Reprinted from

The Journal of CHEMICAL PHYSICS

Vol. 67, No. 6, 15 September 1977

A new tunneling path for reactions such as

H+H,—H,+H?
" R. A. Marcus and Michael E. Coltrin

Department of Chemistry, University of Ilinois, Urbana, Illinois 61801

(Received 20 May 1977)

The standard tunneling path in transition state theory for reactions such as H+H,—H,+H has been the
so-called reaction path, namely the path of steepest ascent (o the saddle point. This path is now known to
give numerical results for the resction probability which are in disagreement with the exact quantum

mechanical ones by an order of magnitude at low tunneling energies. A new tunneling path corresponding
to a line of vibrational endpoints is proposed. It is much shorter and is shown to give results in agreement
with the quantum ones to within about a factor of two. A semiclassical basis for choosing this new path is

given.

. INTRODUCTION

Recent comparisons of quantum mechantcal and tran-
gition state theory calculations for the colinear and
three-dimensicnal reaction rates of H +Hy~ Hy +H have
revealed significant discrepancies between the two meth-
ods.! These discrepancles occur particularly at low en-
ergles, where tunneling 8 very important. The quantum
mechanical rate is frequently of the order of ten to a hund-
red times larger than the rate predicted by transition
state theory. Various numerical complex-valued classi-
cal trajectory studies have been made in this tunneling
region, and used in semiclassical calculations™® and
more recently in a {:erlodlc-trajectory—transltlon- state
(PTTS) formalism.® The results obtained using the
PTTS show markedly improved agreement with the quan-
tum mechanical results,® (The semiclassical ones did
also, but they are not of the transition state theory type.)

The question arises whether there is some simple
physically intuitive modification of the usual tunneling
calculation in transition state theory which ylelds good
agreement, without requiring the computation of actual
classical trajectories, Such a method is described in
the present paper. It involves a new tunneling path for
this H + Hy— Hy + H reaction, a path corresponding to the
vibrational limit during the motion, A semiclassical
basis for the method is given.

11, TUNNELING PATH AND RESULTS

In transition state theory® it i8 customary to calculate
the “reaction path,” the curve of steepest descent pass-
ing through the saddle-point, and employ it as the tunnel-
ing path. We let the coordinates along that path be de-
noted by s, and the potential energy along this “s-curve”
by Vy(s). For a colinear reaction in the tunneling region
the vibrational energy of the lowest vibrational state in
the transition state at s =s? is the zero-point energy,
Eyls?). The translational energy available for tunneling
at any s is then often chosen to be the total energy £ min-
us Vy(s) +Eyls?). Actually, the effective potential energy
barrier is Vi(s)+ Eg(s), where Eyls) is the system’s lo-
cal zero-point energy at a given s, and this barrier is
now frequently used instead of Vy{s)+Ey(s?). Classical-
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ly, the system will stop its motion in the s-direction at
the s =s* for which the energy barrier equals the total
energy, i.e., for which

V1(S‘) + EQ(S') =K )
for a system in its lowest vibrational state.

The coordinate perpendicular to the s-curve, a vibra-
tional coordinate, is denoted by, p, with p positive when
this coordinate is stretched, and negative when com-
pressed. p equals a (signed) measure of the distance
perpendicular to a tangent to the s-curve. The potential
energy associated with p-motion at any s is designated
Valp, s), where V(0, s)=0on the s-curve, The maximum
vibrational amplitude at a given s i8 the p=py,, Which
satisfies

Eqg(s) = V3(paw S) . (2.2)

The family of points [p g (s), s satiafying {(2.2) and for
which p is positive describes a curve, which we shall
call the #-curve,

(2.1)

The contour lines of a typical potential energy surface
for the H+H, reaction are depicted using the usual
skewed axes® in Fig. 1. The reaction path (the s-curve)
is shown as a solid line, and the f-curve as the dotted
line. The central idea of the present paper is that a pre-
ferred way of tunneling is not along the reaction path,
the s-curve, but rather along a shorter path, the ¢-
curve described above. The tunneling along the {-curve
starts from a point P for which s=s* and p=p;o
and continues along the f-curve to a corresponding point
P in the exit channe), i.e., the point for which (2.1) and
(2.2) are again satisfied but in the exit channel in Fig.

1. The starting and end points on the f-curve, P and P/,
deperd on the energy E, as in (2,1), and are given in
Fig. 1 for a particular E, If V denotes the potential en-
ergy along the f-curve then

V= V;(S) + EQ(S)
as compared with Vy(s) on the s-curve.

(on t-curve) , (2.3)

H dq denotes an element of length along the tunneling
path, then the imaginary part of the complex-valued
phase Integral which appears in a turineling calculation 18
JE),

P'
J(E)=Im L pdq/% . (2.4)
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FIG. 1. Plot of potential energy contours for the H+H, —H,
+H reaction using the Porter—Karplus surface, Solid line is
line of steepest ascent (reaction path), Dotted line is the ¢-
curve (limit of vibrational amplitudes in the given vibrational
state, here the zero~point state), The points P and P’ denote
the initial and final tunneling: points on the ¢-curve for a par-
ticular total energy. The corresponding tunneling points if
tunneling ocourred along the reaction path are Q and Q',

4.5

where Im denotes “imaginary part of”; p is the compo-
nent of the momentum along the path, e.g., on the #-
curve it is

p=[2u(E- V2, (2.5)

where V is given by (2.3). u is a reduced mass whose
value depends on the distance scaling factors used in
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FIG. 2. Plot of reaction probability va initial translational
energy in the center of mass system for the H+H, —Hy+H
reaction, for the Porter—Karplus potential energy surface,
Curves are given for the exact quantum mechanical result

(Ref, 9), the usual transition state theory result, the present
transition state theory result and a result (PTTS) which intro~
duces numeriocally computed periodic trajectories into a transi-
tion state theory [ourve from Fig. 6 of Ref. 4(b)].
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FIG. 3. Same legend as Fig, 2, but for an SSMK Wall-Porter
potential energy surface. Exact results are from Ref, 10(b)
and the PTTS ourve is obtained from Fig. 5 of Ref, 4(b),

Fig. 1. The p and scaling factors used in the present
paper are the standard ones. *°

The semlclassical transmission coefficient (ratio of
outgoing flux of products to incident flux of reactants) is
x(E). Using the results obtained by mapping the effec-
tive potential onto one of parabolic form, x(E) is given
by"

x(E) = exp(~ 2J)/[1 + exp(~ 2J)] . (2.6)

The initial translational energy is E - Ey(- <), where
Eo{~ =) is the [nitial zero point energy. A plot of x(E)
versus this translational energy, for the Porter-Karplus
surface® and for the new tunneling path, is shown in Fig,
2, together with the quantum mechanical® and convention-
al transition state results, The results are seen to
agree quite well with the quantum ones, * and show con-
siderable improvement over the use of the conventional
path, In Fig. 3 the corresponding results for the SSMK
Wall-Porter surface!®!! are shown. The results agree
with the quantum results'®™ to about the same accuracy
as before. An interesting approach to transitiocn state
theory, given by Miller! et al., utilizes numerically
computed classical trajectories (periodic-trajectory-
transition-state method, PTTS). The results are given
in Figs. 2 and 3.

In the H+H, - H; + H reaction at the total energies giv-
en in Figs. 2 and 3 no excited vibrational states of H, can
exist, In other systems for which excited vibrational
states can exist in this tunneling region, one can compute
a transmission coefficient x,(E) for the nth vibrational
state at the given total energy, using (2.6) with Ey(s) in
(2.1)-(2. 8) replaced by E,(s). The sum of the trans-
mission coefficients at the total energy E is then the sum
1, x,(E) over all energetically accessible initial states n
in a microcanonical ensemble of initial states, Micro-
canonical transition state theory, and the manner in
which each x, contributes to the reactive flux is de-
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scribed, in both the adiabatic and genei-al forms of mi-
crocanonical transition state theory in Ref. 12.

A theoretical basis for the present cholice for the tun-
neling path is obtained from the semiclassical arguments
given in the next section.

11l. SEMICLASSICAL ARGUMENTS

In semiclassical theory the action variables are the
classical analog of the quantum numbers, 3~13 One
can obtain a wavefunction!¥<+!3® for a collision system
beginning in a given specified initial quantum state n, by
using a set of classical trajectories having the desired
initial action variables but uniformly distributed in initial
phase w,. When this wavefunction is introduced into a

- well-known quantum mechanical expression for the S-
matrix elements §,, one obtains an integral expression
for these elements, 1%®+13(® The reaction probability
(transmission coefficient) of a system in state n is

x,=§jis...,l=.

where the sum 18 over all final states m of products,

The S-matrix element can be written as (3. 2) for a two
coordinate system (the dio® becoming dwidw3..., and the
preexponential factor becoming a determinant, for a
higher dimensional system):'3®

5on= O J'_:% |a':3/ai?:°|”'exp[—- ij:: qdj;

3.1)

+ 2riGi— o~ Mot | d3° (3.2)
where  i8 a final angle variable (a final phase), a con-
stant for any trajectory, [ qdp denotes a path integral
with ¢ being a distance along the path if the ‘coordinates
are Cartesian, and p being the local Cartesian momen-
tum component along the path. (If other coordinates are
used gdp denotes a sum J, g,dp, over all coordinates k.)
The integration limits are from the value (') of the mo-
mentum p at a vibrational endpoint at some large initial
separation distance R' to that (p) at a vibrational end-
point at some final separation R, The integration path
is chosen to consist of three parts: first at a fixed
R(=R'") from the vibrational end-point to some desired
initial vibrational phase »° then along an actual classi-
cal trajectory to the final specified separation distance
R’ (in the present case in the products’ channel) and fi-
nal phase w, and then at fixed R/ to a vibrational end-
point at the R/, The first and third legs of the integra-
tion are performed in regions where the internal motion
is separable from the translational motion, and 8o an in-
tegration path at fixed R can be chosen in those regions.
N is related to the number of times the trajectory touch-
es one of the vibrational caustics (the one not joining the
initial and final vibrational end points). 2‘® The classi-
cal mechanical analog of the final quantum number of the
trajectory in the products’ channel is n, and the transi-
tion of interest for S,,, is for n—m.

The principal approximation which will be introduced
into (3.2) is one of vibrational adiabaticity, namely the
assumption that the quantum number n remains constant
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during the trajectory. W The assumption presumes a high
enough vibrational frequency of the motion transverse to
the reaction path., With the assumption of vibrational
adiabaticity, the value of the classically attainable s be-
comes independent of the initial vibrational phase w°.
This s* is then glven by Eq. (2.1) in the case that the
vibrational state is the lowest one (and by the same equa-
tion with Eg(s*) replaced by E,(s*), when the vibrational
state is any given state n). These trajectories thereby
each reach the same vibrational turning point P at s*,
and then tunnel from there since it is the closest point

to the classically allowed region of the products’ chan-
nel. Thereby, for each #° one has the same value of the
complex-valued quantity [ pdg in (3.2) from point P to
point P’ for each member of this family of trajectortes,

a famlly whose members differ only in %’

InEq. (3. 2)one cannow set %i=n, sincein the vibration-
ally-adiabatic approximation all trajectories will have
the same value of 1, namely the initial value n. (When
the coordinates dw® denotes dwf, dwg, ..., n and nde-
note %y, W ... and my, 7z, ... ). The integral over p
can be integrated by parts, yielding [ pdq—- phR’ +piR',
pr being the translational momentum, since the vibra-
tional momentum vanishes at the end points of the above
Integration path. p% and pf are the final and initial
translational momenta. The trajectories beginning with
different @° will all have the same value for this integral
because of the absence of a relative distortion of the tra-
jectories in a vibrationally-adiabatic approximation, It
can then be placed outside the integral over %°. Because
of this lack of distortion the 8%/8%° in (3. 2) can be set
equal to unity, If the imaginary part of [pdg/K, namely
the value along the path between P and P’, is denoted by
J(E), Eq. (3.2) gives (3. 3) for |S,,I% after integration
over @',

| Sunl = expt= 2. (3.3)

Equation (3. 3) presumes only a single traverse be-
tween points P and P’, whereas one should really sum in
the right hand side of (3. 2). over all traverses, as indi-
cated by .., (suitably renormalized to conserve flux,
when there is a branching of the paths). For example,
the system may go from P to P/, and return to the re-
actants’ channel, or go from P to P/, returnto P, re-
turn to P, and then go into the products channel, and so
on. There are an infinite number of such paths, In ef-
fect, a sum over all these paths is obtained by mapping
the tunneling problem between P and P’ onto the para-
bolic barrier problem, and solving that problem, with
the result that the tunneling factor 1s given’ by (3.4) in-
stead of (3. 3).

| 8,1]2 = exple 22)/[1 + expl=201] 8.4)

Eq. (3.4) reduces to (3.3) when J is large, that is when
all paths but the single traverse path become unimpor-
tant.

To summarize, we have introduced into (3. 2) the ap-
proximations of vibrational adiabaticity and a semi-
classical tunneling expression (3.4), with the implication
of tunneling along the shortest path, namely between P
and P’. The tunneling approximation (3. 4) should intro-
duce very little error, since it has been numerically
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tested. The third and final approximation which remains
to be introduced is the choice of the optimum tunneling
path between P and P’ for calculating J. The “best” path
is a dynamical one, namely the one which, by Hamilton’s
principle of least action, has the least value of [ pdg be-
tween the two points, 15® We have selected the ¢-curve,
the #-curve being one which involves tunneling in the s-
direction and not in the p-direction. We have indeed ex-
amined a number of other paths and found the Im/ pdg
for those paths for the present reacticn either to have
nearly the same or a larger value. Examples are given
in Appendix A,

A principal assumption, as already noted, is the vi-
brational adiabatic one. Actually, any reaction, even
‘H+H,=H,+H, is at least somewhat vibrationally-non-
adiabatic.!* For example, classical trajectories for this
reaction reveal that s* depends somewhat on %°® Thus,
as a result of passing through the pretransition state re-
gion there has been some change in the vibrational action
variable of the p-motion before reaching s¥, whereas
that action variable would be constant in a vibrational~
adiabattc approximation, Thereby, for some w"s the
s* is larger and for others smaller than that determined
by Eq. (2.1). We have termed this vibrational nonadia-
baticity elsewhere the “nonadiabatic tail, ”*" because
some systems will pass over the barrier at energies
where in the vibrationally-adiabatic approximation they
- could not. The agreement in Figs. 2 and 3 is neverthe-
less seen to be quite reasonable.

.IV. DISCUSSION

The new tunneling path is a simple path which provides
a considerably improved agreement with the quantum re-
sults, as compared with the standard tunneling path. We
have neglected vibrational-nonadiabaticity in the pre-
transition stateregion, as indeed do all quantum transi-
tion state theories, Vibrational nonadiabaticity allows
some systems to pass s? with a vibrational energy less
than Eg(s?), and canses any transition state theory re-
sults at energies near E equal to V(s?)+ Eq(s*) to be too
low. The error is not more than a factor of about two,
judging from the results in that region (largely not given
in Figs., 2-8, but calculated),'®

We have considered above a class of reactions involv-
ing three centers of comparable (in the present case
equal) masses. One system of particular interest is the
transfer of a light particle between two heavy ones.

Here, the acute angle in Fig. 1 i8 50 much smaller that
the exit and entrance channels are almost parallel. Dy-
namically this system is quite different, and it is planned
to discuss tunneling for such a system elsewhere.

Finally, we should note that tunneling along a path
other than the standard reaction path was first employed
by Johnston and Rapp, !° who considered straight line
paths,
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APPENDIX A. ACTION CALCULATED ALONG
ALTERNATIVE TUNNELING PATHS

We consider the phase integral [§ pdg along several
paths to compare with the value along the (-curve, The
principle of stationary action for fixed P, P/, and E is

P’

aL pdg=0, (A1)
which implies that the variations (from the value along
the best dynamical path) of its real part and of its imag-
inary part are zero, The latter part determines the tun-
neling probability [cf. Eq. (3.3)], and we focus attention
on it. Strictly speaking, the p in (A1) should be directed
along that path, We first consider some paths for which
this is not the case but which satisfy vibrational adia-
baticity.

One famlly of curves is the following: (1) a path at
constant s* from p=p,, t0 p= &0y, Where k is a constant
less than unity, (2) a path with p(s) = kp . (s) from that
s* to the s* in the exit channel, and (3) a path at that s*
from p= kpyq to P'. Only step (2) contributes to Im/ pdg,
when p lles between its minimum and maximum classi-~
cally allowedvalues, At any point in step (2) the rele-
vant value of p, p,, in the integrand (the component along
the path) is {2u[E - Eq(s) - Vi(s)} /2, gince

(p2/21) + Egls) + Vi(s)=E . (A2)

Thus, at any s in step (2) the p in the integrand, namely
p., is the same as the p on the ¢-curve, given by Egs.
(2.3) and (2.5). However, the path along step (2) is
longer than that along the #-curve, and thus the value of
Im [ pdg is greater than that along the ¢-curve, For ex-
ample, for the SSMK Wall—-Porter surface at £=0. 3085
eV, J(E) along the s-curve is 5.81, whereas that along
the ¢-curve is only 3.65. (J is Im[ pdg/#.)

Another set of paths is that for which p(s)2 pye(s).
Once again we first choose a three~step path: (1) a path
at the initial s* from p=pg,, t0 p=kpyy, Where kisa
constant greater than unity, (2) a path with p(s) = kpauls),
from the initlal s* to the s* in the exit channel, and (3)
at the final s* from p= kpgq t0 p=p . Now all three
steps contribute to Imf pdg. For k=1,01 and 1,05, the
values of J were 3,73 and 4,07, respectively, for the
cited E, thus once again exceeding the value of J=3.65
for the ¢-curve,

These results are summarized in Table I, The path
along the t-curve is the only internally consistent path in
Table I: It alone has a zero component of velocity nor-
mal to it.

Many other paths can be suggested, and a complete in-
vestigation of them would be equivalent to solving Hamil-
ton’s equations in the vicinity of the saddle-point, -
Among the classes of paths are (A8), choosing s=0to
lie along the bisector of the acute angle in Fig. 1.

pls)=[17all = | s/5%|)puuls) (0<a<l). (A3)
With the minus sign, one would have p(s)< py,.(s), and
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TABLE 1. Summary of phage integrals

along different tunneling paths.
Description of path* Im/pdq/%
p=0 (s-curve) 5.81

P =kpmgy (<) >3.65

P = Prx (E-curve) 3.65
p=1.01 prgp 3.73
p=1,05 pray 4,07

iThese paths refer to three-step paths,
but only the middle step between P and
P’ is described in this column, The
value in the second column is the value
of Im/ pdq/# for the entire path between
P and P’. All results are for the SSMK
wall-Porter surface for E =0,3985 eV,

in the vibrationally-adiabatic approximation the Imp in
J(E) would still be the p, given by (A2). The s-distance
part of the path length would be greater than that for the
t-curve and so J(E) would be larger. With the plus sign
of (A3), pls)2 pyuls). I one used zero velocity compo-
nent normal to the path, thereby dropping the vibrational
adiabaticity (other than for the ¢-curve, for which g= 0),
p would be [2u(E -~ V)J'/2, where V is the potential ener-
gy on the path, and J(E) could readily be calculated.
Calculations for these paths and for other systems will
be presented elsewhere,

We have not discussed energies where E> V(st) + Ey(s')
but for which diffraction can occur when E is just above
this barrier. Here, the path which maximizes « is one
for which the end points are imaginary rather than real,
and is not, therefore, between P and P’. The «(E) will
lie between the values of 0,5 and unity in this region,
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