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The method is devised ta calculate cigenvalues semiclassically for an anharmonic system whose two
unperturbed modes are 1:1 degenerate, by introducing a curvilinear Poincaré surface of section. The
results are in reasonable agreement with the quantum ones. The classical trajectories also frequently show
a large energy exchange among the two unperturbed normal modes. Implications for Slater’s theory of
unimolecular reactions, which neglects this cffect, and for “‘quantum ergodicity™ are described.

I. INTRODUCTION

In previous papers, semiclassical methods!'? were
developed in this laboratory for obtaining eigenvalues of
bound state systems not permitting separation of vari-
ables. These methods utilized classical trajectories.
More recently other quite different methods (perturba-
tive—iterative) have also been developed.®~® In all but
Ref. 2(c) and 6 the systems treated had two anharmon-
ically coupled oscillators whose unperturbed frequencies
were incommensurate, There was, as a result, little
energy transfer between the two degrees of freedom,
When the unperturbed frequencies become commensur-
ate, considerable energy sharing begins to occur.

Recently, we have treated systems where the unper-
turbed frequencies are equal, % and the results are de-
scribed in the present paper. It is shown how eigen-
values can be calculated semiclassic'ally by introducing
the concept of a curvilinear Poincare surface of section,
as well as by a “trajectory closure method, " which
joins the ends of a trajectory using a rectilinear Poin-
care surface of .section.

The present results also bear on other topics, such
as Slater's assumption, 7 in his harmonic treatment of
unimolecular reactions, that degenerate vibrations
played a special role, with no energy sharing, and a
suggestion in the literature that a “quantum ergodic-
ity”®™1° describes some features of resonant systems
such as the present one. The present results are used
to examine both of these,

Il. HAMILTONIAN AND TRAJECTORIES

The Hamiltonian used is the treatment of this 1:1
resonance is the usual Henon-Heiles'' one used exten-
sively in the literature of anharmonically coupled oscil-
lators.

H=45(p2+ p2e P4 %)+ ax(9® - 449, (2.1)

where x and y are the oscillator (or normal mode) coor-
dinates, p, and p, are the canonically conjugate momen-
ta, and X\ is an anharmonic coupling constant, If polar
coordinates are introduced, by setting x and y equal to
ycosf and rsind, the Hamiltonian becomes
H=45(p2+ v2+ pi/r3) - G2’ cosd8 . (2.2)
When the classical equations of motion arising from
the Hamiltonian (2. 1) or (2. 2) are integrated numerical-
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ly, we find that two classes of trajectories are obtained,
depending on the initial conditions, as in Figs. 1-3.
They may be termed “librating” and “precessing” type
trajectories and correspond to different amounts of aver-

‘age internal angular momentum in (x, y) space. In Fig.

1 are three librating trajectories, labeled A, B, and C,
each obtained by successive 120° rotations in the (x, y)
plane. The trajectories in Figs. 2 and 3 are single ones
and are of the precessing type, the one in Fig. 3 having
more internal angular momentum than that in Fig. 2.

To understand the types of trajectories in Figs. 1-3,
and ultimately apply quantum conditions, the semiclas-
sical treatment of the unperturbed system will first be
considered in the next section,

l1l. TRAJECTORIES AND SEMICLASSICAL QUANTUM
CONDITIONS FOR THE UNPERTURBED SYSTEM

When the internal angular momentum of this system is
nonzero, the unperturbed trajectory is a periodic one,
an ellipse. (It degenerates into a straight line passing
through the origin in the case of zero angular momen-
tum.) The unperturbed semiclassical wavefunction is
constructed from a family of these ellipses, each mem-
ber of the family being obtained by a suitable rotation of
this ellipse about the origin. Members of the family are
given in Fig. 4. There are inner and outer concentric

FIG. 1. A set of three librating trajectories for the Hamilton-
fan (2, 1), with E=6 and f,=0.9650. Trajectories B and C are
obtained by successive 120° rotation of the initial conditions for
trajectory A, starting in each case at x=0, y=0,
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FIG. 2. Example of a precessing trajectory with low average
angular momentum [, for the Hamiltonian (2,1) with E=6 and f,
=0, 6000,

circles there, which are envelopes of the curves in the
family, and which form the two caustics. Each point
within the annulus bounded by the two concentric circles
lies on some trajectory of the family, while points out-
side this annular region do not. The wavefunction is
large within the annulus bounded by the two caustics and
is exponentially vanishing outside.

We proceed to apply the quantum conditions, By in-
tegrating along a circle in the annulus (e.g., path Ain
Fig. 4) and concentric with the above pair, one pro-
ceeds along a path crossing neither caustic. The phase
change of the semiclassical wavefunction on completing
one such cycle around the origin is $p,d@ (in units of
=1), evaluated at a given 7. It must equal 27l, where [
is an integer, in oxder that the wavefunction be single
valued. That is,

fp,de =2l . (3.1)
Furthermore, evaluation of a phase integral §(p.dx
+ pdy) along any topologically equivalent path (path which
touches or encloses the same number of caustics, zero
in the present case) must have the same value, 27l

A second quantum condition can be obtained by inte-
grating along a radius vector over one cycle between the

2 0 2 4

FIG. 3. Example of a precessing trajeotory with high i, when
the Hamlltonian is (2.1) with E =6 and x,=0.8500.

FIG, 4. Trajectories for the unperturbed system [Eq. (2.1)
with A=0] with finite /. Inner and outer concentric circles about
the origin form the caustics, Path A is used for (3,1) and path
B for (3.2).

two concentric circles (caustics); the phase integral
equals $p,dr (path B in Fig. 4). The path encloses or
touches two caustics, with a phase loss'? of 37 at each.
The net phase change is thus §p,dr—n, and must equal
2mn,, where n, is an integer, to achieve single valued-
ness of the semiclassical wavefunction. Thus,
Fpar=2aln+d) . (3.2)
Instead of (3. 2) one could also have used the following

condition, use of which is also made later; the trajec-

‘tory along an ellipse in Fig. 4 touches a caustic four

times, and so there is a loss of phase of (447). The net
phase change should equal 27n, where z is an integer.
The phase integral change along the trajectory, §(p.dx
+p,dy), is the sum of two r-cycle phase integrals
2#p,dr and a B-cycle one $p,d8, since two r-cycles and
one B-cycle are completed. Thus,

f;m (pedx+ pydy) = pr,dﬂ- fp,d&: 2n(n+1).

The second half of Eq. (3.3) can also be obtained from
(3.1) and (3. 2), with

(3.3)

(3.4)

s0 Eq. (3.3) is not independent of them. » is seen to be
even or odd according as I is even or odd. The energy
for the unperturbed system depends only on n.

n=2n+1 ,

When the angular momentum p, is zero, the periodic
trajectory along the ellipse degenerates as already noted
into an oscillation along a straight line passing through
the origin [cf. Eq. (2.2) with p, and X both zero]. The
family of trajectories used to construct the wavefunction
is now a family of straight lines, all intersecting at the
origin. There is one envelope of the family—a circle
concentric with the origin and composed of the turning
points of the straight line trajectories. There is also
now one focus—the intersection point of all the trajec-
tories, namely, the origin. Integrating along a path at
constant 7, one again obtains (3. 1), but now with /=0,
since p, is zero for all ' members of the family. Integrat-
ing along one of the straight line trajectories from one
extremity to the other and back, the cyclic path integral
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now equals 2 $p,dr, where $p dr denotes the path inte-
gral from the origin to the outer extremity and back.
The loss of phase along this path as a result of touching
two caustics (the endpoints) is 2(37) and as a result of
passing through the focus' is v, The net phase change
is therefore 2 $p,dr-2n. This result should equal 2an
where n is an integer, in order that the semiclassical
wavefunction be single valued. Thereby, one again ob-
tains the second half of (3.3), but now along a straight
line trajectory and now with I=0,

IV. SEMICLASSICAL QUANTUM CONDITIONS AND
RESULTS

A. General

It was noted in Sec, II that there are two classes of
trajectories. Those depicted in Figs. 2 and 3 involve
precéssions of the unperturbed ellipses, while those
depicted in Fig. 1 merely involve libration of the el-
lipses, due to the system’s having smaller internal an-
gular momentum, As already remarked, there are three
equivalent librating trajectories, differing by 120° in
their orientation. Thus, a family of highly eccentric
ellipses in a low angular momentum unperturbed system
(or of straight lines when [=0) evolves into a collection
of three librating trajectories in the perturbed case.
The surface of section method for calculating eigenval-
ues, introduced in the previous paper, *® is again em-’
ployed.

It is recalled that a conventional (i.e., planar) Poin-
care surface of section for y=0 is one which gives the
trajectory values of p, and x at y=0, for p,>0 or, in-
stead, for p,<0. Introduced in the present paper is the
notion of a curvilinear surface of section. Using curvi-
linear coordinates (¢, 1) one records on the curve 7=con-
stant the values of p, and £ each time the trajectory
crosses that curve, for p,>0 or, instead, for p,<0.
Similarly, one can introduce a curvilinear section having
t =constant. In this paper, £ and 7 are chosen to be the
polar coordinates » and §, A surface of section =17
for a precessing trajectory is given in Fig. 5 and for
three librating trajectories in Fig. 6.

The four caustics associated with each librating tra-
jectory in Fig. 1 are the four envelopes enclosing each
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FIG, 5. A surface of secticn » =¥y(=v7) for a precessing tra-
jectory for system (2,1) for p, <0, for the trajectory in Fig, 3.
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FIG. 6. A surface of section at » s7o(=v7) for the three librat-
ing trajectories in Fig. 1, for p.>0.

librating trajectory. The caustics associated with the
precessing trajectories in Figs. 2 and 3 are shown in
Fig. 7(a) and 7(b), respectively. There is an outer
somewhat circular caustic and an inner caustic, the
curve B''E'BE''B'E, which has six cusps. The manner
in which this cusped caustic evolves from the caustics
of the librating trajectories is described in Sec. VIL

B. Pracessing trajectories

There are two topologically independent closed paths
in Fig. 7, one a circular like path between the two caus-
tics (similar to path A in Fig. 4) and the other a path
joining the inner and outer caustics, such as path B in
Fig. 7(b). (The same path can be used for Fig. 7(a) also
since the caustics E’'B and B’E don't interfere with
BE'B"'E, The trajectories which touch the former have
a sign of p, at y=0 opposite to that of trajectories which
touch the latter. )

The quantum conditions for these precessing trajec-
tories are readily given. Corresponding to Eq. (3.1) on
an r=17, surface of section, where 7, is conveniently
chosen to lie between the inner and outer caustics, one
has

f pd0=211 . 4.1)

The second quantum condition, appropriate to path B

(b)

FIG, 7. Caustics agsociated with two precesaing trajectories,
Fig. 7(a) correaponding to Fig, 2 and 7(b) to Fig. 3. In each
ocase the fnner caustic is the cusped curve B'’E'BE”’B’E, The
outer caustio 18 the outer closed curve.
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.

in Fig. 7, is obtained from (3.2). Ea. (3. 2) is used as
the second phase integral: A surface of section y=0is '
selected at =0, and for it the phase integral $p,dr 25:
equals #p.dx. The second quantum condition is there- y
fore

1
[
Y O:
TABLE L Comparison of semiclassical and quantum mechani- . |
cal eigenvalues for hamiltonian (2. n.*
’ Quantum -25.
State Polar quanty Semiolasafcal Rice e
U.n) B? Sym (predent) {preaent) etal.? “Type" o5 0 25 5
(0,0) L0 A 0. 9986 0. 9947 0,938 ML
L1y 20 & 1,9801 1.9869 Lo gt X '
FIG, 8. Precessing trajeotory for Hamiltonian (2. 1), indicat-
(0,2) 3.0 A 2,9562 2,9506 2.956 G ing a path A used in the trajectory closure method, Tt contains
HL one cycle of the near-cllipse motion, and has E =10, x,=1,0000,
2,2 3.0 E 2.9853 2,9815 2,986 o .
¢L9 40 E 3,9260 3,923 ase Lo fp,dr— fp s zetas ) (420)
(£3,9) 4.0 A ;'gm 3,9803 oo Tt . T ’
0.8 40 4 4: 8702 4857 4:310 e For a somewhat easier evaluation of the integral,
G care was exercised to ensure that the circular section
(2,4 50 £ 4.8987 "4,8954 4.898 r= 7, for evaluating ¢pyd@ does not pass through the six-
G cusped caustic region evident for precessing trajectories
k449 50 F 4.9609 1.9821 .98y in Fig. 7. In the 18 precessing cases considered in the
C L8P 60 E ) 5.8170 5816 s "V present paper, corresponding to 18 eigenvalues (or to
o ~L 24 including near degeneracies), it was easy to find such
(£3,5) 6.0 A 5. 8670 5.8713 5.868 M an 7= 7, surface of section in all cases but three, For
' 5.8815 s.e2 M those three cases, noted in Table 1, a “trajectory closure
{t5,5) 6.0 E 5.9913 5.,9860 5,891 ft method” was developed: After one cycle of a near-el-
o8 . 7.0 A 6.9379 6.7078 6.744 G lipse trajectory the system returns to the same neighbor-
' G hood of the initial point, as in Fig. 8. For the same 6
2,0 7.0 & 8.7649 6.7709 8,770 of the final and initial point the new » might dilfer from
S N the original » by about one unit, in the units of the present
4.6 .o £ 6. 8354 6.8500 6857 g figures. After this cycle the ends of the trajectory are
6.6 7.0 A 6.9089 6. 9058 7.000 ~LSG then joined on a 6= constant surface of section (e.g., on
) 8.9984 7002 ~L the y =0 surface of section at 8=0 in Fig. 8.) The phase
(£1,7° 8.0 F§ 7.6585 7.655 7.690 ::‘. integral was then computed along the trajectory and along
) the link connecting the trajectory ends on the sur-
3,7 8.0 A el 7,7178 o M ¢  face,'! (The surface of section data was obtained
’ -G from many cycles of the trajectory, as before.) The
57 8.0 £ 7.8327 7.6289 .85 1.c  expression used for this eigenvalue, taken from Eq.
7.7 8.0 E 8,004 8,0054 sos S o 3.3), 1s
0.8 9.0 A 8.5541 84019 .61 M f (pdxspy)=2m+dCn (1 cycle), (4. 3a)
(2,9 9.0 . E 8,5764 .o 8.693 :; trad '
) ) " where # is the principal quantum number, traj indicates
{+4,8 9,0 & 8,06779 8,771 M integration along the trajectory, and C is the number of
8.8113 times each cycle touched a caustic
(t6,8° 9,0 A 8. 8162 98,8084 8,877 G Cod (4. 3b)
88 a0 £ 5. 0217 o-ost One could have used (4.3) and (4.2), instead of (4.1)
{£ 9,9 10,0 A :z:gg:: 10,028 plus (4. 2), for the remaining 15 precessing trajectories.
{0, 10) 11,0 A 10,3052 10,1942 The computational time is approximately the same and
(£10,10° 11,0 E 11,0497 11.0401 the results are of similar accuracy. An example is giv-
en later.

aynless otherwise stated nll elgenvalues, apart from those for
1=0, were caloulated using Eqs, (4.1) and (4,2), as per text. C. Librating trajectories

The =0 trajectories were treated by the straight line method .
using (3.3). In the case of the librating trajectories, all three li-

bThese trajectories wera treated using Eqs. (4.1) and (4.3) in brating trajectories (each obtained from one of them by
thothree precessing cases [(£3,7), (6,8), 10,10) ], andusing successive 120° rotations as in Fig. 1) contribute to
{4.4) and (4.3) in the two llbrating cases [(+1,5), (1,71 construction of a suitable wavefunction, but data on only
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one is needed, because of the C, symmetry of the Ha-
miltonian (2. 2)..

We consider first the main quantum condition deter-
mining the energy. In the unperturbed case the energy
is determined by the principal quantum number n, which
is obtained in (3. 3) from the phase integral along the
trajectory. Just as (3.8) was adapted via the “trajectory
closure method” to the precessing case in the form of
(4.3), (4.3) can be again used for the librating case,

" For example, for trajectory A in Fig. 1 the ends of the
trajectory were joined after one near-ellipse cycle, by
connecting them on the x =0 surface of section.

The second quantum condition is obtained using the
coalescence of caustics discussed in Sec, VII. It is il-
lustrated there that the phase integral $pydd continues
smoothly from the librating case of the precessing one,
apart from the fact that because of the librating the value
of $p,d0 summed over all three librating trajectories is
twice as large as the $pd8 from a single precessing
trajectory, i.e., equals 2(2sl). Using this continuity
Eq. (3.1) was adapted to the librating case: Even when
the libration was quite large, ! was still fairly close to
zero. To adapt (3.1) to the librating case, it was first
observed that $pdy on the x=0 surface of section for
trajectory A in Fig. 1 equals one-half $p,dé for trajec-
tory A, since two 8 intervals contribute equally to
$bed9. Thus, this £pdy equals one-sixth the sum of
S8 for all three trajectories, i.e., one-sixth of
2(2xl). Then, the second quantum condition for the li-
brating case is

' fp,d =42q1 (Fig. 1, trajectory A, x=0). (4.4)

This adaptation of (3.1) to yield (4.4), almed at yleld-
ing single valuedness of the semiclassical wave function
as one makes a single circuit around the origin on an
r=7, path, is an approximate one: Along this path p, is
complex valued in the ¢ intervals between the caustics
of the trajectories in Fig. 1. Equation (4. 4) neglects
the effects of such contributions from these 6 -forbidden
intervals. Improvements would entail their inclusion and
use of a suitable connection formula,!*~}" Fortunately,
the energy of a librating trajectory in the “nearly de-
generate” case is not very sensitive to $pdd, i.e., to
1, being mainly dependent on the principal quantum num-
ber n. For example, the energy of a librating trajec-
tory changed by only one part in 500 when the ! defined
by (4.4) was changed from 0 to } holding the n defined
by (4.3) constant, Two of the eight librating trajec-
tories had I=+1. The remaining six librating trajec-
tories had a smaller /, and ! was chosen to be zero,
within the approximation embodied in (4.4), by simply
choosing a straight line trajectory and using (3.8). Ul-
timately another trajectory and a connection formula!s~17
should be used.

V. NUMERICAL PROCEDURES

The initial conditions (¢=0) employed in generating
most precessing type trajectories were x{(0)=x,, y(0)
=p,(0)=0. p,(0) was determined from these initial con-
ditions and the total energy. The librating trajectorles

563

and the very low ! precessing trajectories were started
at the origin [x(0)=y(0)=0], and the other initial condi-
tions chosen for them involved the values of p,(0) and E:
A value for E and for f, (=p%(0)/] p3(0) +p3(0) ]) was se-
lected, 2 and the values of [p,(0)| and |p,(0)| were found
from energy conservation.

To obtain points on the Poincaré surface of section for
r=7, for both types of trajectories, a linear interpola-
tion of two points along the trajectory on either side of
the surface was used. A surface of section for r=7,
was shown in Fig. 5 for the precessing trajectory of Fig.
2 and in Fig. 6 for the three librating trajectories of
Fig. 1. A phase integral was calculated from the points
on a surface of section, using a three-point integration
formula for nonequally spaced points. {(The accuracy of
the integration was checked by integration using a larger
number of points. All integrations were performed us-
ing an IBM 380-75 computer and FORTRAN., )

The procedure for calculating the semiclassical eigen-
values in the.case of a precessing trajectory consisted
first of finding the appropriate x(0) at the unperturbed
energy for a trajectory which had the destred integral
value of ! calculated from Eq. (4.1). Once the value of
x(0) was obtained, three more trajectories at a nearby
x(0) and E were used and the value of », was also com-
puted from Eq. (4.2). Using the same interpolation
procedure as that used previously,*®'¥® the value of E
and x(0) was calculated for which ! and n, were the de-

- sired integers. Higher accuracy was obtained by an

iteration,

The trajectory closure method, used for the two pre-
cessing and two librating states noted in Table I, was
executed as already stated, by following one cycle of the
near-ellipse trajectory, joining the ends along 2 y=0
surface of sectlon, and using (4. 3) and (4. 2) or (4, 3) and
(4.4). The iteration procedure to obtain E and x(0) was
the same as described previously.'* Results obtained
with the trajectory closure method agreed with those ob-
tained with the two surfaces of section.!® Use of the
straight line trajectories to obtain the =0 “ltbrating”
trajectory and eigenvalue was straightforward, using
(3.3).

VI. QUANTUM MECHANICAL EIGENVALUES

The basis set of wavefunctions used to calculate the
eigenvalues by a variational method were eigenfunctions
of the unperturbed Hamiltonian H, and, expressed in
terms of polar coordinates, are designated as $J,,(r,6).
The potential in H, depends on 7 but not on 8. Iu units
such that #=1 and that the vibration frequency w is unity,
the energy is n+1 and the unperturbed Schridinger

equation i8 .
3 3
Buty= (-5 or + 7t o gt =B s D

(6.1)
where 7 I8 the principal quantum number, 0,1,....
These §2; were chosen to be eigenfunctions of the angular
momentum operator p,, where /=0, and to be real-val-
ued linear combinations® of the p, eigenfunctions for

. 1, when !+ 0. Since I goes from -2 to » in units of 2,
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there is a degeneracy of n+1 in the unperturbed sys-
tem.

The perturbation is H,

Hy=-(Gar%) cos36=-ald+a2), 6.2)
where®®
x,=x+iy=7rexp(xid) . . (6.3)

The matrix elements®® {(nl| H,|»’I’) are found to be
(nl| By |2 )=~ A/ 5)2' B1,1005[ 4100, 03 + A20n, w01

where the sum )’ indicates 2 sum involving only the up~
per signs, plus a sum involving only the lower signs.
The AY’s are given by

Al=x[307 £ 7 +2) 0 21 + Q) 2 1" +6)} 2,

As=2 3[40 w10 £ 1 + 2000 £ 1 + QIR

A=z sV -2 =P’ £ T 422,

A= [fr sl - wP -2 IR 6.5)

The program for the variational calculation of the
eigenvalues was written in double precision, using basis
sets of 406 and 595 elements to test convergence,*! and
using a matrix diagonalization package EISPAC, **

The Hamiltonian (2. 2) and its quantum mechanical
counterpart, Eq. (6.1) belong to the point group C; with
respect to rotation of 8. As such, each eigenvalue is
either A type and is nondegenerate or is E type and is
doubly degenerate, ® the former being for the states
labeled {=0,+3,4+6,+9,... in Table I and the latter be-
ing for states labeled J=21,+2,4+4,15,... . ‘The per-
turbation in (1. 2) couples unperturbed states which dif-
fer in 1 by multiples of 3, and so couples l=2 3 states
with each other (and with 0,46, etc.), thus removing
their degeneracy, and similarly for the /=46 states,
etc. (The /=0 states were nondegenerate to begin with. )
The +2 states, etc,, are not coupled by the perturbation
and their degeneracy is not removed:

Vii. RESULTS AND DISCUSSION

The semiclassical and quantum results are given in
Table I, {(The value of A chosen was such as to permit
comparison with the results in Ref. 8, and thereby to
analyze the quantum ergodicity discussed therein.) The
results are seen to agree to about 1/1000 at the higher
energies and to about 1/500 at the lower ones. Further
analysis, as discussed in Sec. IV, using a suitable con-
nection formula, would be needed to treat the splitting
of the levels!™™17; in the librating region the caustics to
be “connected” are real, and in the precessing region
they are complex valued. The threefold symmetry cou-
ples traveling waves of opposite !, when 1=43,%6...,
breaking the degeneracy of those states.

"'A;an.v-l +A.l6u.n'-3] ’

In Table I a comparison of the quantum results is also

given with the quantum results of Rice and co-workers, ®
who used Cartesian coordinates instead of polar ones.
(The conversion of their units to ours is given in Appen-
dix.) The two sets of quantum results agree well for

energies below 7.0. At higher energies a divergence
sets in, being largest for the state (6, 8), amounting
to 64/9000, while the present semiclassical agrees with
the present quantum result to 5/8000. At higher ener-
gies the restricted Cartesian basis set is probably not
adequate, a point to be returned to later.

At low energies the trajectories are quasiperiodic
(they yield regular patterns in the Poincaré surfaces of
section), and so the present semiclassical method can
be used to calculate eigenvalues. At higher energies,

~ the patterns on the Poincaré surface of section become

shotgunlike, first near the separatrices in the surface
of section (separatrices separate resonant centers)™
and then, at high enough energies, everywhere. The
stablest trajectories with the greatest propensity to re-
main quasiperiodic as the energy is increased are those
near the resonant centers® (see Fig. 9). For this rea-
son one finds that at the higher energies it is still pos-
sible to calculate some eigenvalues semiclassically,
namely those associated with trajectories passing near
a resonant center. For example, although there were
no stable trajectories for the states (+2,8) and (4,8),
with an n of 8, semiclassical eigenvalues for some other
states could be calculated at »=8,9, and 10 even though
there were regions of nearby instability.

The present results can be used to examine the sug-
gestion of “quantum ergodicity” in this system®'%: It
was noticed previously® !° that at higher energies the co-
efficients in the linear combination of unperturbed wave-
functions used to represent the wavefunction showed a
type of “global” behavior, i.e., a substantial compo-
nents’ overlap between adjacent levels differing only in
n, quantum number at given (n,+n,), i.e., at given .
The behavior reflected, it was believed, either a “quan-
tum ergodicity” or an unhelpful choice of basis set, e.g.,
Cartesian rather than polar. One can now obtain insight
into the origin of the phenomenon.

The problem of using a truncated Cartesian coordinate
basis set 18 reflected in the eigenvalue 2. 888 where one
of the doubly degenerate E levels was labeled as HL
(highly local) and the other was labeled as G (global) (cf.

P

FIG. 9, Surface of section at x=0 for the system (2.1) showk
the resonance centers, at E =10 in our units, taken from Ref,
22,
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Table I} even though the use of polar coordinates in the
present paper shows that the behavior in this respect
should have been actually identical if an untruncated
Cartesian basis set had been used. This difficulty oc-
curred frequently with the Cartesian basis set, e.g.,
in about one-half the cases of the degenerate E states
in Ref. 8,

Actually, the present study shows that the large ma-
jority of eigenvalues are associated with quasiperiodic
trajectories rather than erogidic ones. Thus, instead
of an ergodicity the phenomenon termed “quantum er-
godicity” largely reflects the extensive (but essentially
periodic) energy exchange between the two degrees of
freedom. Use of a polar rather than Cartesian basis
set would yield unperturbed quantum numbers # and {
less apt to change their values than », and », during the
motion.

Recently, after completion of the present work,® a
semiclassical method was preseunted by Sorbie and Han-
dy*® for calculating eigenvalues in the present system
with the x* term in (2.1) absent. The method, whoseder-
ivations®® tacitly assume separation of variables, ®
is a variant of the trajectory method developed earlier
in this laboratory"j": Sorbie and Handy continue the tra-
jectory until it almost closes on itself, and then they
evaluate two independent phase integrals. Trajectories
were about three times as long as the present ones, and
corresponded, in the unperturbed case, to numbers »,
and n, in the range 0-2, (They considered trajectories
which pass through the origin,) One cannot readily com-
pare the calculation in other respects. We have been
able to derive the equations of Ref. 2(c) under an ap-
proximation milder than separation of variables, though
of uncertain accuracy.

The question of relative computation times of quantum
mechanical and semiclassical methods is of interest.
In the present case where the matrix elements can be
evaluated analytically the former is faster for the sys-
tem treated using our present computational software.

1 r. . EaY I
| A
(RS
-1 ~\ “‘\;.' Y
o n 2K
4

FIG. 10, Surface of section at y =y(=v5 for two precessing tra-
jectories which are near the precessing~librating boundary (cf.
Fig. 11). E=3 andf,=0.435. (The lower curve was actually
obtained from the trajectory responsible for the upper one, by
rotating the initial conditions by 60° In the (x,y) plane, so as to
change the sign of the intial P; and still have p, >0.])
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FIG. 11, Surface of section at »=r;=V5 for three librating tra-
jectories A, B, C which are fdentical apart from 120° rotations
and which are near the precessing—librating boundary., Each
trajectory formstwo lobes, as indicated, E =3 and f,=0,434 for
trajectory B.

When analytical evaluation is not possible, it is expected
that the semiclassical method will be faster for vibra-
tionally excited states. The computer time needed is
mainly for the trajectory itself. The time for obtaining
the surfaces of section and for evaluating the integrals
is negligible.

We comment briefly on an implication® of the bresent
results for Slater’s’ unimolecular reaction rate theory.
Slater” assumed in his harmonic oscillator treatment
that any (unperturbed) degenerate modes remained de-
generate throughout the decomposition of a single mole-
cule, Thus, his phase-averaged amplitude-averaged
dissociation rate constant for a molecule of given energy
varied as the (n - 1)th power of the excess energy (E
-E,), where n was, because of assumed degeneracy,
less than the number of vibrational oscillators: A de-
generate system occupies a smaller-dimensional region
of phase space than the total number of dimensions, even
when integrated over phases and amplitudes. However,
the present results show that anharmonicity readily in-
troduces energy sharing among modes formerly degen-
erate in the unperturbed system, even in the quasiperi-

O-

Fo,0 8-

|
7- PRECESSION | LIBRATON

. ]

0955 0965

FIG. 12, Continuation plot of #ped, for librating and precessing
trajectories, sped@ for the preceasing trajectories is the
actual value while gp,d@ for the libration cases ig the sum over
all three equivalent librating trajectories, divided by a factor
of two [ef Eq. (7.1)]
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FIG. 13, Caustics of three
librating trajectories, fairly
near the librating—precessing
boundary. The caustics bound-
ing the shaded regions will
coalesce, :nd others such as
E’’E'and B'*B will split and re-
form as B''E' and E''B’, when
a precessing trajectory is
formed.

odic regime, and so this particular result of Slater the-
ory is in error. (Among other approximations there is
also the harmonic oscillator approximation itself.)

This energy sharing among degenerate modes, evident
too in some recent trajectory calculations for high ener-
gy molecules,?” is a periodic (quasiperiodic) one, and

is to be distinguished from an ergodic-type energy
sharing which would occur among all coupled modes at
sufficiently high energy.

We consider next the coalescence of caustics. In Fig.
10, a p, vs 8 Poincaré surface of section is given (the
upper curve in Fig. 10), for a precessing trajectory
with an initial condition close to that for a precessing—
librating boundary. A second precessing trajectory hav-
ing an initial p, of opposite sign is also given (the lower
curve in Fig, 10).

In Fig. 11 is given a p, vs 6 plot for a trajectory with
an initial condition only very slightly different from that
in Fig. 10, but such that the trajectory has become a
librating one.
10, is obtained from the upper one by a 180° rotation,
one can show that the §p,d0 for the precessing trajec-
tory goes over to one-half the value of $p,d8 in the
librating case, as in (7.1), and leads to Eq. (4.4).

1
podl~ };hpadﬁ . (1.1)

prec
A numerical demonstration of this result is given in
Fig. 12.

We conclude with a description of the evolution of the
caustics at the librating—precessing transition, includ-
ing the formation of the inner six-cusped caustic in
Figs. 2and 3. In Fig. 13 are three equivalent librating
trajectories fairly near the librating—precessing transi-
tion. At the transition the portions of the caustics

2

FIG. 14, A librating tra-

¥ © jectory near the preceas-
ing—Ubrating boundary, Its
surface of section is given

-2 in Fig. 11 and labeled A
there.
foce
2 0 2
S

Using the fact that the lower curve in Fig.

FIG, 15. A precessing trajec-
tory near the precessing—li-
brating boundary, Its surface
of section is given in Fig. 10,

bounding the six shaded regions coalesce and disappear.
Further, pairs of portions of caustics, such as E"E’
and B''B, which cross when the trajectories are of the
librating type, will split and reform new caustics B’ E’
and E’'F (and similarly for the other two pairs), when
the trajectories become precessing ones, thereby de-
veloping into the six-cusped caustic of Fig. 7(a). Figure
14 gives a librating trajectory almost on the point of be-
coming a precessing one. The incipient formation of
new caustics B”E" and E" B’ is evident. In Fig. 15 is
the precessing trajectory to which the librating trajec-
tory of Fig. 14 has evolved. The old and the new caus-
tics are all seen, some of which will disappear on one
side of the librating-precessing transition and others of
which will disappear on the other side, as one moves
away from the transition point, by changing f,.

APPENDIX. CONVERSION OF UNITS

To make a comparison of eigenvalues calculated in
Ref. 8 with those calculated here the Hamiltonian used
there was rescaled so as to agree with ours. The cor-
respondence in eigenvalues is thus obtained by dividing
the values in Ref. 8's Table V by 0, 0125. The argument
is given below.

The Hamiltonian in Ref. 8 is given by H:
= Ez)(ﬂa a? Lo\t =2 ==2 1=
H_-(E =+ EF)*' Gue?) (@ +7%) +7y2-37° , (A1)

where iw=0.0125, pu=1 and w=1, (In Table V of Ref.
8 fw is inadvertently written as 0.00125.) Introducing
into (Al),

y=ay , (a2)

where a is to be chosen, (Al) becomes (with p=w=1)

X=X,

A= - %) (e + 25)+ (5e) 05+ (Lot 420

(A3)
The Hamiltonian used in Eq. (2.1) is
1 82 8% 1r. 2 2 2_ L
H=—-(i)'5?+§5 +3(x2+9?) +alxy® - 2% . (A4)
Now choosing
at=1/11=1/0,0125 , (A5)
H=tH, »=k'"=(0.0125)"/2 (A6)
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