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ABSTRACT

The entropy of activation AS?Y for electron transfer reactions occurring in concentrated
electrolyte solutions is calculated, taking into account the electrostatic and electronic contri-
butions. By applying the mean spherical and exponential approximations to treat a simple
model of electrolytes (hard charged spheres in a dielectric continuum), the pair distribution
function is calculated. These approximations are also used to calculate the electrolyte reor-
ganization term, since both quantities contribute to the electrostatic part of AS*. Numerical
application is made to the ferrous-ferric exchange reaction in 0.556 M HCIO,4, Results of a
preliminary electron tunneling calculation for the electron transfer are included. Reasonable
agreement between observed and calculated AS' is obtained.

(I) INTRODUCTION

It is a pleasure to dedicate this article to our esteemed and beloved colleague,
Veniamin Levich, on the occasion of his sixtieth birthday. His invaluable contri-
butions to electrode kinetics, and his elucidation of quantum effects in electron
transfer reactions, are too well-known to all of us to need documenting here. 1t
is our hope that the next few years will see him once again able to be active and
thriving in this field.

The aims in the present paper are two-fold: (1) the investigation of the large
negative entropy of activation found for electron exchange reactions, such as in
eqn. (1.5) below, even at appreciable electrolyte concentrations, and (2) the in-
troduction of recent statistical mechanical methods for electrolytes into elec-
tron transfer theory, to treat salt effects.

The symbols and some definitions are first recalled: the rate constant of elec-
tron transfer reactions is k,; the activation energy E, is defined from the slope
of a plot of In k, versus the reciprocal of the absolute temperature T as in

E,=—kdIn k. /3 (1/T) 1.1)

where k is the Boltzmann constant (usually in cal mol™* K™'). Equation (1.1)

* In honour of the 60th birthday of Benjamin G. Levich,
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permits k, to be written as
k, = A exp(—E,/kT) (1.2)

A can thereby be calculated from the experimentally measured k, and E,. The
k, can also be written in absolute rate theory form as [1]

k. = (kT/h) exp(—AG*¥/kT) = (kT/h) exp(—AH*/kT) exp(ASt/k) (1.3)
A comparison of (1.1) to (1.3) then yields, using the Gibbs-Helmholtz equation,
exp(AS¥/k) = A/(kTe[h) (1.4)

AS? is the entropy of the transition state minus that of reactants, each in some
standard state. The value of AS* depends on the units of A (e.g., A can be in
1 mol! s~ or cm® mol~ 5™}, say) and thereby the standard state is implied in
AS* (e.g., 1 mol cm—2or 1 mol17%).

For electron exchange reactions-such as

Fe(Hzo)s 2+ Fe(H20)63+ = Fe(H20)63+ + Fe(H20)62+ (1.5)

the experimental values of AS* are quite negative [2], e.g., —25 cal mol~! K™,
and E, is 9.9 kcal mol™?, when measured at a fairly large ionic strength (0.55 M
perchloric acid), the excess perchloric acid being needed to inhibit hydrolysis of
the Fe(H,0)6* ions. The standard state chosen in AS* was 1 M, by choosing the
units of A to be 1 mol™ s~1, This large negative AS* is quite common for elec-
tron exchange reactions between small hydrated ions {3] and so our considera-
tions are intended to apply to other such reactions besides (1.5).

There are a number of contributions to AS*, including translational, electronic
(any electronic non-adiabaticity produces a contribution), and electrostatic in
the presence of the added electrolyte. The first of these is readily estimated, the
second has been roughly estimated in a recent study,[4], and the third is the
main concern of the present paper. _

The subject matter of the paper is subdivided as follows: in Section II the
“non-equilibrium” distribution of coordinates in the transition state is recalled
[5]. The various contributions to the free energy of activation AG* are given in
Section III and the electrostatic one is further discussed in Section IV. In Sec-
tion V, the “mean spherical” [6] and ‘‘exponential” [7] approximations for
treating the electrolyte effects are described, and the equations used to calculate
the electrolyte effects are summarized. An outline of their derivation is given in
Appendix A. The numerical results are presented in Section VI and discussed
there, together with a comparison with a more elementary model. '

(11) DISTRIBUTION FUNCTION IN TRANSITION STATE

The N-particle distribution function p for all coordinates q (translations, vibra-
tions, and orientations) of all molecules has been shown [5] to be of the form
p¥, where

p¥ = C exp(—U*/kT) (2.1)
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C is the normalization constant and
U¥(q) = U* + m(U* — UP) (2.2)

in the transition state. Here, U*(q) is the potential energy function of the entire
system when the reacting pair consists of reactants, while U? is that when that
pair consists of products; m is a Lagrangian multiplier, obtained from a free ener-
gy balance equation. The argument leading to (2.1) is recalled: the transition
state lies at the intersection of the U and U potential energy functions. To find
it one minimizes the free energy of formation of this state subject to this con-
straint [8]. The Helmholtz free energy of formation AF* consists of an energetic
term and an entropic term, minus that of the original reacting system

AF* = fp*U‘dq + kT fpfIE In p*dq — constant (2.3)
The equations of constraint are ' '
[o*Urda=[p*Urdq (2.4)
and

f p¥dq=1 ' (2.5)

Minimizing (2.3) subject to (2.4) and (2.5) yields

0= [(UF +kTin p¥) 8p*dq (2.6)
0= [(Ur— UP)sp*dq (2.7)
0= [5ptdq (2.8)

Multiplying eqns. (2.7) and (2.8) by Lagrangian multipliers m and —kTln C and
adding them to (2.6) yields (2.1) and (2.2).

The molecular parameters appearing in U* and UP include bond properties
(force constants, equilibrium bond lengths, anharmonicity constants), ionic
charges, dipole moments, and Lennard-Jones parameters. U™ and UP differ main-
ly in the ionic charges of the reacting pair and in the bond properties of that
pair. In determining the distribution function p*, the charges of the reacting
pair behave as though they were e;* and e,*, where

e;t=e¢" +me"—ePf) (1=1,2) (2.9)

e;" being the charge on particle i when it is a reactant, and e,” being that when it
is a product.

The above derivation used a canonical ensemble, which is related to the Helm-
holtz free energy F. Equations (2.2) and (2.9) also apply when an isobaric en-
semble, which is related to the Gibbs free energy G, is used instead [5¢].



(III) FREE ENERGY CHANGES

We consider first the free energy of formation of the transition state, in which
the reactants are at some separation distance R. It contains a translational contri-
bution, Afo'mm'R, an electronic-non-adiabaticity contribution [9] denoted by
—kT In K, a work w*®, both electrostatic and non-electrostatic, to bring the reac-
tants to a distance R, a configurational contribution associated with forming the
transition state at a distance R from the equilibrium system of reactants at the
same R, AGr*, and a term close to unity associated with the fact that the transi-
tion state may have fluctuations [8] in R, denoted by —kT In p:

AG* = AGY,,, g +w' + AGRY —kTIn%p (3.1)

AGE, ., g atises as follows: the six translational degrees of freedom of the pair
of reactants have a partition function (27m,kT/h2)%? (2nmkT/h%)3/?, where
m; and m, are masses of the reactants. These degrees of freedom become three
translations of the transition state, with a partition function (27[m, + my)kT/
h?)%2, two rotations associated with a moment of inertia uR?[u = myma/(m,

+ m,)] and a partition function 872uR2kT/h?, and one reaction coordinate R.
Thereby, one finds

AGl,,or =—RTIn Zh/kT (3.2)
where Z equals
Z = (87 kT/u)Y/?R? (3.3)

and is the average collision frequency of two particles, at unit concentration,
moving in a continuous medium. The reaction rate is now [10]

k, = PR Z exp[—(w* + AGg*)/kT] (3.4)

w” itself can be expressed in terms of the pair distribution function g;,(R), de-
fined more fully in Section 1V; g;, is unity (outside the hard sphere diameters)
when the two particles do not otherwise interact with each other or with the
medium.

w' =—kT In g;o(R) (3.5)
whence
k, = PR Zg12(R) exp(—AGR*/kT) (3.6)

It has been shown elsewhere that when AGgr* depends quadratically on the “fluc-
tuation” m in eqn. (2.2), it can be written as [5b]

AGg¥ =m?(N\g + \y) (3.7)

where m is the Lagrangian multiplier in (2.2), A; is the inner shell contribution
(e.g., due to changes in bond lengths and angles in the reactants) and A, is the
contribution arising from outside the first coordination shells. A4 includes the
solvent and electrolyte reorganization outside those shells. m is obtained from a
simple free energy balance equation [5a,5b].

AGg* — AGR¥P = AGY + wP —w* (3.8)
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where AGg® is the same as AGgy* but starting from the separated products, and
AG?' is the “standard” free energy of reaction in the prevailing medium and at
the prevailing temperature [5].

It has been shown that the polar ‘“‘outer’ contribution, m?\e, can be expressed
in terms of the differences of free energy of two equilibrium systems [5b,5d].
Namely, denoting m2\, by AGy .}, the latter can be written as

AGR.O = mz)\o = Gg?_o - GI—O (3.9)

Here, G,_, is the electrostatic contribution to the free energy of a system whose
central charges are e;¥ — ¢;" (i = 1,2) and which is otherwise similar to the actual
system, while G$®, is the corresponding quantity for a system with central ion
charges e;* — ¢;* but whose orientational coordinates of the solvent and position
coordinates of the ion atmosphere do not respond to any change in charges on
the two central ions; only the electronic polarization of the system responds.
Since the charges e;* on the central ions are given by (2.9), the central ions in
system [1—0] in (3.9) have charges —mAe on ion 1 and mAe on ion 2, where
Ae is e,? —e4F, and so is —(ep® —ey"). i.e,,

state [1—0] = (—mAe, mAe) (3.10)

the charges being a distance R apart.

To calculate the AGR'Q’t in (3.9) it is necessary to calculate the electrostatic
terms GP and G,_g, for the above two equilibrium systems. For this purpose,
as well as for calculating w® in (3.5), the various contributions to the electrostat-

ic free energy are listed in the next section. .
For the symmetric system (1.5), treated in the'quadratic approximation, m
equals —1/2, a result which can be derived from (3.7)—(8.8), using AG® =0 and

w* = wP,
(IV) ELECTROSTATIC CONTRIBUTION TO THE FREE ENERGIES IN EQN. (3.9)

As just noted, one needs the free energy of equilibrium systems. Consider a
system where the charges on the two central ions are e, and e,, a distance R
apart, the charges of the 1 : 1 electrolyte are e3= —e4 =e, and the medium has a
dielectric constant D). There are two contributions to the electrostatic free ener-

gy G.

G= Gsolv + Gatm (41)
where G*° is the solvent contribution, outside of the inner shell, defined as the
contribution in the absence of the added electrolyte. (The inner shell contribu-

tion to G=°V is contained in m2\, in (3.7) and not in the m?\, of (3.9) and so is

not included in (4.1).)
In a simple electrostatic model, G*°" is the Born charging term plus the work

e,eo/DR required to bring the ions together [11].

sow=_"1_2( ___1_)_?_:».1( __1_) esey
G 2a;\! ™ D) " 24,\! "D/ DR (4.2)

where a, and a, are the radii of the solvated ions.
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One can see immediately how eqn. (4.2) can be used in (3.9). One replaces e,
and e, by the charges in system [1—0], namely the —mAe and mAe of eqn.
(3.9), then replaces D by D, ,,. One subtracts from this result the corresponding
quantity with D replaced by D,. Thereby, the solvent contribution to AGR‘O* is

Isolv — ,,,2A,,2 _1.. ..l_ __1_)(_1___ _];.)
AGESY = m®Ae (2a1 5 —wl\oo b, (4.3)

a well-known result [5,12].

We turn next to the G*'™ in eqn. (4.1). G*'™ can be written as the electrostatic
free energy of interaction of ions 1 and 2 with their ion atmospheres when 1 and
2 are far apart, plus the change in this ion-atmosphere electrostatic free energy
when the ions 1 and 2, surrounded by their atmospheres, are brought from an
infinite separation distance to a distance R apart. We denote these two contribu-
tions by G2¥(e) and AG*'™(R).

Gatm = Gatm(oo) + AGatm(R) (4.4)

Both terms in G**™ should reduce to zero at zero ionic strength by definition,
and so the work term e;e,/DR of (4.2) is not included in Gavm,

To calculate G2t™ it is convenient to define [13,14] a pair distribution function
gi;(r) for particles i and j; if p; is the average number of particles of type j per
unit volume then g;;(r) is defined by the statement that the average number of
particles of species j in a volume element 4mr2dr at a distance r and r + dr from a
particle of species i is pjgi,(r)47rr2dr. g;(r) has the property that [15]

gy(r) > Lasr— o (4.5)

Consider a charging process of the central ions, where the charge of ions 1 and 2
is Ae; and e, and A goes from O to 1. The charges in the ion atmosphere are eg
and e,. The g;; when 1 and 2 are infinitely far apart is denoted by g,;(r; Aey) at
stage A of the charging process (j = 3,4). The potential acting on ion 1 at its cen-
ter, due to the ion atmosphere is,

V2 = [([psesgaalrs Nex) + paeagaalrs Nep)/Dr} dmr¥ar (4.6)

Multiplying by the charge increment d(Ae;), {ntegrating over A, and adding the
corresponding term for ion 2, one has G3t™(o0):

1
GHm(e) = [ (Yatey + Yalez)dN (4.7
A=0

Finally, the term AG®*"™(R) in (4.4) can be expressed in terms of appropriate
differences of electrostatic work terms to bring particles 1 and 2 together in the
medium: the electrostatic contribution of the atmosphere can be defined as the
total work to bring particles 1 and 2 together when they have charges e, and e,
minus this work when the atmosphere is uncharged, i.e., minus —kT In g122(R)
+ e,e4/DR. Using (3.5) one has

AG*™(R) = —kT In[g;2(R)/g12%(R)] — (e1€2/DR) (4.8)
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At zero ionic strength this AG**™(R) vanishes.

Since the ion atmosphere in the [1—0, op] system in (3.9) does not respond
to the charges on the central ion, the atmosphere contribution to the G,_(° in
(3.9) is zero, and so the atmosphere contribution to AGg o} is —G;_, and is the
sum of (4.7) and (4.8), with e, and e, replaced by —mAe and mAe, respectively.

It remains to calculate the gj;’s in (3.6), (4.6) and (4.8), and for this purpose
the mean spherical and exponential approximations are described in the next sec-
tion.

Before giving these equations, it is useful to just consider a more elementary
model, based on Debye-Hiickel theory. The solution of the linearized Poisson-
Boltzmann equation for the total electrostatic potential at a point r outside of a
central ion 1, {(r), is [16]

¥1(r) = (e1/Dr) exp[—k(r — R)]/(1 + kR), (r> R) (DH) (4.9)

when R is the distance of closest approach of the atmosphere to the central ion.
DH denotes Debye-Hiickel. The electrostatic work required to bring an ion 2 of
charge e, to a distance R, W5(R), is ea1(R), i.e.,

W1a(R) = (e1e2/DR)/(1 + KR), (DH) (4.10)

The value for the pair distribution function g,5(R) is, in the Debye-Hiickel ap-
proximation,

g12(R) = 1 — fW1(R) (4.11)
where 8 = 1/kT. If one used the exact W;5(R), its telation with g;,(R) would be
g12(R) = exp(—BW12(R)) (4.12)

If one were to use (4.10) and (4.11) one would encounter a serious error — even a
negative g;o(R). If, on the other hand, one were to use (4.10) and (4.12), i.e., an
“exponential” form of the Debye-Hiickel, the error in g,, is found to be less

[17]. In treatments of kinetic salt effects by Debye-Hiickel theory, one in fact
forgets about the linearization (4.11) used there in the derivation, by using (4.12)
and focusing attention on the calculation of a free energy term and including it in
the free energy of activation, i.e., including it in an exponential in the rate con-
stant expression,

An uncertainty arises in the Debye-Hiickel picture when the diameter of the
principal ions in the atmosphere differs from that of central ion 2. In the interest
of simplicity this difference in diameters will be neglected in egns. (4.13)—
(4.17), just as it was in (4.10).

In computing the In g;5/g,2° term in (4.8), where now g;,° is unity, one ob-
tains

—kT In g12(R)/g12°(R) = W1a(R) = (e1¢5/DR)/(1 + KR), (DH) (4.13)

regardless of whether one uses (4.11) and then expands the logarithm, thus ‘“‘un-
doing’’ that approximation, or uses (4.12) directly.

The G®'™ () term given by (4.7) and (4.6) is also estimated: the g,3 appearing
in (4.7) is given

g13= 1 — Pesys(r) = 1 — eafhe; {exp[—k(r — R)1}/(1 + kR)Dr (4.14)
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Noting that g,4 is given by a similar expression with ez replaced by ey, i.e., by
—e, eqns., (4.6)—(4.7) yield

Gai™ () = —(e42 + e,2)/2D(1 + kR) (4.15)
Finally, one obtains from (4.4), (4.8), (4.13) and (4.15), that
G*™ = —k[}(e;® + ey®) + e1e,)/D(1 + kR), = (DH) (4.16)

The reorganization term is obtained by replacing e; by —mAe and e, by mAe,
whence

AGE ,am =0, (DH) (4.17)

Other Debye-Hiickel methods [ 5b] give slightly different results than (4.15)—
(4.16), e.g., from solution of the linearized Poisson-Boltzmann equation when
ions 1 and 2 are fixed a distance R apart. G**™ is then defined as the electrostatic
work to charge these two ions minus that when their ion atmosphere is absent.

(V) MEAN SPHERICAL AND EXPONENTIAL APPROXIMATIONS
(A) Description of approximations

The mean spherical approximation (MSA) [6] employs the linearization pres-
ent in Debye-Hiickel theory and introduces hard sphere radii, but is statistical
mechanical in nature, Whereas the Debye-Hiickel theory does not allow for hard
sphere repulsion between the ions belonging to the ion atmosphere, the MSA
does. The MSA yields good agreement [18] with activity coefficients, calculated
numerically (Monte Carlo), in the concentration range 0.1 to 1 M. It does not
give accurate results for the radial distribution functions on contact [7¢,18].
For this purpose, the “exponential approximation” (EA) [7], which makes use
of the MSA result but attempts to correct for the linearization, is much better,
as judged by comparison with exact statistical mechanical numerical (Monte
Carlo) computations [7c].

To calculate, thereby, the g;5(R) at contact in (3.6) and (4.8) the EA is used
below, while to calculate (4.6)—(4.7) the MSA is used. (For activity coefficients
its results are comparable with EA.)

These approximations are described next.

First, recalling the definition of g;;(r) in the previous section one notes that
when there is no interaction between the particles then for all i and j

g”(r) = 1, (all r) (5.1)
Thereby, h;;(r) defined as
hy;(r) = g;;(r) —1 (5.2)

reflects the interparticle interactions and, in virtue of (4.5), approaches zero for
large interparticle separations.

It is very convenient to define a new function [13], C;;(r), related to hy;(r),
but that expresses correlations between i and j more directly than does gij, by
being more related to the intermolecular potential itself. For that one decom-
poses h(r), for a one component fluid, into a chain of integrals of this new func-
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tion C(r). That is, if C(r;5) correlates directly the small volume elements from
positions 1, 2, where r;, denotes lr; — r,l, then h(ry,) is constructed from the
sum of the direct correlation C(r;,) plus the direct correlation of a particle at r,
with the particles p drj in rz, multiplied by the direct correlation of those at rg
with those in r,, integrated over all rg, plus the direct correlation of the particles
at r; with those at rj, multiplied by that of those at rj with those at r4, and then
by those of ry with those of r,, integrated over all r; and r4, and so on.

h(ry2) = C(r12) "‘fC("13)PC(r32)dd3+fC("ls)PC("34)PC("42)ddadd4 *.. (5.3)

or using the symbol * for a convolution integral:

h(r) = C(r) + CxpC + C+pCxpC + ... (5.4)
This definition of C(r) can be seen to be completely equivalent to
h(r) = C(r) + h(r)*pC(r) (5.5)

which gives (5.4) upon successive iterations. Equation (5.5) is the celebrated
Ornstein-Zernike equation [19].
The generalization for mixtures is given as

hy;(ryy) = Cyy(ry) + Zl; PlfCu("u)hu‘(”li)47"'112d"11 (5.6)
In matrix form one has
h =C = h*pC (5.7)

where p is a diagonal matrix. ,
When each molecule is treated as having a hard spherical core, the g;; vanishes
when ry; is less than the mean diameter, (d; + d;)/2. Hence

hyj(ry) = —1, ry; < dyy = 3(d; + d;) (5.8)

If one had a system consisting of a mixture of uncharged hard spheres, the inter-
action between molecules is zero outside the distances of closest approach. Mak-
ing the approximation that

Ci;(r) = 0 for r > d;; (hard spheres) (5.9)

and using condition (5.8) one obtains the well-known Percus-Yevick (PY) ap-
proximation [20], which is an excellent description for the fluid region of hard
sphere systems. This fluid serves as a reference system for realistic dense fluids
and for electrolytes [21].

To solve the set of equations (5.7) for electrolytes some knowledge of C;;(ry;)
is needed for those systems, just as it was in the PY case, a knowledge hidden in
the higher-order distribution functions. We proceed to motivate and give the
choice made in the case of the mean spherical approximation.

In the limit [22] of p—~> 0, eqn. (5.4) shows that C approaches h. But h ap-
proaches the simple Boltzmann value when p - 0:

EEIOCij(rlj) = hyj(ry;) = exp(—fV;;) — 1 (5.10)
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where § denotes 1/kT and Vj; is the interaction potential of i with j. For suffi-
ciently low 8V,;, expansion of the exponential yields [23]

Cyy(ryy) = —BVj(ri;) (5.11)

The mean spherical approximation, introduced by Lebowitz and Percus [6b],
consists of assuming eqn. (5.11) for r > d;;, for any density p, then solving (5.6)
subject to (5.8). The solution reduces to the linearized Debye-Hiickel result when
d;; is made to approach zero, and to the hard sphere PY equation when the
charges e; are made to vanish [6a].

The exponential approximation of Andersen and Chandler [7] attempts to
undo the linearization embodied in (5.11) Its distribution function gj; EA is ob-
tained to be the hard sphere pair distribution function g;,° multiplied by a suit-
able exponential [24],

gi=A (ryy) = &,°(ry;) exp(—BWyy) (5.12)
By an optimization procedure they obtained an effective potential W;;, which in
our case is well approximated by the mean spherical approximation to g and by
g
—BW,; = gV — g’ (56.13)
(In egns. (4.10) and (4.12) of Section 1V, eqns. (5.12)—(5.13) were also used
fori=1,j=2,atr;,= R, but with g,,"* replaced by the Debye-Hiickel value
(4.11) for g,,, and with g;,° replaced by unity.)

Some qualitative insight into (5.12)—(5.13) is obtained as follows: gj;(r) is
related, via an exponential, to the work required to bring i and j to a separa-
tion distance r from . Equation (5.12) presumes that this work is the sum of

the hard sphere work plus an additional ionic work. Remembering that g M5 is
a linearized g;;, one would write for it, in the same spirit as (5.12),

g"5A = g0 — gy BWy = &° — Wy (5.14)

where we have set g;° equal to unity in the second small term on the right hand
side. However, (5.14) is seen to be none other than (5.13). Equations (5.12) and
(5.13) provide the “‘exponential approximation” and yield an improved value
for the value of gjj at ry; = d;;. That is, to use this “exponential approximation”
it suffices to solve the problem in the “mean spherical approximation”.

(B) Equations for the g;;'s
The g;,%R) for the hard spheres (PY) system, in the presence of an uncharged
atmosphere of particles 3 and 4, occurs in (4.8) and is given by [25]

g12°(R) = (1 —§)™* + (3R/2L) ((1 — £)2 (5.15)

where ¢ is the ratio of the total hard sphere volume of the atmospheric ions
4m(L/2)3N/3 to the total volume V:

E=mpL36, p=ps+p, (56.16)
The W, present in eqn. (5.12) and (5.13) at r;; = R, is shown by eqn. (A. 28)
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and (A. 30) of Appendix A to be given by

Wia(R) = (e1ea/DR)(1 + p)?/q® ‘ (5.17)
where
p=(1+2kL)"% qg=1+p+«kR, k= (4npe?/DkT)}? (5.18)

Kk being the inverse Debye length. Clearly (5.17) tends to e;es/DR when the at-
mospheric number density p tends to zero. The g;5(R) in eqn. (3.6) is now given
by (5.12), using (5.15) and (5.17).

In eqns. (4.6) a quantity such as g,3(r) — g14(r) appears when ez = —e4 =e.
According to two of the equations in (A. 6), and the relation between g;; and
h;; in (5.2), this g3 — g14 is given by the following, where the charges on the cen-
tral ions are explicitly indicated as Ae; and Ae,,

g15(r; Aep) — g14(r; Aep) = 2 hy(r; Aey) (5.19)
and similarly
g23(r; Aeg) — Baq(r; Neg) = 2hegh,(r; Aey)/Aey (56.20)

(The latter could also have been written as 2 h;(r; Aej), since h, is a linear func-
tion of the charge of the central ions.) Further, the integral of h, over r, multi-

plied by various constants, it is the same as the integrals of the g;3 — g14 and ga3

— g,4 that appear in eqns. (4.6)—(4.7), and is given by eqn. (A. 19). In this way
one obtains from (4.7)

G*™ () = —(e,® + e;*)x/Dq (6.21)

a result which may be compared with (4.15).
On the other hand the AG®*"™(R) in (4.8) is obtained from the contact g,
values. By using (4.8), (A. 28), and (A. 29), one finds

AG*™(R) = (e,ea/DR)[(1 + p)* — ¢®1/q? (5.22)
Thus, from (4.4), (5.21) and (5.22) one has
G = (—(ey? + e.?)(KR/q) + esea[(1 + p)* — q®)/q®}/DR (5.23)

To obtain the atmospheric contribution to AGR",i one uses (3.9) and (5.23),

but replacing the e, and e, in the latter by —mAe and mAe, and the D by D;.
This gives the amosphere contribution to G;—. There is no atmosphere contribu-
tion to G, since by definition the ion atmosphere and orientational coordi-
nates do not rearrange in the [1—0, op] system; only the electronic polarization
responds to changes in charges on the two central ions. Thereby, the atmospheric
contribution equals

AGEm = —Gatm = m%(Ae)%(kR)?/q%D,R (5.24)

In summary, AGR‘Och is obtained by adding (5.24) to (4.3), and the g;3(R) in
(8.6) is given by (5.12), (5.15) and (5.17), while Debye-Hiickel values are given
by (4.18) and (4.12). The former equations are just as easy to apply as the latter.

Finally, the w* appearing in eqn. (3.5) is related to W,o(R) and g122(R) via
(5.12).
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w* = Wyo(R) — kT In g 2%(R) (5.25)

The expressions obtained from these equations for various contributions to ASH,

using —0 AG*/3 T, are as follows:
The translational contribution is obtained by differentiating eqn. (3.2), using

(3.3), and is given by
ASH =k In(Zh/kT) — (k/2) (5.26)

trans,R

The electronic contribution is
AS.t=kInk ‘ (5.27)

neglecting any temperature dependence of K.
The entropic work term, —ow"/d T, obtained by differentiating (5.25) and
(5.17) is

AS .} =k In g1,° — (e1e5/DTR)[(1 + p)/g®] {6(1 + p)
—[«R(@ —1)(1 + p +kL)/pq}} (5.28)

where 0 denotes — In D,/0 In T.

The corresponding term at zero ionic strength is obtained by setting p = q/2
= 1, The corresponding Debye-Hiickel term, obtained by differentiating (4.10),
is

ASw,¢(DH) = —(e,ea/D;TR)(26 + OkR + kR)/2(1 + kR)? (56.29)
The solvent reorganization term, obtained by differentiating (4.3), is
ASg o* " = m*(Ae)’0/D, TR (5.30)
neglecting the temperature dependence of D,,.

The ion atmosphere reorganization term, obtained by differentiating (5.24), is
A8y JFatm = —m?(Ae)*[(kR)*/q°D,TR]1{g6 + (6 —1)[1 + p — (kL/p)]} (5.81)

The ion atmosphere reorganization term in the Debye-Hiickel approximation, ob-
tained from (4.17), is zero.

For the electron exchange reaction (1.5), the value of m is, as already noteq,
—1/2.

(VI) NUMERICAL CALCULATIONS AND DISCUSSION

Using the ionic diameters [26] given in Table 1 the various contributions to
ASY are calculated from the AG¥ contributions using —3AG*¥/3 T. They are
summarized in Table 1. The agreement with the net experimental value at 0.55
M HCIO, is seen to be quite reasonable, based however on the rough estimate
for the non-adiabaticity factor K in ref. 4. There is seen to be a substantial con-
tribution of the ion atmosphere to AS*, as expected from the extensive atmo-
sphere shielding involved. The various solvent and atmosphere terms are further
classified into ‘“work” type (w* type) and reorganization type (A(}'R‘o:c type)
contributions. The g;,°(R) appearing in eqn. (5.15) is 1.08 at 0.55 M HCIO,.

It is interesting to compare the effect of the ion atmosphere on AG* and AS#,



TABLE 1

Ferrous-ferric electron exchange reactions.
Contributions to AS¥ and related data ¢

Contribution

(0.55 M HCIO,)/
cal mol—1 K1

21

Ast
(0 M HCI04)/
cal mol~1 K1

Translation —10.1 Same
Non-adiabatic —9.2 Same
Solvent reorganization 0.6 Same
Entropic work term (—0w*/0T) —5.2 —14.0
Atmosphere reorganization —0.1 0
Total —24.0 —33.6
Experimental —25.0 -
Entropic work term, Debye-Hiickel (—0w*/3T) —5.0 —14.9
Atmosphere reorganization (DH) 0 0

AGH AGH

(0.55 M HCIOy)/ (0 M HC10,)/

keal mol™1 kcal mol™1
Work term wt® 1.2 3.2
Work term w¥, Debye-Hiickel 1.2 3.2
Atmosphere reorganization 0.02 0

¢ Diametersdy =dp =R =7 A [26a),dg=dg=L =4 A [26b],—0 In Dg/0 In T = 1.26 and
D¢ =87.9 at 0°C [26¢].

calculated in Table 1, with that calculated from the Debye-Hiickel theory. The
results are given in Table 1 and are seen to be strikingly close to the mean spher-
ical results (in the exponential approximation for both). Nevertheless, the MSA
is readily generalized to more complex systems, whereas the DH is not.

In the present treatment, the central ions were taken to be of the same size
(diameter R), as were the ions in the atmosphere (diameter L). One can readily
generalize to arbitrary sizes of each of these ions, using the exponential approxi-
mation, with the form of the mean spherical approximation results obtained by
Blum and Hg¢ye {27b].

A second generalization is in calculating the fluctuations in separation distance
R in the transition state, instead of largely restricting it to the ‘hard sphere con-
tact distance”. One would maximize with respect to r, k(r)Z (r)glz(r)exp(—BAGf' oh
r being the separation distance (replacing R). g,,(r) is given approximately
[27b] by

g12(r) = g12(r) exp {H(R)(R/r) exp[—2I'(r — R)]} (6.1)

where Hy5(R) is given by eqn. (A. 29) of Appendix A and where 2I" is p — 1.
Equation (6.1) applies to equal size central ions and a symmetric atmosphere,
but can be generalized [27b].

The present equations become less accurate, as judged by comparison of the
exponential approximation with Monte Carlo results, in the range around 0.01 M
for very highly charged ions [18]. The phenomenon usually termed ‘‘ion-pair-
ing” occurs there, and at lower densities, and one needs a more sophisticated
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approximation, such as perhaps the hypernetted-chain eqn. [18g].

It should be emphasized of course that the model employed here for salt ef-
fects is the primitive one, containing as it does only hard spheres, without specif-
ic ionic interactions and not allowing for solvent structure breaking and forming
effects. Some discussion of deviations from the dielectric continuum approxima-
tion is given in ref. 18 g.

In summary, the use of the Debye-Hiickel treatment to calculate the electro-
static free energy tacitly makes use of the “exponential approximation” but
with a Debye-Hiickel g,, replacing a mean spherical one. The mean spherical
equations for symmetrical systems are not more difficult to use than the Debye-
Hiickel ones. They treat the hard sphere excluded volumes in a more self-consis-
tent manner, and can be generalized to less symmetrical systems. The calculated
result for the entropy of activation in Table 1 agrees well with the experimental
one, but the electronic-non-adiabatic contribution {4] should be regarded as a
preliminary one.
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APPENDIX A
Mean spherical approximation. Physical and mathematical ideas

A simple model of electrolytes of N species will be used, characterized by the
number density of ions p;, ion charge e;, hard core diameter d; and dielectric
constant D. There is also the added condition of overall electrical neutrality, i.e.,

N
2 pxex =0 (A. 1)
k=1

The M.S.A. consists of Ornstein-Zernike equation [19] plus the Lebowitz-Percus
assumption [6b] about the behavior of C;;(r), namely eqns. (5.7), (5.8), (5.11),
and eqn. (A. 1), with V;; being

Vi; = e;e;/Dryy, ryy > dyy (A. 2)

One can, incidentally, show directly from these equations that the M.S. A. satis-
fies the Stillinger-Lovett [28,29] moment relations, a result which follows from
an observation of Groeneveld [30], and which has the implication of predicting
oscillations in the charge density around a given ion at high ionic strengths.
The solution of the equations (5.7), (5.8), (5.11), (A. 1), and (A. 2) was

first obtained by Waisman and Lebowitz and can be found in refs. 6¢, 6d and
6e. The techniques employed extended Wertheim’s method [31] for solving
the PY equation for pure hard spheres, later used by Lebowitz [25] for the
PY mixture of uncharged hard spheres. For the case of symmetric electrolytes,
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the problem was solved completely, while for the symmetric case, the solution
led to a set of coupled algebraic equations. Blum [27], utilizing Baxter’s [32]
application to fluids of the Wiener-Hopf integral equation solving technique, was
able to reduce the problem to solving a single algebraic equation of higher order,
an equation which reduces to a quadratic one in the case of the present problem
of a symmetric electrolyte surrounding the two central equal-size ions. For this
simpler problem we shall use instead a method of solving the equations which
avoids the complications of the previous methods and uses the known solution
for symmetric electrolytes found in ref. 6d.

In the present case the ionic atmosphere consists of a symmetric electrolyte,
composed of ions labelled (3,4), with

es=—e4=e,d3=d4=L<R,ps=p4=pl2 (A.3)
and with the central ions labelled (1,2) with charges e, and e,, and
dy=d;=R,p1=p2=0 (A. 4)

Because of this symmetry it readily follows from the Ornstein-Zernike equations,
plus the associated conditions, that the matrices h and C are symmetric and that
for the symmetrical 1 : 1 electrolyte one also has

hgg = hyy, C33 = Cyy (A.5)

These quantities are same as those in the absence of ions 1 and 2, since p; = p,
= 0. They can be taken as known, since the solution to the problem ofal:1
symmetric electrolyte by itself is available, [33], and is used later via the func-
tions 0 and h in (A. 11), etc. One next defines

h = (hag — hae)/2, fi = (haz + h3g)/2, C = (C33 — C34)/2, C = (C33 + C34)/2

It can be seen that by adding and subtracting the Ornstein-Zernike equations
for the indices 13, 14, 23, 24, using (5.11), (A. 5) and the symmetric nature of
the matrices h and C, one obtains,

hyg = h; + hy, hyg = hy + (e5h;/e;)
hys = h; — hy, hyg = hy — (eshy/e,) (A.6)

and an identical set of equations with the h’s replaced by C’s. Here, the func-
tions h;, C, and h,, C, satisfy the following decoupled linear integral equations:

h, = C, + ph*C

h,=0,r< R,;C, =—feey/Dr,r> R, (A7)
and

h, = C; + phy *C

h,=—1,r<R;;C,=0,r>R, (A. 8)
where

R = XL +R) (A. 9)

Equation (A. 8) contains no ionic charges and actually is the same as the PY ap-
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proximation for a binary of uncharged hard spheres of two species, one of diam-
eter L at a density p and one of diameter R at a vanishing density; h, represents
the unlike particles total pair correlation. Its solution is obtained as the limit of
the Lebowitz general solution [25] of the PY approximation for mixtures, by
letting one of the p’s vanish, but is not needed here, and so is not cited.

It remains to solve eqn. (A. 7). Auxiliary functions 0,(r) and o(r) are first de-
fined:

_ —C, — fee;/Dr r<R,

0(r)/2mpr {hl(r) r> R, (A. 10)
_|—C—Be*Dr r<L

o(r)/2mpr = {h(r) PS> (A.11)

(Auxiliary functions have been introduced to solve other integral equations, and
were used for the first time by Wertheim [31] to solve the PY equation. The ad-
dition of the Coulombic term was one of the key steps introduced by Waisman
and Lebowitz [6c—e] to solve the mean spherical integral equations for electro-
lytes.) Using bipolar coordinates eqn. (A. 7) can then be written as:

% r+y
oyr) =% ;‘ Rf 0,(y)0(L — Ir—y1) lf | o(x)dx — ? f ox(y)dy [ Idx
1 r—y r—y
(A.12)
where
0(z)=1ifz> 0, 6 = 0 otherwise. (A. 13)
One now takes the Laplace transform of (A. 12), obtaining
Gy(s) = —[(x?se;/2e) — s2Fy(s) — k2V,]/[s*> — k% — sF3(s)] (A. 14)
where
Gy(s) = [ oy(r)e*rdr; Fy(s)= [ oy(r)e*"dr (A. 15)
Ry 0
L
Fy(s) = F(s) — F(—s), with F(s) = f o(r)e~*rdr (A. 16)
0
and
=Gy(0) = [ oy(r)dr (A.17)

Ry

Equation (A. 13), which contains two unknowns F(s) and G4(s), is a solvable
functional equation [34]. By imposing the appropriate analytic properties [35]
of G,(s) and F,(s), both of these functions can be obtained. The details are found
in the literature [6c¢, 6e]. By now performing the inverse Laplace transformation,
one obtains 0,(r) and, thereby from (A. 10), the following explicit result for



25

Cy(r):

2Be?V,/D, r< R%L =2

Cy(r) ={ (2Be2V,/D)[1 + {V(r—N)¥/2r}], A< r< R, (A. 18)
—Bese/Dr, r> R,

where the quantities V and V; are associated with the mean potential energy of
the Coulomb potential and are given by [36]:

V= [ 2mprh(r)dr = —k/(1 + p + kL) (A. 19)
L

and

V= f 2wph,(r)dr = —e;k/eq (A. 20)
Ry

where k, p and g are defined in (5.16) and (5.18).
The explicit knowledge of C,(r), given (A. 18)—(A. 20), can be used to ob-
tain h,(r) by Fourier transforming the top line of eqn. (A. 7). One obtains

hy (k) = Cy(k)/[1 — pC (k)] (A. 21)

where ﬁl(k) stands for the integral of h,(r) exp(ik - r)r? sin #dfdydr, integrated
over 0, y and r, and similarly for C(k) and C,(k). Also one can write another im-
portant quantity, by noting that directly from (A. 7) it follows that h(r) — Cy(r)
is continuous across r = Ry, yielding h,(R,*) = C;(R;*) — C,(R;7), because
hy(R,7)=0. (R," =1lim R, + € as € > 0 for € > 0.) One thus obtains

hy(R,") = —2fee,/DR,q (A. 22)
The component h;, can be written now in terms of known quantities:
hyp = Hyp® + Hyp (A 23)

and similarly h,; and h;, can be expressed in terms of H;,° and H,,. Here, H,,°
is defined by (A. 24) and H,, by (A. 26) [37].

Hio® = ¢° + ph,*C,
leo = '_'1, r< R (A. 24)
w=0,r>R

So defined, H,,° satisfies the PY equation for the uncharged hard sphere mix-
tures problem, but for the central ion-central ion correlation, and its solution is
completely known [37]. In particular,

g12°(R) =1+ H,0R) = (1 — &)1+ 3(R/L)E(L — §) 2 (A. 25)
a result quoted in (5.15).
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H,, is defined via
Hiz = ¢ + (ea/e;)phy*Cy
H,,=0,R < r; ¢ =—fejey/Drforr<R;
The main problem is to obtain from eqn. (A. 26), using (A. 22)—(A. 24), the
value of H,(r) as r approaches R from above. This can be done in a cumbersome
direct way, or indirectly by first showing that in the interval (0 < r < R) h,;*C;

is a linear function of r. Since ¢(r) equals —(es/e;)h,*C, for r < R, one then
finds a value for p(r) [38]:

(A. 26)

@(r) = (Bees/DY(2V, + (req,%/e1x?), r < R (A. 27)
and

q1 = 2mpR1hy(R,*) (A. 28)
From this one obtains

Hy5(R*) = p(R*) — p(R™) = —(Be;eo/DR)(1 + p)*/q® (A. 29)

From the first equation of (A. 23), expressed in terms of the g’s instead of the
h’s and using the first half of (A. 25), one has

Hia(R*) = g12(R) — 812%(R) (A. 30)
Thus, the —W,, in eqn. (5.14) is given by
—BW12(R) = Hyp(R™) (A. 31)

at r = R. Equations (A. 29) and (A. 31) yield (5.17).
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If Qi(r), a charge cloud density around an ion of species i at the origin, is used to denote 4n2
X pje;gjj(r), then the two moment relations are that (i) f Qj(r)dr from r = 0 to * is —e;, and that (ii)
]

J Ql(r)rzdr. multiplied by pje), integrated over r and summed over 1, equals -—6‘T p]elzlnz where K is

the inverse Debye length. Stillinger and Lovett {28] have ‘given strong physical arguments for these re-
lations, and the relations agree indirectly with Monte Carlo results (cf. ref. 18 and J. Rasaiah; Chem.,
Phys. Lett., 7 (1970) 260). The moment relations predict charge oscillations as one can show from'
standard inequalities. E.g., for the symmetric case of a binary mxxture p1 = p2 p.e1=—eg=e,dy
=dg = d, and the moment relations read /' Q1 (r)dr = —e, S Q3 (r)r 24r = —6e/n2. the integrations being
from r = d to r = °, and one finds from those results that Q4(r) is not always of one sign, i.e., charge
oscillations occur, when xd >'\/§. The two moment relations are satisfied in the linearized. Debye-
Hiickel system with djj = 0, but only the first is satisfied by the Debye-Hiickel theory with finite dj;.
Groeneveld (private communication to Waisman) pointed out that the moment relations are satisfied by
any approximation whose Cj;(r) behaves —pejej/Dgr at sufficiently large r. Thereby, they are satisfied

by the Debye-Hiickel equation when djj = 0. (When djj # 0 the “modified” Debye-Huickel does not
satisfy the Ornstein-Zernike equations.) The moment relations, and the resulting charge oscillations do
not impose a severe restraint on the thermodynamic properties, since the latter are reasonably well "
satisfied by equations such as the Olivares-McQuarrie one [24], which do not show the oscillations.

The differences might affect other properties, however. perhaps such as the capacitance behavior of an *
electrode immersed in an electrolyte.

cf. M. Wertheim, Phys. Rev. Lett., 10 (1963) 321; cf E. Thxele. J. Chem., Phys,, 39 (1963) 474.

R.J. Baxter, Aust. J. Phys., 21 (1968) 563; R.J. Baxter, J. Chem. Phys., 562 (1970) 4559, B. Noble,
Methods on the Wiener-Hopf Technique, Pergamon Press, New York 1958,

The solution is given by eqns. (2) and (3) of ref. 64, by noting. however. that we are using mdices 3
and 4 instead of the 1 and 2 for the symmetrical electrolyte in the atmosphere.

Actually our case is quite easier than the general case, because F2(s) is a known function and (A. 12)
and therefore (A. 14) are just scalar equations and not matrix -ones.

G1(s) is regular for Re(s) > 0 and F1(s) is entire in the s-complex plane.

This is a general characteristic of the MSA: the excess potential energy enters as a coeffxcxent in the
algebraic equatlons one obtains as described before.

Since hl and Cj are known, the first and third equations in (A. 24) give Hq90 for r > R, while the
first and second ecquations give 90 for r < R. Thereby, H12 (using the second equation) is known for
all r, and so is wo Equation (A. 25) is obtained from Lebow1tz [1] solution [25], as the limiting case -
of the pair distribution function of the larger particle- thh ‘another of its kind at the limit of vanishing
density for them, but at a given finite density for the smaller spheres species. ‘

Hj 2 is known once hj and C; are known, following a similar reasoning to that in ref. 37. Also, since
w(r) is a linear function of r for 0 < r < R, it is completely determined by \0(0) and dy/dr (0); i.e., in
virtue of eqn. (A. 26), by the values of —hy+Cq1 and -—dldr(hl*Cl) at the ongm. These derivatives are
easily found in terms of the quantities given in (A. 20) and (A. 22). .



