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The centrifugal decoupling approximation previously employed in quantum mechanics is extended to
classical mechanics. Both classical and quantum centrifugal decoupling (CCD and CD, respectively)
calculations are performed for HCl-Ar. Total cross sections are obtained from the CCD and CD
calculations. The CCD and CD total cross sections are shown to be in good agreement with the
corresponding exact classical trajectory (EC) and close coupled (CC) cross sections, respectively. The
conservation of the projection (f2) of the rotational angular momentum along the body-fixed z-axis is
studied as a possible explanation for the success of the OCD and CD approximations in predicting total
cross sections. By examining the CC body-fixed S-matrix elements and studying the behavior of Q) during
the course of an exact classical trajectory, it is found that Q1 is conserved only under very limited
conditions. Detailed examination of the calculations shows that the CD approximation may be good even

when 0 varies rapidly.

I. INTRODUCTION

One major difficulty in the theoretical treatment of
molecular scattering problems lies in the large num-
ber of quantum states necessary to describe even the
collision of an atom and a rigid diatom, This is a con-
sequence of the multiplicity of projection states asso-
ciated with each rotational state. In recent years this
problem has led to the development of a variety of ef-
fective Hamiltonian methods.! By approximating the
angular momentum coupling in some fashion, these
methods obtain a reduction in the dimensionality of the
coupled equations and thereby lead to practical compu-
tational savings in scattering problems. None of these
methods has yet been fully tested as to the realm of its
applicability. One of the methods which has received
more attention is the centrifugal decoupling (CD) ap-
proximation (alternately termed “j,-conserving” or
“coupled states” by McGuire and Kouri),*® This ap-
proach is further examined in this article. The major
aim of this study was a physical analysis of certain as-
pects of the CD approximation,

_ In the CD method the coupled equations are formu-
lated in terms of body-fixed (BF) coordinates where a
computationally convenient approximation is made,
The CD approximation is computationally desirable be-
cause of the resulting simplicity of the coupled equa-
tions, However, obtaining a thorough physical justifi-
cation of the approximation has been a difficult task,

In the CD approximation good results have been ob-
tained for degeneracy-averaged total cross sectiong™*
with some exceptions,*® In the present paper CD cal-
culations for rotationally inelastic HCl-Ar are com-
pared with close coupled (CC) computations, Particu-
lar attention is given to the S-matrix elements and
their properties relevant to the success of this approx-
imation,

In addition to the quantum treatments, analogous
classical effective Hamiltonian calculations are per-
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formed. In classical mechanics, if action-angle vari-
ables are used,” the classical BF Hamiltonian has
terms readily identifiable with quantum terms.® A pre-
cisely analogous approximation to the quantum CD ap-
proximation can be made,*!® The classical centrifugal
decoupling (CCD) approximation is compared with ex-
act classical (EC) trajectory calculations, The EC tra-
jectories are examined in detail in order to gain some
physical insight into the CD approximation,

It will be shown through the analysis of the exact
quantum and classical results that the projection (Q)
of the rotational angular momentum along the BF 2-
axis can undergo large changes during an inelastic col-
lision, This is contrary to the assumption that the
coupling between different 2 values is insignificant,
However, this {s completely consistent with recent
formulations of the CD approximation,!! which aim to
put the theory on a sounder footing. In these newer
treatments off-diagonal character in £, which the ex-
act calculations in this paper indicate is present, can
be explicitly introduced and calculated.

1. QUANTUM INELASTIC CROSS SECTIONS
A. Computational details and theory

The computational details for the quantum centrifugal
decoupling (CD) calculations are presented in this sec-
tion, Included is a short summary of the necessary
equations, - derivation of which can be found in the liter-
ature. #%1¥ In body-fixed (BF) coordinatés and within
the CD approximation, the set of coupled radial equa-
tions for an atom colliding with a rigid diatom becomes

8
{ﬁ,-—;—"’; 1)+k§.} vHL®R)

5 3 0 VR ) Ul ), )
where R is the distance between the atom'and diatom,
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TABLE 1. Quantum total inelastlc cross sections (A%): Centrifugal decoupling (CD) and

close-coupled (CC).

.
.

0.030 eV 0.018 eV 0.010 eV 0.005 eV
—~j’ cC CD CcC CcD (o] ] cDh cC CDh
01 42.7 42,5 eve 45,9 42.4 41.3 31.2 24.8
¢ 2 21.8 21.9 25.9 25.7 22,7 22.8
0 3 3.40 2.78 1.20 0,530
0 4 0.181 0,132
12 14,8 16.5 14.5 14,1 9.60 9.43
13 3.21 3.46 1,93 1,85
1 4 0.359 0.341
2 3 8.19 7.94 6.27 5,87
2 4 0.747 0.881
3 4 3.28 3. 50

I
1\

u is the reduced mass of the colliding pair, and ! is
the orbital angular momentum, The rotational angular
momentum, its projection along the BF z-axis (i.e.,
along the line of centers R), and the associated wave-
vector are represented by j, 2, and %,, respectively.
In obtaining these equations, two approximations were
made to the matrix elements of the orbital angular
momentum operator 1% (i) The terms off-diagonal in
Q, ®age==Agequl72 2+ NUFAPP(702+1)

X (j £ Q)]"/® are neglected where J is the total angular
momentum; (ii) The terms diagonal in 8, (2%)gq
=HJW+1)+j(j+1) - 207, have been replaced by
731+ 1). The latter association with an orbital angu-
lar momentum index (rather than J, for example)is a
central part of the newer formulations which are dis-
cussed in detail elsewhere,!! Since the potential in BF
coordinates is diagonal in @, the first approximation
leads to a set of equations [Eq. (1)] decoupled in .
The second approximation is also of practical useful-
ness since the asymptotic solutions are Bessel func-
tions of integer order,!?

Solution of the above equations yields the BF S-ma-
trix elements Skp(7'R1j0). In the new interpretation
these S-matrix elements are also labeled by J; to ob-
tain S-matrix elements labeled by J, an appropriate
average is performed over the S-matrix elements
labeled by an I-type index. Both of these CD elements
should be distinguished from those S (7917 ) ar-
rived at by solving the CC equations without the above
approximations, The CC body-fixed S-matrix elements
are related to the usual space-fixed (SF) S-matrix ele-
ments, S’(j’1'|jl), by a unitary transformation,®

sr ol — sl=l’ef’e [l] 4 }ln
s‘(;nljm-;:” ! ’{T%’!

x qojoloa) (o e |Ja)s G |in, @)

where (++++|++) 18 a Clebsch~-Gordan coefficient and
[7]=27+1, In the CD approximation the expression
for the total cross section is:

0% ~1)= Do koli=1)

=zgfﬂ };[ll [8, = SEo(5" @79 ® . 3)

Calculations were performed for HCl-Ar (HCl rota-
tion constant B=10, 5809 cm™') using a potential given
by Neilson and Gordon'® with y being the angle between
R and the axis of the molecule

V(R, cosy)= V,(R)[1+ 0. 85P;(cosy)+ 0, 65P;(cosy)]

+V,R) [1 +0. 30(%) Py(cosy)+0. oop,(cosy)] ,

where
V,(R)=€T_%7a3 exp [“ ( ’R—I:.)]

A -¢ (R,\®
V,(R)=r_—67;(—n‘") 4)
The constants for HCl-Ar are ¢/k=202 °K, R,=3,805
A, and a=13.5.

Using Gordon’s program,!® the quantum coupled equa-
tions were solved at four total energies: 0,030, 0,018,
0.010, 0,005 eV, The basis set included rotational
quantum numbers 0<j <7, Inclusion of the three
closed channels (j=5, 6, 7) was necessary to achieve
convergence of the basis set at the highest energy.
Calculations were done at all [ values in the range
0<s71<100, At =100 all the inelastic cross sections
had converged, but many of the elastic ones were far
from converged.

B. Rasults and discussion

The total inelastic cross sections for the quantum
CD approximation are presented in Table I together
with the corresponding close coupled (CC) results ob-
tained by S. Green.!” There is good agreement between
the CC and CD inelastic cross sections; the differences
between the two are mostly S 8%.

A further study of the CD approximation can be cb-
tained by examination of the S-matrix elements, The
SF S-matrix elements resulting from the CC calcula~
tion can be transformed by means of Eq. (2) to yield
exact BF S-matrix elements, The absolute squares of
the even and odd parity S-matrix elements are given in
Fig. 1for E=0,010 eV and /=30, The definite parity

* S-matrix elements are generated by linear combina-

tions of the usual nondefinite parity S-matrix elements,
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@@ 8 2 Q = pvi N G

00 305 |.027 | 113 ].135 ] .127 | .294

10 144 185 488 110 | .047
FIG. 1. The absolute squares of the BF
S-matrix elements from the exact (CC)

20 259 | .170 | .091 |.i83 - _ o rasults at E=0,010 eV and /=30, Part

b = ~ &8 € (@ is the even parity block and part ()

is the odd parity block. ¥ Blocks of

1 008 |.104 | .095 T .814 |.041( ].145 constant Q are boldly outlined. The lower
portion of the matrices can be filled in by
symmetry.

21 563 | .005 2) 861 }.098

22 376 22 757

i i

The behavior in Fig. 1 is typical of other [ and E val-
ues as well, Examination of all the S-matrix elements
reveals that, for a given j and j', the elements off-
diagonal in Q are frequently as large as, if not larger
than, those elements diagonal in ©,'%!® For small

I (1~5 at E=0,010 eV) the off-diagonal elements are
small compared to diagonal ones, but many are still
significant. The elements which are insignificant
represent the transitions with larger changes in £,
Note that what is termed small [ depends on E so that
at higher E this behavior holds for somewhat larger
values of /. The conclusion is that £ can undergo
large changes and is not conserved during collisions
for practically any 7 value,

In attempting to explain the success of the CDap-
proximation for the total cross sections, the simplest
justification is that the terms off-diagonal in @, which
are neglected in the CD equations, are small, The
preceding finding refutes this argument, There is
some indication that at small  this justification is
somewhat reasonable, However, the explanation is
valid-only in a crude fashion and only for a small num-
ber of [ values compared to the number involved at any
given E, so that it cannot fully justify the CD approxi-
mation, A more complex explanation is clearly needed.
A similar conclusion is obtained from the study in Sec.
111, B using classical mechanics,

IN. CLASSICAL INELASTIC CROSS SECTIONS
A. Computational details and theory

This section presents results for classical cross
sections using both exact classical (EC) trajectories
and classical centrifugal decoupling (CCD) trajectories,
The EC expressions are given in terms of action-angle-
like space-fixed (SF) coordinates,'® whereas the CCD
expressions are given in terms of action-angle-like
bedy-fixed (BF) coordinates.

The quantum mechanical expression for the rotational
cross section of an atom colliding with a rigid diatom

in the space-fixed axis system is®

o(j=j')= m E (2J + 1)|6”.6,,,..sl(]'zl‘]z)|z
(5)

This expression can be converted into its primitive
semiclassical form by performing the following: (i)
introducing the primitive semiclassica.l form of the S-
matrix,? (ii) converting the sums in Eq. (5) into inte-
grals, and (iii) ignoring interference effects so that
partial averaging techniques® may be applied,. In step
(it) it is convenient to introduce the variables j, , and
J which are the classical analogues of _1, 1, and J and
they are defined by j+3, I+3%, and J+ % (note isn+%
=[n)/2 where the latter notation was used in Sec, 1I),
Similarly the relative radial momentum Py is the
classical analogue of the wavevector ;. ‘All these
variables are in units of k=1,

The expression which results from the procedure
mentioned above is

alj-1)=2n [ bavs(e), : e

where the expression for the impact parameter
b = i/ 'PR (7)
has been introduced. The function S(b) is defined by

-. ‘

s@)= | =% ad f 4qp,., ®)

15-14 Zﬂ

where P, is the probability for the transition j—j’
for fixed l, J Py, and §,, whose semiclassical value
is

@)

PJ‘.J-SZ

where s.p. denotes stationary 'phase and s'is a- sym-
metry factor® equal to unity for systems such-as. HCl-
Ar, The sum in Eq. (9) for s=1 is over all vames of -

G 1217 §7e§ ’o
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FIG. 2. Definitions of body-fixed action-angle-like variables:
FA A ﬁ, 4, 4;, and qq given with space-fixed astion-angle-
like variables { and q;. The particle along the z-axis repre-
sents the incoming Ar atom while the particle in the g,-plane
represents the H atom of the rotor,

4, in the interval (0, 27) which give the final value of
the rotational angular momentum j7=7". The specially
defined variables g, and 7, are canonically conjugate

to the final f and 7,¥ The probability in Eq. (9) can be
reduced to its classical analogue by integrating the
right hand side of Eq. (9) over 7' in the interval ("~ %,
7' +%) and partial averaging.?* Thus the classical prob-
ability becomes

2r '
P";,;: J' JE,P(E,), (10)

where (for s=1) p(g,) is unity ifP+d>72j-4and is
zero otherwise, For systems such as H,—H (s=4),®

the limits on the integra.l become (0, 7) instead of (0, 27)
and §7 must satisfy '+ 1 >j7=7" - 1, Equations (6)-(8)
and (10) are the desired expressions which comprise
the EC cross section.

The classical cross section in BF variables can be
derived in a manner analogous to that shown above
. starting from the appropriate quantum expression. The
resulting expression is

c'r(,--jo)ggf -}l-a.ffds‘z r'%lp,.,,, (11)

in which Pis the same as before and the limits on the
integral over & are (~7,7), if j<J and (J,J) i 7>J.
The projection S of § (or J) on the BF z-axis is given
in terms of SF variables by

5 [t =Tt 2}sis;?ija+ zjaiz]m sing, ,
1
where q; is the SF angle conjugate to 7 whose asymp-

totic value is 7;. The variable § and its conjugate BF
angle ¢, are shown in Fig, 2 along with the BF angle ¢,.

(12)

The CCD approximatton enters the equations of mo-
tion governing the trajectories by introducing the BF
effective Hamiltonian

8 ~ -
”ccn- +2——3 [ +jz- 208]+le+ V(R, 0097)9 (13)

2p
where y is the usual angle entering the intermolecular
otential and may now be expressed as cosy= (1= {13/
7%)"*sing,, where g, is the BF ¢,. This effective
Hamiltonian insures that & is constant, The classical-
analogue of replacing J(/+ 1)+3(j+ 1)= 202 by J(/+ 1)
in the effective Hamiltonian affords no particular ad-
vantage in the classical computations and this approxi-
mation has not been made. Since g, is absent from the
potential and because J 7 is generally larger than j
- 203 the neglect of this latter term should not signifi-
cantly affect the results, If the CCD approximation is
not made, the Hamiltonian contains an additional term
of the form

(FE= VT =& cosgo)/uR® .

By taking matrix elements of this term using semi-
classical wavefunctions in action-angle varla.bles,” the
quantum result for off-diagonal matrix elements (1%)oq.
is obtained. This term is then the exact classical ana-
logue of the term omitted in the quantum Eq. (1),

For collisions in which 7 remains larger than zero,
it is possible for §i to approach £ during the collision,
When this occurs, gq becomes ill-defined and BF action-
angle-like coordinates may not be used, To circumvent
this problem, initial conditions were specified in BF
coordinates, a transformation was made to SF action-
angle-like variables, the classical trajectory was per-
formed, and a transformation was made back to BF
variables, For collisions in which j approaches zero,
q, becomes ill-defined and the trajectories must be cal-
culated in Cartesian coordinates,

Calculation of cross sections using the EC and CCD
methods involves evaluating a four-dimensional integral.
Stratified Monte Carlo®’ techniques were applied to this
evaluation in the following way. For the EC calculation
sample points were picked uniformly at random for
values of J and 7, @, lying in their total respective ranges
of integration while the integral over b was divided into
strata and the sample polnt was picked from one of the
strata, For strata which gave larger contributions to

" the integral, more sample points were used to more

efficiently improve the accuracy of the result, Once a
sample. point was chosen, 24 trajectories were com-
puted classically for equispaced values of 7, in the in-
terval (0, 27). The probability was then calculated by
dividing the number of points for which j jred>ite 7
-4by 24, For the CCD calculations, sample points
were chosen uniformly at random for §} and g while
the integral over J was stratified, Trajectories for
the CCD method were computed using the effective
Hamiltonian in Eq. (13) and the rest of the procedure
is the same as that described above,

B. Results and discussion

Rotationally inelastic cross sections were calculated
for HCl-Ar at total energies of 0,030 and 0,056 eV.

- In Table II the EC and CCD cross sections for 3-j' and

the EC cross sections for 0 -3’ are given for E=0.030

J. Chem, Phys., Vol. 68, No. 7, 1 April 1977
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eV, This table also contains the corresponding CC and
CD quantum results. The agreement between the EC
and CC results is only good for the 0~1 and 0~ 2 tran-
sitions, For the other transitions the EC results are
too large. Table III presents the EC and CCD cross
sections for 4~j’ at E=0,056 eV, The % limits on the
total cross sections are reasonable estimates of the
statistical error.

The agreement between the EC and CCD results in
both Tables II and III is approximately as good as the
agreement between the CC and CD results in Table I,
As can be seen from the partial averaged semiclassical
crogs section expressions in Eqs, (9) and (11), the
probability term for inelastic energy transfer contains
only direct dependence on the bulk energy transfer,

The effect of the reorientations of the rotational angu-
lar momentum vector does not directly enter Eq. (8)
and is averaged over in Eq, (11) (i.e., in the same
fashion that Q and Q' are summed over to obtain the
quantum mechanical j—j’ cross section), For situa-
tions such as broadening and shifting of rotational lines,
however, the CD approximation could sometimes lead
to inadequate results since there the reorientation ef-
fect due to collisions enters the line shape expression
directly.®® This difficulty would occur for line shapes
or other problems not dominated by j—j’ transitions.?®

An interesting physical effect observed in the classi-
cal calculations was orbiting at large impact param-
eters (b~10a.u., E=0,030 eV), All cases of observed
orbiting were approximately rotationally elastic and
should have no direct effect on the classical inelastic
cross sections, The range of impact parameters
where orbiting occurred was about 0.5 a.u. wide. This
behavior might indicate that quantum resonance effects
may be significant, This point was not explored in the
quantum calculations which were only for inelastic
transitions.

A careful analysis of the trajectory data at E=0,030
eV was made to gain physical insight into the CD ap-
proximation, At small impact parameters (6<3.0a.u,
or [<~20) the value of  was often nearly constant
throughout the trajectory, However, at larger impact
parameters this near conservation breaks down, and

TABLE II. Comparison of exact classical (EC), classical
centrifugal decoupled (CCD), close coupled (CC) and quantum
centrifugal decoupled (CD) inelastic cross sections in A2 for
E=0.030 eV,

Transition Classical Quantum

had M EC CCD cc CD
0—1 38.1+2.0 42.7 42,5
0—2 23.5+1,.2 LR 21.8 21,9
0—-3 7.0£0.5 (XX 3.40 2.23
0—4 0.3x0.1 soe 0.181 0.132
3—0 2,0£0.4 1,1+0.3 1,02 0.672
3-1 3.7+£0.5 4.8:0.6 2.64 2.85
8§—-2 13.3%1.1 14.2x1.2 9.08 8,81
3—4 7.56+0.5 7.5+0.5 3.29 3.50_

o

TABLE III. Comparison of the exact clagsi-
cal (EC) and classical centrifugal decoupled
(CCD) inelastic cross sections in &2 for

E=0,056 aV.

Transition Classloal

J=j' EC ccp

40 0,2+0,1 0.1x0,1
4—1 0.6+0.1 0.40.1
4—2 2,4+0.3 2.120.3
4—3 9.0£0.7 8.220.7
4--5 5,120,4 5.56+0.7
4—6 0.06%0,02 0.020.01

at very large impact parameters (b >14 a,u.) one finds
Qpina1=— Bungerar- A typical trajectory is illustrated in
Fig: 3 for the region of impact parameters that gives
large contributions to the total inelastic cross section,
During the collision j changes rapidly but only at short
range, while  varies more slowly but continuously
throughout the whole trajectory, However, most of the
Q variation-occurs within the same time period ~0,7
% 10° a.u,) of the overall j change. Examination of a
large number of classical trajectories confirms the
conclusion from quantum arguments (Sec. II. B) that
does undergo large changes for a wide range of [ values,
The simplest model which assumes conservation of 2
is therefore insufficient by itself to explain the success
of the CD approximation. In addition no clear separa-
tion of the 7 and the §} behavior is observed so that
these results do not provide an unequivocal example of
the more complex model proposed by McGuire.*

Finally, recall that quantum mechanically the com-
putational reduction of the CD calculation over the CC
calculation is enormous, Classically, the trajectory
computation time and hence the time required to calcu-
late the cross sections is approximately equivalent in
the EC and CCD methods. An exact semiclassical

0 [ S NN R N NN S
0o 08 1.6

t (0% au)

FIG. 3. The variation of  and & as a funotton of time.
E=0,030 eV, J=44.879. AtR=-w, §=3,500, 8=3.184,
7,=0.785, 7,=1.867, and/=43.702, AtR=+w=, f=2.526
and {$=2.385. The time ¢=0 corresponds to R =20 a.u.
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(exact Hamiltonian plus classical S-matrix) calculation
of the inelastic cross sections was also initially at-
tempted, The number of stationary phase points in-
volved in the evaluation of Eq. (9) was large (8-12) for
HCl-Ar, and the number of trajectories to find all of
them would have required a substantial amount of com-
puter time, For that reason exact semiclassical HCl-
Ar calculations were not performed,

V. CONCLUSIONS

For HCl-Ar the classical centrifugal decoupling ap-
proximation has been shown to give agreement with EC
total cross sections as good as that commonly obtained
between the CD and CC total cross sections. While the
CD approximation affords a large computational sav-
ings over CC calculations, the CCD and EC classical
trajectory calculations require approximately the same
amount of computer time, However, pure classical
calculations in this framework exhibit their usefulness
as a means for physical analysis of effective Hamil-
tonian approximations.

The simplest model for the CD approximation as-
sumes that £ is conserved, Both quantum (through S-
matrix elements) and classical observations of 2 lead
to the conclusion that Q in general does change signifi-
cantly for HCl-Ar. Only for small ! is near conserva-
tion of Q seen, This model was, therefore, rejected
as a general explanation of the success of the CD ap-
proximation, The present paper indicates that it is )
necessary to explore further physical models for the
CD approximation,

ACKNOWLEDGMENTS

We wish to thank S, Green for providing us with CC
cross sections and transformed S-matrix elements and
S. Augustin for many helpful comments. We also thank
D. Kouri and R. Pack for providing information on
their recent work prior to publication.

*Supported in part by grants from the National Science Foun-
dation, the Energy Research and Development Administra-~
tion, and the Donors of the Petroleum Research Fund ad-
ministered by the American Chemical Society.

tAlfred P, Sloan Fellow; Camille and Henry Dreyfus Fellow,

fCurrent Address: Max-Planck-Institut fiir Strémungsforsch-
ung, 34 GBttingen, West Germany,

!H, Rabitz, “Effective Hamiltonians in Molecular Collisions,”
in Modern Theoretical Chemistry, edited by W. H. Miller

{Plenum, New York, 1976), Vol. IIl, and references therein,

p, J. Kourl, T. G. Heil, and Y. Shimoni, J. Chem. Phys.
85, 226, 1462 (1976).

3p. McGuire and D. Kouri, J. Chem, Phys. 60, 2488 (1974).

4gee, for example, (a) P, McGuire, Chem. Phys. Lett, 23,
575 (1973); (b) S. Chu and A. Dalgarno, J. Chem, Phys. 63,
2115 (1975); and (c) L. Monochick and §. Green, to be pub-
lished.

5p. J. Kouri and P. McGuire, Chem, Phys. Lett. 29, 414
(1974).

R. B. Walker and J. C. Light, Chem, Phys. 7, 84 (1975).

TA. O. Cohen and R. A. Marcus, J. Chem. Phys. 48, 4509
(1968), ’

fw, H. Miller, J. Chem. Phys. 53, 1949 (1970).

s, Augustin and H. Rabitz, J. Chem. Phys. 64, 4821 (1976).

9G. D. Billing, J. Chem, Phys. 65, 1 (1976).

11(z) Y. Shimoni and D. J. Kouri, J. Chem. Phys, 65, 3372
(1976); () Y. Shimoni and D, J, Kouri, 66, 2841 (1977), (c)
G. A. Parker and R. T. Pack, 68, 2850 (1977).

2g. T, Pack, J. Chem. Phys, 60, 633 (1874).

154, Rebitz, J. Chem, Phys. 63, 5208 (1875),

4Gther phase conventions for the unitary transformation have
been discuseed in the literature (see, for example, Ref. 2).
In addition see Ref. 18 below,

t5w. B. Neilson and R. G. Gordon, J. Chem. Phys, 58, 4149
(1973), potenital 52 was used.

18R, Gordon, J, Chem. Phys. 51, 14 (1969); the computer
program was obtained from Quantum Chemistry Program
Exchange, University of Indiana, Bloomington, Indiana, pro-
gram No, 187.

7(a) §. Green, unpublished results; (b) Other CD calculatlons
have been performed for HCl-Ar, but for different purposes.
See U. Buck and P. McGuire, Chem. Phys. 16, 101 (1876),

181 can be shown that phase conventions other than that In Eq.
(2) produce qualitatively the same results. In addition there
is no systematic choice of phase {i.e., independent of the
particular physical problem) that will produce in géneral a
block diagonalized BF S-matrix. S. Tarr and H. Rabitz,
unpublished results.

9%gee D, E. Fitz and R. A. Marcus, J. Chem. Phys. 59,
4380 (1973) for definitions and a figure for these variables,

205 M. Arthurs and A. Dalgarno, Proc. R. Soc. London,
Ser. A 268, 540 (1960). ‘ .

2R, A, Marcus, J. Chem. Phys. 54, 3966 (1971),

25 D, Doll and W. H. Miller, J. Chem. Phys, §7, 5019
(1972).

#p, E. Fitz and R. A. Marcus, J. Chem. Phys. 62, 3788
(1973). '

%R, A, Marcus, J. Chem. Phys. 69, 5136 (1973).

%The probability Py, i8 actually quasiclassical, but, for
brevity, it will be referred to as classical.

%R, A, Marcus, Chem. Phys. Lett. 7, 526 (1970),

2y M, Hammersley and D. C. Handscomb, Monte Carlo
Methods (Wiley, New York, 1964), pp. 50-84.

28y Rabitz, Apn, Rev. Phys. Chem. 25, 155 (1974); W. K.
Lin and R. A. Marcus, J, Chem, Phys. 63, 290 (1975).

2p, McGuire, Chem. Phys, 13, 81 (1976).

J. Chem. Phys., Vol. 88, No. 7, 1 April 1977



