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Vibrational classical trajectories of anharmonic molecules are used here to obtain the classical vibrational
autocorrelation function and, via a Fourier transform, the power (or infrared) spectrum of the dynamical
variables. In the vibrationaily quasiperiodic regime the spectrum consists of sharp lines, for any given
initial amplitude. The initial amplitudes are chosen semiclassically. The spectral lines are compared with
quantum mechanical calculations for systems with two and three coordinates, with excellent agreement.

The method is also useful for obtaining a classical spectrum in the ergodic regime; the spectral lines are
then “broad” rather than narrow. The method can be used in the analysis of trajectories for unimolecular
reactions, infrared multiphoton dissociations, and for obtaining molecular spectra from force fields. The

spectral analysis itself has implications for the theory of unimolecular reactions.

I. INTRODUCTION

Many years ago Einstein! proposed a quantization of
systems not permitting separation of variables: One
finds canonical invariants, namely, the action vari-
ables? J;, and quantizes them

Ji=$p- da=nn, (1.1)
where the different J;'s are obtained by integrating over
topologically independent paths; q (=¢,,q, + ++ ,q,) and
P Epyybsy + ¢+ , py) denote canonically conjugate coordi-
nates and momenta. The theory was further developed
by Keller,? who showed how fractional terms arose

J,=fp-dq=(n,+6,)h, (1.2)
where §, is a known constant, usually being 0 or 1/2,
depending on the degree of freedom. He further showed
how to evaluate these integrals for a number of nonsep-
arable systems which had zero potential energy within a
confined region, on the boundary of which it rose to in-
finity.

Eastes and Marcus, * and Noid and Marcus® showed
how to evaluate these action integrals in nonseparable
systems having smoothly varying potential energy func-
tions, and evaluated the eigenvalues semiclassically us-
ing Eq. (1.2) The systems treated were both those
which were nondegenerate in zeroth orderts® ag well
as those degenerate in zeroth order.5® (The trajec-
tories for the two sets of systems are markedly differ-
ent,) More recently, other methods have been de-
scribed.® All of these results refer to systems which
are quasiperiodic, i.e., systems for which angle-action
variables exist. (In the ergodic regime the action vari-
ables do not exist.)

During the course of the present work on these sys-
tems it occurred to us that vibrational and vibrational-
rotational spectra, that is, the differences of eigenval-
ues, could be obtained directly, merely by using the
vibrational trajectory to obtain a suitable autocorrela-
tion function and ther Fourier transforming the latter
to obtain the spectrum,. According to Bohr’s corre-
spondence principle, 2 the mechanical frequencies are
equal to the differences of eigenvalues (E, ~ E,)/k, and
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provide the spectral lines directly when the appropriate
autocorrelation function is calculated,

At low energies in nonseparable anharmonic systems
a quasiperiodic behavior has been observed in numer-
ous trajectory studies in the astronomical literature’
and is supported by the fundamental theory of Kol-
mogorov, Arnold, and Moser,? Under such conditions
the spectrum consists of sharp lines. At high energies
an ergodicity occurs, and so the action-angle variables
are no longer good variables. Thereby quasiperiodic-
ity breaks down, and one no longer expects a line spec-
trum classically for the molecule.® Indeed, we have
found that the lines do “broaden” in the ergodic regime.

The spectral analysis method, presented earlier in a
recent thesis, >® is described in the present paper.
Subsequent applications of the present work have re-
cently been made to unimolecular reactions?® and to in-
frared multiphoton dissociation, 1

Il. SPECTRAL ANALYSIS METHOD

The spectral analysis method can be applied to any
autocorrelation function, e.g., of coordinates x(¢) or
y(t), momenta p_(f) or p,(t), or any dynamical variable,
e.g., the dipole moment u(t). Below we shall use x{t)
to denote any of these.

I{w), the infrared absorption band shape function, or
in the case of any dynamical variable x(¢) the power
spectrum or spectral density, is related to the Fourier
transform of its autocorrelation function C(t) in the
well-known way!?

I(w)é-z% f “C(t) exp(- iwt)dt ) @.1)
where
()= (x(0)x(2) . 2.2)

The avérage {) Indicates an average over an ensemble
appropriate to the problem, an ensemble which we de-
scribe later. C(t) has the stationarity property

(x(0)x(t) = (x(r)x(t + 7)) 2.3)
and, since x(¢) is real, the property of being an even
function of #%3;
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cl=cl-1). (2.4)

This power spectrum (2. 1) is related to a certain time
average!

% lri.'l.:ZT(I f x(t) exp(- twt)dtl >

Actually, these two quantities differ by a term which
vanishes when 7'~ «for an ergodic system's and which
for a quasiperiodic system can be shown to vanish also.!¢

Iw)= (2.5)

In the quasiperiodic regime x{(#) can be expanded as a
multiply periodic function of N angle variables w;, in
the N-coordinate system. The w, vary linearly in time
anci are canonically conjugate to the action variables
J‘o

(2.6)

In a nondegenerate case the frequencies w, are all non-
zero and incommensurate, In the degenerate case one
can choose the frequencies w; (=aE/an() so that a cer-
tain number of them, » say, are nonzero and incom-
mensurate, and the remaining ones are zero, in an N
- 7+ 1-fold degenerate system,? The 7 quantum num-
bers n, .. « n, are then those on which the energy de-
pends E(n, .« . n,) and are thereby the so-called princi-
pal quantum numbers, ®

2w =wl+@y, i=1,...,N.

The expansion of x(¢) in terms of the w, can be writ-
ten as?®

N
2(0)=2 %, exp(‘z; Zm'm,w,) ,

where x,, denotes x,, ., ., , and the m,;'s are integers,
%, depends on (J, +++ ,Jy). Since x(¢) is real one has

(2.8)

For the quasiperiodic case, looking at a particular
molecule, we select as the ensemble a microcanonical
ensemble with fixed action variables J; but averaged
over the phases ¢;. Semiclassically, this ensemble
corresponds to the molecule being in a specified quan-
tum state, Introducing Eq. (2.7) into (2.1) or (2.5) and
performing this phase average in () {each ¢, 18 uni-
formly distributed in the unit interval) one obtaing Eq.
(2.9)\" for any given value of the action variables J;,

I(w)=;|x,,| 86[(‘2:; m,w,)- w] . @2.9)

Thus, the spectrum in the quasiperiodic regime is a ‘
line spectrum. The m;’s in E A from N-r+1to N
yield the same values of (3f.,m,w;) - w, but different
values of x,,.

Equation (2. 5) is particularly convenient, since one
finds by introducing Eq. (2.7) and performing the in-
tegration that in the quasiperiodic case the quantity in-
side the () is independent of the initial phases ¢, in the
microcanonical ensemble [unlike the term ingide () in
Eq. (2.2)]. Thus, in the ensemble average () no aver-
age over initial ¢,’s is needed when (2. 5) is used. One
then obtains Eq. (2.9), using a single trajectory. To
obtain J(w) for a Boltzmann population, one would aver-
age the expression (2, 9) over a Boltzmann population of
J;’8, in which the energy in the Boltzmann factor is

2.7
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written as a function of the J,’s.

In the ergodic regime the integral in Eq." (2. 5) is in- -
dependent of the initial condition at a given energy for
the molecule and at a given total angular momentum and
z component, Thus, for this microcanonical ensemble
the () can be omitted, and a single trajectory again
suffices to evaluate the integral,

In summary, the () in Eq. (2, 5) can be removed in
both the ergodic and quasiperiodic cases. In this re-
spect Eq. (2. 5) has an advantage over (2.1): The () in
C({t) in Eq. (2.1) in the quasiperiodic case must be com-
puted by averaging over all ¢, there,

We have already noted that the spectrum Iw) is a
line spectrum in the quasiperiodic case. In the ergodic
case the C(t) in Eq. (2.1) may have both an oscillatory
dependence on ¢ and a time-decay factor or more com-
plicated oscillatory dependence, leading thereby to
broadened lines instead of sharp ones,

It is more useful to consider instead of Eq. (2.5) an
integral, which we shall also label I(w),

I{w)= 2 T- 2T<|J. x(t) exp(- twt)dt‘ )

since we wish to begin the trajectories and integrate
forward in time. For an ergodic system this integral
is clearly equal to that in Eq.- (2.5). For quasiperiodic
systems we introduce Eq. (2.7) for x(¢) and integrate
over {, One obtains a sum over a product of 5-like
functions of the arguments },m,w,; - w inside the abso-
lute value signs. Any cross terms of different ym,w, .
- w vanish for that reason, There remains

(2.10)

I(w)—~llm > | %] 2 (810%,, T)/ T2, .11)
1‘--° m

where

ba=(3 mewn)- 0. (2.12)

191
smcel'l(a) . -
_ sin®Lx

" plx)es },‘..( i ), (2.18)
one concludes that

I(w): Z: I x,,,l 25[(.‘ - m,w,) - W] . (2, 14)

" This result is identical with Eq. (2.9), and so Eq.

(2.10) is indeed equivalent to (2, 5) for quasiperiodic
systems (as well as for ergodic ones). We shall em-
ploy it here,

One also notes from Eq. (2.11) that the “width” of a
line in the quasiperiodic regime Aw varies inversely
with the trajectory time 27. .

Ill. NUMERICAL CALCULATIONS, RESULTS.
AND DISCUSSION

Two Hamiltonians are used in the present paper for
purposes of comparing the quantum mechanical spec-
trum with the present semiclassical one (semiclassical
because of the natuie of choosing the action variables),
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TABLE I. Spectral lines for the Hamiltonian (3. 1).*

Parameters: w?=0.7, «)=1.3, Ac=0.1, n=0.1

H=3(p2+p2+p2+ 0Px®+ 02y2

+wPz2) + 1 (xy?+ ) 42 22+ pyd) . (3.2)

Initial . Semiclassical®?  Semiclassical® Hamilton’s equations of motion, obtained from these
state Quantum Eq. (3.6) Eq, 8.7 Hamiltonians, were integrated with the standard inte-
(ngny)  w, w, wy w, wy w, gration routines, '® and a fast Fourier transform was
0.0 0,691, 1,289 0,693, L2584 0,695, 1,289 used, 1! The following semiclassical argument was
1,0 0.688, 1,271 0.688, 1.273 0.690, 1.278 used to select the initial conditions: for the trajectory
0,1 0.680, 1,270 0.680, 1.271 0.680, 1.278 and to compare with the quantum results.

2,0 0.685, 1.260 0.683, 1,261 0.685, 1.268 y

1.1 0.676, 1.258 0.678, 1.256 0.680. 1.263 The action variables J,; are related to the quantum
3,0 0.681, 1.247  0.680, 1.245 0.680, 1,253  numbers n,;, in units of =1, by ,
0,2 0.668, 1.256 0.668, 1,256 0.670, 1.263 = 1

2,1 0.672, 1.245 0,673, 1.245 0.675, 1.253 Ji=2uln + 1) 8.3)
4,0 0.677, 1.234 0.678, 1.233 0.680, 1,243 for nondegenerate vibrational systems. A spectral fre-
1,2 0.664, 1,243 0.663, 1.240 0.665, 1.248 qqency W, €an be defined quantum mechanlcauy by

2'3 g-ggg- i:g? 0.668, 1.230 g-:;g- :22; subtracting the energy E for the state with initial quan-
0.3 0.655. 1.242 . . 0. 660, 1:248 tum number's Ngeo- r'z,, from that for the state with the
2,2 0.659, 1.230  0.657, 1.227 0.660, 1,237  finalonesmy, ..., ny:

4,1 0.664, 1.218 e cee 0.665, 1,222 . LA

1,3 0.650, 1.228 0,647, 0.649, 1,232  Wpm=Elt], eov yn})= Ebty, + oo ym) =) (OE/0n,)n| = ny),
3,2 0.654, 1.216 ves 0.654, 1.222 to1 (3.4)
0,4 0.6842, 1,227 e vee 0.644, 1.232 : .
2.3 0.645, 1.213 0.644. 1.217 where the partial derivative is computed at mean values

The unperturbed values for these spectral lines are wf and wj,
“The first entry denotes E(n,+1,n,) - E(n,,n,) and the second
denotes E(n,,n,+1) — E(n,,ny), for the (n,,ny) given in the first
column, and are identified as w, and w,. A basis set of 225
harmonic oscillator wave functions (15x times 15y functions)
was used. '
°The value for (n,,n,) for an w=w, frequency in this column is
the mean of that w, in the entries for (n.,7,) and (n,+1,2) In
the last column, e.g., for the (0, 0) state, 0,693 (=0, 6925) is
the mean of 0,695 and 0,690, 1.284 (=1, 2835) is the mean of
the 1.289 and of the 1.278 appearing in the third row.
“Ungertainty in these figures is £0.003. .
*In this space and all other blank spaces sufficient data for in-
terpolation from the Eq. (3.7) column was not available, al-
though can readily be obtained.

One Hamiltonian is the Henon-Heiles one employed in
the previous semiclassical studies*®
H=3(p2+p3+ wBx%+ 0Py + A lxy®+ 2 . (3.1)
The second Hamiltonian is one with three coordinates

TABLE II. Spectral lines for the Hamiltonian (3.2).2

n; of n; and nj:

ny=tl4n)), i=1,...,N. ' (3.5)
Since 3E/3J, is the usual classical mechanical frequen-
cy? v,, the 9E/an, in Eq. (3.4) is the usual classical
mechanical angular frequency w, (= 27v,) [evaluated at

(PREENT)

Thus, using the approximation contained in Eqs, (3,4)
and (8. 5) one calculates the frequency for a transition
b1y » «+ y1y)= (nf, - -+ ,ny) using a trajectory evaluated
at action variables
ﬁ,=(n,+n;)/2 . (3.6)

The 1/2 in the J; expression is for the case of nonde-
generate vibrational degrees of freedom.

=2l +3),

The initial conditions were chosen by selecting the J;
in Eq. (3.6) using the unperturbed Hamiltonian, a pro-
cedure which is sufficiently accurate since the frequen-
cies vary only slowly with J;, as seen later in Table I,

Parameters w$=0.7, wl=1,2, w}=1,0, A=—0.1, n=0.1

Semiclassical®? Semiclassical®

Initial state Quantum® ‘ Eq.. (3.6) Eq. (3.7)

(ny, =y, n) w, w, w, Wy w, w, Wy W w,

0 0 0 0.690 1,173 0,990 0.692 1,175 0.990 0.693 1.184 0,992
1 [ I 0.687 1,159 0,990 0.688 1.161 0,990 0.680 1,169 0,992
0 0 1 0.690 1.164 0,985 0,691 1.166 0,985 0.693 1,174 0,987
0 1 0 0.676 1.151 0.881 0.678 1,169 0,978 0.680 1.168 0.984
2 [V ] 0.683- 1.144 0,948 ¢ ¢ ¢ 0.685 1.156 0,992
1 Q 1 0.645 1,149 0.984 “ee ove 0,688 1.161 0,987
1 1 0 0.672 1.134 0.879 cee ser 0.675 1.153 0.984
0 0 2 0.689 1,163 0,979 see 0.680 1,163 0.982
0 1 1 e . .o 0.680 1.158 0,979
0 2 0 0.665 1.151 0.977

*~gee footnotes for Table I, apart from the fact that for the quantum’entries a basis set of 512 har-
monic oscillator wavefunctions was used (8x times 8y times 8z functions).
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45 0 15
X

FIG. 1. A trajectory for the two-dimensional system in Table
I, at total energy E=1.0,

To obtain a first approximation to the frequencies one
can replace the »} in Eq. (3.6) by »;, yielding the re-
sult

J‘r_'z'ﬁ'(th+‘%), (3. 7)

By utilizing results based on Eq. (3.7) interpolatively
as described later, one can obtain an answer based on
Eq. (3.6) or one can use (3, 6) directly. The procedure
via Eq. (3.7) uses fewer trajectories than one based
directly on Eq. (3.6), in obtaining an array of frequen-
cies involving fundamentals, overtones, and combina-
tions. 7

.

When the frequencies are well separated, the compu-
tation of the spectrum of a single function x()+ (1) in
the two-dimensional case or of x(1)+y(t)+z(t) in the 3D
case suffices to determine the frequencies. Otherwise,
it is best to obtain spectra of x(f), v(/) separately.

The results are tabulated for two-dimensional and
three-dimensional systems in Tables I and II. A typi-
cal trajectory, its correlation function, and its spec-
trum are given in Figs, 1-3 for a quasiperiodic two-di-
mensional case. In Fig. 4 the spectrum of a quasi-

periodic three-dimensional system is shown, and in Fig.

1.67
X+Y
-167!
0 . 51 102
Time (:10%)

FIG. 2. The function x(f) +3(f) versus { for the trajectory in
Fig. 1. The fundamentals and some overtones and combina-
tions are observed,
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LJL__‘ L
(@] 1.75 349
w
FIG. 3. Spectrum for the function x(f) + ¥(t) using the trajec-

tory in Fig. 1 and computed from Eq. (2.10).

5 is given a spectrum for an ergodic three-dimensional
case. The extra broadening in Fig. 5 is quite evident.
The spectrum in Fig. 5 refers to a system where
Benettin ef al.?® applied a stochastic parameter test, *
and predicted that the system would be ergodic under
the conditions used for Fig. 5. The ergodicity mani-
fested in the spectrum in Fig. 5 is thus in agreement
with this prediction., The trajectory itself tended to fill
the energetically available configuration space.

The first semiclassical column in Tables I and II was
obtained from the last by a linear interpolation; The
(,,n,) quantum entry in Table I refers to a (g, 1) = (i,
+1,n ) transition, The last semiclassical column is
based on Eq. (3.7) and contains an w=w, for an (u, n,)
state, To obtain a result for (u,n,) but based on Eq.

(3. 6) we used the arithmetic mean of the w, spectral
frequencies in the Eq. (3.7) column for the (z,, n,) and
(n.+1,n,) entries.

The agreement of Eq. (3.6) with the quantum results
is seen to be excellent in Tables I and II.

The spectral analysis method could also be used to
generate the frequencies for molecular spectra not only
in the anharmonic regime, as above, but also to gener-
ate the normal mode frequencies associated with any
force field in a straightforward manner, merely by us-
ing small initial amplitudes,

!
T(w) L FIG. 4. Spectrum for the
i | function x(f) + ¥(¢) + 2(¢) for the
1 three-dimensional system in
I [ Table II, at a total energy
. E=1,45.
AR, L
0O 088 176

w
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Tw)

0 175
W
FIG. 5. Spectrum for a two~dimensional system with the

349

Hamiltonian (3.1) and wl=wl=1, A=0,1118, n=-1/3, E=11.0.

The present method is much faster than previous
semiclassical methods*3: It does not involve a multi-
dimensional search for a trajectory to satisfy the semi-
classical quantum conditions. Applications to actual
molecules are in progress, and to systems which are
degenerate in zeroth order. In the 1: 1 nearly degen-
erate case power spectra of quantities such as » and p,
are simpler to interpret than those of x and y, and are
being used here., The methods developed in Refs. 4 and
5 would be superior, when extended to include tunneling,
for states having tunneling, e.g., in certain two-well
problems.

The observation that the spectrum is centered on cer-
tain frequencies, in the ergodic regime, supports the
agsumption normally made in unimolecular reaction
theory that the high energy molecule can be described
in terms of certain frequencies even though the usual
normal modes exist only in some average sense at
most,
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