2, the change of potential during step 2, for
any vy, lIs vv(g-wl(:). Since the medium responds to a change of charge
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6e'V only via the optical dielectric constant D

op’ now, we have during

step 2

\YJ
8(r) = S +§°*,z. (22)

op
Writing aei” as v(e'-ei') and &V as ﬁv-tl we have

™) = ¥4(r) .;.Y.(.‘;_:’;_:.:ﬂ..,.ﬂ%:.;_::l [23)
where
] e $
¥y(n) =§:7'-+-5:72— . [24]

3.V, the average potential on the surface of ion | minus thé sel f-poten-
tial is obtained by subtracting e,'/r, from Eq. [24] and V(e ,~e,')/r,
from the last term but one in Eq, [23], then replacing r, in those equa-
tions by a, ahd averaging the 1/r, In those equations over the surface of
ion 1, thereby replacing 1/r; by V/R. Thus

3V = EJJ(.l._,) + o VMeme ) | -1) + Yeese ! (25]
- 1 .
a, DS DSB a, DOP DOPR
The work done during this step is “11'
t '
W= [ 8VdeY + [ 8Vde;Y . (26]
v=0 v=0

One obtains

= (Auter oot pteihen] | (lipe jaiclon) - ey tae (g I
o

Dop D,
+[-'2-(A82)2('5::;") - ez'Aez(i")];!; . [27]

The net work done AG' is the sum of wI and wll and Is the free energy of

this fluctuation. It Is equal to

ro_ de,? et  Aedep 1 1,
86" = Wy + vy = (G5 G2 )(Dop o) (26}

where e, is given by Eq. [20].

If AGR°' denotes the free energy change for unit concentration of re-
actants at a separation distance R, it Is related to the same quantity at
infinite separation AG?' by an equation simflar to Eq. [12], namely

. 8G% =46 + whoew o, [29]

On the intersection hypersurface of Fig, 1, the reactants and products
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have the same distributlion of configurations (the same set values of q*), and
the same potential energy (cf Eq, [7]), averaged over a distribution of
such configurations, Since the distribution of‘conflgurations (and mo-
menta) are the same for the reactants and products on the intersection

~hypersurface, the entropy Is also the same, and so the free energy of the
reactants is the same as that for the products on the intersection hyper-
surface, It then follows that we can write

a6’ - acP = 86¢°" [30]

where a4G" is given by Eq. [28] and ac? by the same expresslon with e, re-
placed by _elp.

To find e,' and e,' one minimizes the 46" in Eq. [28] subject to the
constraint imposed by Eq. [30],

86" = (346" /3e,') te," +'(BAGr/aA.ez') bep! =0 (31]
86" - 8a6P =0 (32]

.Multiplying the second equation by a Lagrange multiplier m and adding to
Eq. [31], introducing expressions such as Eq. [31] for 886" and sAGP into
Eq. [32], and setting the coefficients of te,' and be,' equal to zero,
one finds

e =e) +me-eP) (1 =12 . (33]
Introducing this result into Eqs, ([28] and [30] one obtains

86" = mi\q [34]
and

{2m1)ho = 2% [2s]
where

he = (80) gy + 7y ~ WG "5 (36]

P

and je is e.p-a., the charge transferred, m is the solution of Eq. [35].
The free energy barrier AG* to reaction consists of the work term

w to bring the reactants togethef and aG". Further, solving Eq. [35] for

m and Introducing Into Eq, [34] one obtains

aG* = w' + (Ao/4) [1 + (86.%'/%0)]2 . [37)

In the electrode case the electrostatic potentlal In step 1 Is given
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by €q. [14], but with the e; replaced by the Image charge of reactant |
In the electrode =e,. The image charge ensures that the potential given
by Eq. [14) 1s constant on the surface of the electrode, where r, = r,,
There is, in addition, another term due to the interaction of ion 1 with
the other charges on the electrode and with the surrounding electrolyte,
This term is found to cancel, apart from a minor term, in steps | and 2
and so will be omitted here for brevity, The derivation continues then
as before, where R now denotes the distance from fon 1 to its image,
namely twice the distance to the elfctroda. In computing Wy and W . one
computes only the work to charge ion I, One finds ultimately expressions
similar to Eqs. [34]-(37] but now we have

«(2m+1) Ao = = nF(E-E®') + wP - W' (38]
and .
PRI ]
lo:i(;-l--i-)(b—og-a's‘) . [39)

That Is, one obtains for this electrode case

A6#* = w' + (Ao/4)[1 + [~nF(E-E') + wP -\»'}/J(o]2 [40]

where F is the Faraday,

This type of simplified derivatiion of the above resuits was given
earlier in Ref, [12], and has recently been made more readily available
in a review [13],

If now one wished to include simultaneously these fluctuations in
solvent polarization and those described earlier In reactants' vibrations,
one could readily do so: To the right side of Eq. [28] would be added
%-% ki(qi-ql°r)’, and %-? kl'(qi-ql°P)z would be added to the correspond-
ing expression for AGP. One would then proceed as before, using Egs.

[31]-(32), but now Eq, [3}] would contain an extra term L k'(q‘-q'“)aq',
i

and oGP would contain an analogous extra term, One would find in addi-
tion to Eq. (33] the result that

qi*___qio"_,_n.(qlo"_q'op) . ‘ ’ [41]

When this q‘* and the e", again glven by Eq, [33], are Introduced Into
the expression for Asr. Eq. [34] would again follow, but with Ao replaced
by Ao+\;, Mo being given by Eq. [36] and Ay by Eq. [13]. Similar. remarks
apply to the electrode reaction case,
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DEDUCTIONS AND APPLICATIONS OF THE THEORY

When a statistical mechanicel treatment is dndertaken instead of a
dielectric continuum one again obtains equations formally similar to Egs.
[10]) to [12]) and [34] to [41], but with Ao having a statistical mechani-
cal value and Ao replacing A; and Xo (3] :

k. =x 2 exp( -AG*/k;r) . , [42]
wheré in the homogeneous case

AG* = W+ (08) 1A 0 /N)]2 - (43]
AGR°' is given by Eq. [29] and In the electrode case AGR°‘ is replaced by

86,°" ~ -nF(E-E%') + wP - w' [44]

and in both cases )\ Is the sum 9f two contributions:

~ In these equations x, Z, w' and wP have the same significance as before,
'AG°' is the free energy of reaction for Eq..[4], when the reactants and
prod&éts are each In unit concentration In the prevalling medium and at
the prevaillng temperature, E°' Is the "'standard' half-cell potential
for Eq. (3] under the same conditions and € is the actual half-cell po-
tential (In the absence of concentration polarization), A\ for the elec~
trode case differs from that for the homogeneous case, as before, but in
each case contains a vibrational contribution \ from the inner coordi-
nation shell of the reactant A\; and a contribution Ao from the solvent
outside, as In Eq. [45]. Ay is of the form in Eq. [13] and a dielectric
contlnuum estimate of )¢ Is of the form in Eq, [36) or Eq. [39].

In the lecture on which the present article is based deductions from
these various equations were described, together with experimental data
regardlné them, Since similar material was recently presented elsewhere
[14], 1t will not be reproduced here, Instead, some of the deductions
from the theoretical equations are summarized and reference is made to
[14) for further details and for most of the experimental references, The
references hoth here and In [14] are intended merely to be representa-
tive, rather than complete, Severa! ones in addition to [14] are also in-

- eluded,
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(1) Cross-Reactions and Electron-Exchange Reactions
The following reactions are known as electron exchange reactions and
their rates are most frequently measured by use of Isotopic tracers,

Aox) + A(red) = A(red) + Aox) , [46]
Az(ox) + Ay(red) — Az(red) + Ap(ox) [47]

Let their )\'s be written as )\, and A2, and their rate constants as
k,, and kg,. The reaction in £q, [4] is designated as a cross-reac~
tion with ) written as )\;,2 and rate constant as k,,. Because of an
additivity property [3] of i,

llzg‘;‘(lu + \22) |, [48]

and the form of £q. [43), one obtalns a prediction of k\; in terms
of k;i, ka2 and K),, the equilibrium constant of Eq. {4), when the
w's for the individual reactions are either near unity or nearly
cancel, and when the work terms for the individual reactlons are '
either small or nearly cancel:

k2 = (kIIRZIKlzflz)llz {49]
where .
fi2 = (fﬂ Ki2)3/4 tnlk keo/22) ' [50)

. sutin, referenced in [14], pioneered the experimental study of these
relations between cross-reactlions anduself-exchange reactions,
(2) Dependence of the slope ¢ of a plot of 4n k42 vs &n K2 (Bronsted
coefficient) (cf. [14]))..

@ =21+ 80N . 1)

(3) Dependence of the slope g of a plot of 4n I, where | is the current
density for the forward reaction in Eq. [3], vs -nF(E-E°') (Tafel
slope) [14]. '

@ =3[l + {-nF(E-E%) + W’ = w'}/A] [52]

(4) Relatlons between electrode rates and homogeneous reaction rates
[14],

(5) Dbependence of in k. on solvent dlelectric continuum properties when
no speclfic reactant-solvent interaction exists [15].

'(6) ODependence of tn k_ on changes In equilibrium bond lengths and angles

[14].
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(7) Dependence of ¢n k. on ge {16},
(8) Formation of electronically-excited states, and hence chemilumines-

cence, in highly exothermic reactions, and properties thereof [14].
(9) Contributions to the entropy of activation of reactions [17].

(10) Electrolyte affects in electrode reactions [18] and In homogeneous

reactions [17], ,

More recently, evidence regarding the dependence of Tafel slope in
electrode reactiors on E-E?' may be found In [19] and on chemilumines~
cence In [20], (For further theoretical studies on references related
to highly exothermic reactions, such as those involving chemlluminescence,
see [14],) A nice example of a test of Eq, [43] is given in {21]. An
application of the present electron transfer theory to electron transfer
reactions with negative activation energy [22] is found In [23]. Other
intéresting developments in electron transfer theory include the study of
reactions at semiconductor electrodes [24-26].

COMMENTS ON SEVERAL DEVELOPMENTS SINCE 1957

Elsewhere in thls volume ONR Technical Reﬁort No, 12 (1957) is re-
produced, It contains the formulation of this electron transfer theory
for electrode reactions, That Report was concerned with the dielectric
cont lnuum contribution to the free energyvbarrier, a contribution for
which a simplified derivation was glven in an earlier section of the pre-
sent paper, The derivation in ONR Technical Report No, 12 is given in
terms of vector-fields, vectors associated with the dielectric polariza-
tion, with the electric field due to the charges themselves, and with the
total electric field due to the charges and the polarization., In the
simplified derivation given in a previous section the electrostatic quan-
tities are not expressed in terms of vector-flelds but rather in terms of
scalar-fields associated with potentials and charges, though fields of a
restricted kind, namely of the functional form given by Eq. [14]. A more
general derivation is given in terms of scalar-fields in [3], and vector-
fields in ONR Technical Report No, 12, No assumption ls made initially,
for example, that the reactant(s) is(are) spherical,

Cne generalization of the dielectric contlnuum result In Eqs, {36)
and [39] for Ao Is to Include the fact that there Is a dispersion of fre-
quenclies characterizing the dlelectric response [27,28], The correction

In the )¢ value amounts to 18% [28],
One point of interest regarding derlvation in [9,10] terms of vector-
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fields (vlz, electric vectors) versus one In terms of scalar flelds (viz,
charge densitles and electrostatic potentials) In [3] is the following:
In the vector-fleld derivation In ONR Technical Report No, 12 {10] and In
its predecessor [9] the transcription of the final vector-field equations
for the electrostatic free energy into scalar-field quantities was needed
and was made, This transcription is avoided by using instead scalar-
field expressions throughout.

" qwo of the generalizations In Ref. [3] are to use statistical mech-
anics instead of dielectric continuum theory and to treat the inner shell
contribution to the fluctuations in coordinates, (This second generali-
zation was given also in Ref, [29].) The generalizations led to similar
predictions as those given earlier in the present paper, but without the
simple dielectric equat!ons‘[3éﬂ and [39] for Ao and hence without the
simple predictions of solvent effects for reactants which do not specifi-
cally interact with the solvent, A statistical mechanical expression for
Ao was given Instead, [3], one whose evaluation must await further appli-
cation of the statistical mechanics of polar liquids. When a dielectric
continuum estimate was made of this contribution one obtains the result
for Ao glven in Eq, [36] for homogeneous reactions and Eq, [39] for elec-
trode reactions. When the inner contribution Is included, the same flnal
equations obtained, but with Ao replaced by Ao+k;, a5 In Eq. [45].

In the statistical mechanical treatment It was recognized [3,29] that
when the g In Fig. 1 In the vicinity of q* is primarily a solvent orienta-
tlonal or solvent vibrational coordinate the free energy change gliven by
Eq. [43] is actually the free energy of a fluctuation of coordinates to
values centered on the intersection hypersurface rather than belng con-
fined to it, This effect introduces a minor correction factor p (3] in
the pre-exponential factor in Eq. [42]; p Is of the order of unity,

Among other developments since 1957 has been the recognition of the
various consequences of the theoretical equations, listed earller, The
relation given by Eq, [49] was first glven essentially In 1960 [29], ap-
plied to experimental data in 1963 [30], and given a more general deri-
vation in 1965 [3]. The dependence of Tafel coefficient on E-E®' was
not confirmed until 1975 [19], and use was made of Mohilner's treat-
ment [18] of electrolyte effects to calculate the work terms w' and wP,

. The solvent effect was tested in 1970 {15] and the effect of Ae in Eq,
[39] In’l969 [16]. A comparison between some rates of electrode reactions

and the electronic structure of the reacting specles, aimed at correlat-
Ing qualitatively with charges of equilibrium bond lengths is given in
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Ref, {14]. Applications of the cross-relation Eq. [49] to biological
systems have also been made and referenced In [14].

Eq. [49] has been widely tested (referenced in [14]) and has been
very useful in correlating a large body of data, The main anomaly ob-
served thus far in this equation is for reactions of Cot3(aq) ion, This
ion undergoes an extensive electronic rearrangement in forming Co*?(aq)
and a possible explanation for the anomaly is given in [14], .

Quantum effects on the vibrational or solvent motion have also been *
treated [7,8,13,31b], At sufficiently low temperatures the system does
not use the energy AU* In Fig, 1 to go from the R curve to the P curve,
Instead it can "tunnel! through the barrier there, This tunneling, in
many-dimens fonal q-space, has been treated by means of Fermi's Golden
Rule for radiationless transitions and Franck-Condon factors [7,8,13,31b],
At high temperatures the expression for the free energy barrier reduces
to the classical one given earlier in this paper, An analogous formalism
has been used to treat [31] biological electron transfers [32] at very
low temperatures,

In the quantum treatment [7,8,13] a treatment of the vibrations of
the reactants is relatively straightforward, but the solvent vIbraéiOns
are treated as though they are vibrations of a solid and hence undamped,
In the liquid there is a strong damping. (Thls approximation was not
made in the classlical statistical mechanical treatment [3),) A modifi-
cation for the damping on the quantum mechanical result has been des-
cribed [33].

Again, when curve P In Fig. | crosses curve R on the left hand side,
so that the slopes of both curves are both negative at the crossing point,
the transition from R to P curve can only occur nonadiabatically and quan-
tum treatments fnvolving the Franck-Condon factors and related closely to
the just mentioned quantum formalism {7,8,13], have been used, referenced
In [14]. Such treatment are needed for highly exothermic reactlons: When
AV in Fig, ) is sufficlently negative the crossing will indeed be such
that the R and P curves have the same slopes at the crossing point,

Finally, there are reactions of the redox or electrochemical type
where bonds are actually broken and formed during the reaction, Here,
the description of the potential energy surfaces glven in Flg, 1 is sug-
gestive though not adequate, Other models have been used, the bond
energy-bond order mode! ([34] for example {35,36], and an analog to Egs.
[43], [40] and [50] has been obtalned [36] but with
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AG* =w' + (M4) + (AGR°'/2) + (AGR°'/2y)Ln cosh y {53)
and
fi2 = (an)(tn cosh y)/y (54]
where
y = (2¥86,°'/A) = (¢n Ky2)V/n{kikea/2?) , Y =4n2 . [55)

(The case of the hydrogen discharge reaction, Eq. [1], will be treated In
a forthcoming publication [1] using a combination of nonequilibrium po-
larization, BEBO, and Franck-Condon overlap methods to treat different
aspects of the overall problem,) Whereas the slope of a Bronsted plot

( homogeneous reaction) or Tafel plot (electrode reaction) was glven by
Eqs. [51) and [52], they are given [36] in a BEBO model by Eq. {56] when
the work terms can be neglected,

1 + tanh y) (56]

[\’)‘Lg

Q=

where y 1s given by Eq, [55]. In the electrode case the ZAGR°'/1 is re-
placed by 2{-nF(E-E®') + wP - Wi

The theory of electron transfer reactions in solution and at elec~
trodes continues to be in an active and developing state, An estimate
has been made for the x in Eq. [42] for the ferrous-ferric electron ex-
change reaction [37]. Calculations are desirable, using increasingly ac-
curate theories of electronic structure, for x's of this and other reac-
tions including those of Co*3(aq) for which extensive electronic rear~
rangement occurs, Such calculations will also permit more insight into
orlentational effects [38]'In electron transfer reactions, Again, deve
elopments can be expected in statistical mechanical evaluation of the
term obtained for fluctuations in orientations of solvent molecules,
needed to reach the intersection region of Fig. 1. There have been
numerous enlightening interactions between theory and experiment, and we
can continue to look forward to this fruitful lnte}play in the future,
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