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The present paper describes results on modes of anharmonically coupled oscillators in a molecule, the role of energy exchange and near-

degeneracy, and quasi-periodic versus ergodic theory of unimolecular reactions. The quasi-periodic one is a formal generalization of Slater’s

harmonic oscillator theory. Spectral decomposition of a classical trajectory for the molecule provides insight into the molecular spectrum,

both in the low (quasi-periodic) and high (ergodic) energy regimes. The role of quantization of transition states in unimolecular reactions and

a relation to vibrational adiabaticity are analyzed. Results obtained on cnergy distribution of transiational energy of molecular beam reac-

tions involving intermediate complexes and tight exit channel transition states are described together with the relation to intramolecular
energy randomization.

Es werden Ergebnisse iiber Schwingungen anharmonisch gekoppelter Oszillatoren in einem Molekiil, Giber die Rolle von Energicaustausch
und Fast-Entartung, sowie ilber die Zusammenhénge zwischen quasiperiodischen und ergodischen Theorien unimolekularer Reaktionen
beschrieben. Die quasiperiodische Theorie entspricht einer formalen Verallgemeinerung von Slaters Theorie fiir harmonische Oszillatoren.
Die spektrale Zerlegung der klassischen Trajektorien fir das Molekiil ergibt Aufschliisse iiber das Molekiilspektrum bei niedrigen Energien
(quasiperiodischer Bercich) und hohen Energien (ergodischer Bereich). Die Quantisierung der Obergangszustidnde in unimolekularen Reak-
tionen und die Beziehung zu schwingungsmiBiger Adiabasie werden analysiert. Ergebnisse iiber Translationsenergieverteilungen von Pro-
dukten aus Molekularstrahlreaktionen mit Zwischen-Komplexen und starren Ubergangszustinden im Ausgangskanal werden cbenso
beschrieben wie die Bezichung zu intramolekularer Energierandomisierung.

Introduction for the “quasi-periodic regime”. A numerical method [1]
for finding these variables is outlined. The variables themselves

This paper brings together aspects of unimolecular reaction o )
pape g tog p are generalizations of the usual amplitudes and phases of

rate theory and of the anharmonic low and high energy

behavior of molecules: Anharmonically coupled oscillators *) Supported in part by the National Science Foundation and the
in a molecule are considered first, using action-angle variables  Office of Naval Research.
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harmonic oscillators, and so extend that description into the
anharmonic regime. Qualitative implications are drawn for
systems such as vibrationally-cxcited van der Waals® complexes
and for near-harmonic oscillator unimolecular theories. A
formal generalization of Slater theory is given.

The idea of a spectral decomposition of a classical trajectory.
introduced in a study with Noid [2]. is described. Application
can be made to the low and high energy regimes for molecular
spectra and thereby for multiphoton dissociation.

A third topic considered is the quantization of transition
states, typically not analyzed but significant in its relation to
unimolecular reaction rate theory. A role of vibrational
adiabaticity and nonadiabaticity in quantization is described.
Semiclassical theory and classical trajectories are used to
obtain further information.

In a concluding section the interpretation of product
encrgy distributions [3] in a reaction involving formation
of an intermediate complex in o molecular beam is considered.
The information which such data do or do not provide on
encrgy randomization in the intermediate is discussed for
loose and tight exit channcl transition states. Particular
reference is made to Worry's theorctical study [4] in this
laboratory of the tight-transition-state-cxit channel reaction
[3]

F + (CHy.C = CHy — FICH),CCH,

— CHy + FICHC = CH,.

1

Dynamical Considerations
for Anharmonically Coupled Oscillators

There have been many trajectory studies of the behavior
of dynamical systems whose Hamiltonians are similar to
those of molecules. The astronomical literature in particular
is replete with studies of unharmonically-coupled oscillators
[5]. Such studies. in accordance with the fundamental theory
of Kolmogorov, Arnold and Moser for nonlincar systems [6].
ilustrate that at low encrgies the motion of the system is
quasi-periodic (i.c.. multiply-periodic): any coordinate (¢,
depends on time only via “angle™ variables w,. It depends
on w, in a periodic manner with unit period:
q, = q,Wyeowed e W= v g (2)
where g@; is the phase angle at zero time. The number ol
nonzero frequencics 1; is equal to the number of degrees of
freedom n in the nondegencrate case, and less than that
number in the degencerate case. (In the degencerate case, some
of the w;’s arc therefore constants of the motion.) Canonically
conjugtte to these angle variables w; are action variables
J; [7]. They are constants of the motion and. for vibrational
problems, serve in cffect as generalizations of the usual
amplitudes for harmonic oscillator (normal mode) systems.
This generalization for anharmonic systems is ilso applicable
to systems which do not permit separation of variables. Ina
harmonic system with normal modcs ¢, one has

¢ = a;cos2r vyt -+ ) (harmonic) K}
where the amplitude «; is related 1o the action J;,
2nvia} = Jyvi.  (harmonic) 4

both sides being expressions for the oscillator’s energy.

Eastes [1] and Noid [1] in this laboratory discovered for
the first time a numerical method for obtaining the J's and
w;'s for nonscparable systems with smoothly varying potential
energy. Semiclassical eigenvalues were obtained by quantizing
the J;'s.

J; = + 0. (5)

where #; is a quantum number and d; is a known constant.
usually 0, 1/2 or 1. depending on the degree of frecdom.

An cxample of a trajectory where the coordinates ¢; are
two in number. x and v. and where the frequencies v; are
rather different is given in Fig. I. The method Noid used to
obtain the J; was to first obtain a Poincaré surface of section
[8] from the trajectory: Denoting the momenta conjugate
to x and y by p, and p,, onc notes the value of p, and x cach
time the trajectory crosses the y = 0 plane with p, positive.
The plot of this p, versus x. as in Fig. 2. yiclds the value of J
for this degree of frecdom J. by calculating the area under
the curve

Jo=§pudx. 16

Similarly. a plot of py versus y values when the trajectory
crosses the x = 0 plane with positive p, yiclds J, from the area

J,=fpdy. (M

When the unperturbed v; are degenerate a trajectory such
as that in Fig. 3 was obtained. To treat this system Noid
introduced a curvilinear surface of section and was able o
caleulate the action integrals and semiclassical eigenvalues
2a.9). Implications of the extensive energy exchange in
Fig. 3 for unimolecular theory are given in a later section.

'q'

Fig. 1
A typical quasi-periodic trajectory for systems with the Hamil-

(B35

)

onian Mp? + pi + Andeint 4 dnd eyt 4 At + axd)  with
v, # v,. On the oval line the potential encrgy equals the total energy

Trajectories in the case where the frequencies were rather
different show little encrgy exchange between the motions
in the x and y directions [1]. the maximum x-amplitude
varying litde during the motion, as in Fig. 1. In marked
contrast, trajectorics found for the case where the unperturbed
frequencies were equal (Fig. 3) showed extensive energy
exchange between the x- and y-coordinates. the amplitude
of the x-motion sometimes being large and sometimes small
[9]. This extensive energy exchange was caused by a small
amount of anharmonic coupling. and has a far-reaching
consequence for harmonic oscillator theories of unimolecular
reactions. This previously neglected consequence is described
in a later section.



192 R. A. Marcus: Encrgy Distributions in Unimolecular Reactions

Berichte der
Bunscn-Gesellschaht

b

(&3] x
Fig. 2
A Poincaré surface of section for trajectories such as those in Fig. |.
The different cllipses correspond to different trajectories, cach
differing in J, but having the same total cnergy

U3 TE) £

Fig. 3
A quasi-periodic trajectory for systems with the Hamiltonian as in
Fig. | but with v, = v,

The slightness of the cnergy exchange in the quasi-periodic
regime, when the unperturbed oscillator frequencies were
incommensurate, may explain the stability of the vibrationally-
excited van der Waals' Cl% —Cl, complex described elsewhere

in this symposium [10]. Here, Clf is vibrationally-excited.

The vibration frequency of the Cl; bond being very different
from that of the Cl,~Cl, bond, one expects little encrgy
exchange in the quasiperiodic regime.

Trajectory studics in the astronomical literature [5] reveal
that at higher cnergies the dynamical system behaves in an
ergodic-like manner, yiclding a shotgun patiern on the
surface of scction instead of the regular pattern in Fig. 2.
There is. as yel, no rigorous theory for treating systems in
the ergodic or nearly ergodic regime, unlike the quasi-periodic
regime at low energies (and low couplings), but action variables
J; can no longer be rigorously defined (or cvaluated). The onsct
of crgodicity has been treated in Chirikov's theory of over-
lapping resonances [11], as well as by other methaods.

In the case of unimolecular reactions Bunker and coworkers
have compared their results on trajectory studies of lifetimes
of decomposing or isomerizing molecules with an ergodic-like
theory (RRKM), obtaining reasonable agreement in most
cases [12]. A typical relaxation time for intramolecular
encrgy transfer was of the order of 107! scc [12a] for the
systems studied. Some of the work is reviewed by Bunker

clsewhere in this symposium. Recently, McDonald at Illinois
has added CH,Cl to the trajectory list of systems studied [13].

CH; +Cl = CH;CI*. (8)

The intramolecular relaxation time was about 1 psec, and the
vibration initially the most cxcited in the formation of CH;Cl
was the CH, —Cl one, while the vibrations transverse to the
CH, - Cl axis were initially those least excited, as one might
expect. In the case of a truly head-on collision, the complex
lasted only one vibration since there was no time for energy
exchange between the newly formed CH, —Cl bond and the
other coordinates. The method used in the analysis was the
spectral method of Noid and the writer [2], described in the
next section.

Experimentally, in their now-classic experimental investi-
gations, Rabinovitch and coworkers [14] found an intra-
molecular relaxation time of the order of onc picosecond for
systems such as

CF,—CF—CF=CF, +CH, — CF,~CF-CF~CF,
N/ NZ \/
CH, CH,

— CF; + CH,=CF—CF~CF,. ©)
\/
CH,

CH,

They determined whether there was any preference for the
CF, to be emitted from a particular ring. (The deuterium
isotope was uscd to distinguish the possibilities.)

Fourier Analysis (Spectrum)
of a Classical Trajectory for a Molecule

Recently, in a semiclassical study of cigenvalues of an-
harmonically coupled systems, it occurred to Noid and the
writer that one could obtain the classical (and so approximate
quantum) spectrum dircctly from the trajectory, for purposes
of comparing with the observed spectrum [2]: One merely
calculates from the trajectory the appropriate autocorrelation
function and then computes the Fouricr transform.

One sces from Equation (2) that in the quasi-periodic
regime such a spectrum should consist of sharp lines, peaked
at the v,'s, at the overtones and at the combination frequencics.
The sharpness of the spectrum has nothing to do with any
approximation of harmonic vibrations or with any ap-
proximation of scparation of variables, and should apply
cqually to the spectrum of any molccule that is in the quasi-
periodic regime.

In the ergodic regime there are no well-defined variables
J, and w;, and classically at least onc would expect the sharp-
ness to decrease. It is interesting, therefore, to compute the
spectrum of a high energy molecule obtained from a classical
mechanical trajectory. Such spectra obtained by K oszykowski
and Noid [15] indicated a broadening of the formerly sharp
lincs and the appearance of an underlying continuum. Com-
parisons with a quantum mechanically calculated spectrum
of a high energy molecule should be of interest and are in
progress.

One can also compute the transient spectra from trajectories

" of molecules undergoing unimolecular reaction [13]. Several
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observations are given in a paper by McDonald and the
writer [13]. In particular, the extensive emergy exchange
between anharmonically coupled modes, degencrate in zeroth
order, is clearly evident from the spectrum, the sum of the
energy in those modes remaining constant. Again, for purposes
of comparing lifetimes with those estimated from RRKM
theory, a determination of the spectrum can yield a check
on the fundamental frequencies used in the calculation.

The above results bear on multiphoton disseciation, the
subject of many recent investigations [16]. The multiphoton
absorption is believed to occur stepwise in a particular mode
(in the quasi-periodic regime) followed, at high energies, by
absorption by a quasi-continuum, and by energy randomiza-
tion or quasi-periodicity, and dissociation. Trajectory studies
are in progress [17].

Degenerate Modes and Slater Theory

The extensive encrgy sharing which was seen earlier to
occur between harmonic modes which are degenerate in the
unperturbed case and which are anharmonically coupled,
as in Fig. 3, has major consequences for Slater’s [18] theory:
For a pair of unperturbed harmonic oscillators of the same
frequency the trajectory is a closed orbit, an ellipse. Thus,
only one dimension in coordinate space is covered by the
trajectory. However, as Fig. 3 illustrates, the trajectory for the
anharmonically coupled oscillator pair covers densely a
two-dimensional region. (The ellipse precesses.) Similarly,
it covers four dimensions in phase space instead of the two
in the unperturbed degenerate case.

This effect of anharmonicity has far-reaching consequences
for any harmonic oscillator theory of unimolecular reactions
such as Slater’s. In his treatment of a molecule as a collection
of harmonic oscillators Slater was required to assume that
if a molecule was symmetrical, and so had a vibrational
degeneracy, that symmetry (and degeneracy) was preserved
throughout the decomposition or isomerization step of the
molecule [19a). In practice, as in cyclopropane, the distortion
of the molecular geometry during the isomerization is so
great that this symmetry is typically destroyed. Thus, the
assumption of this continued degeneracy is not correct. One
immediate consequence of the assumption is that if therc are
nvibrations and the degree of degeneracy is m, the unperturbed
trajectory covers denscly a configuration space of only
n — m dimensions instead of n dimensions, and a phase space
of 2(n—m)—1 dimensions instead of 2n — 1. The system
thereby more easily reaches the critical region, the “transition
state”, of the phasc space and has a shorter lifetime. In fact,
the first order Slater rate constant k, for reaction of a molecule
of given ecnergy E, averaged over vibrational phases and
vibrational amplitudes behaves as [19b]

k(E) < [(E — EoQJE}~™"", (Slater)

where E — E, is the excess energy. However, since it is found
(Fig. 3) in the trajectory of a pair of coupled oscillators that
even a small anharmonicity causes an extensive sharing
between formerly degenerate oscillators, and so causes the
.system to cover densely the larger dimensional phase space,
this anharmonic coupling yields instead of (10),

(10)

k(E) o [(E — Eo)/EJ"™*. (Quasi-periodic, anharmonic) (11)

The motion in this system is still in the quasi-periodic regime.
One can distinguish between this energy exchange and
ergodicity. The former is a “periodic” or more precisely
quasi-periodic exchange while the latter is not. The former’s
motion covers less phase space than the latter’s (but both in
2n — 1 dimensions). Nevertheless, for the ergodic case one has

ky(E) o [(E = EoWEJ* ™!, (ergodic) (12)

which is of the same form as (11) rather than (10).

We conclude this section with a brief statement of a formal
quasi-periodic gencralization of Slater theory for non-
degenerate systems. The usual stationary statc arguments
and strong collision assumption yield for the unimolecular
rate constant

ko = [P/ + k) @), 13

where J is the totality of some zeroth order action variables
(one per oscillator), p(J) is the equilibrium Boltzmann prob-
ability of finding J in (J.J + dJ) per unit dJ, and o is the
collision frequency at the prevailing pressure. (The J's in a
unimolecular reaction can't be strictly true action variables:
quasi-periodicity is only an approximation here, since the
ultimate act of decomposition of real molecules clearly
cannot be a quasi-pcriodic one!) Slater gives an explicit
expression for k,(J), using a harmonic oscillator approxima-
tion, and for p{J). He employs amplitudes instead of actions,
but they are simply related to each other in the harmonic
oscillator approximation as in Equation (4). When k, depends
on the J's only via E, as it does in the ergodic case, one can
convert (13) by integration to the RRKM form

kuai = § ka(E)p(E)AE/(1 + ky(E)fed). (14

When there is a degree of degeneracy equal to m in the quasi-
periodic case dJ in (13) would be dJ,...dJ, o instead of
dJ,...dJ, [19a]. Such degeneracy typically disappears in
the anharmonic case, as already noted, and so one can expect
to use dJ,...dJ, for dJ in (13) in most generalizations of
Slater-type theory.

It will be interesting to compare the results of (13) and
(14) for some system with incommensurate frequencies, to
see how different the quasi-periodic and ergodic predictions
can be, when extensively averaged as they are in those equa-
tions. Only when k,(J) shows relatively little fluctuation with
J for a given E can the two expressions yield somewhat
similar numerical results at various w’s (pressures).

The problem of calculating (13) in approximations other
than the harmonic oscillator one is a formidable one, because
of the complexity of anharmonic modes and because of the
problem of connecting those modes with motion in the
vicinity of the transition state, with its highly distorted
geometry. There is also the problem of zero-point energy in
the transition state considered later. The latter places a
marked lower bound on the phase space occupied by the
“critical configuration” or transition state. When the high
energy molecules are in an ergodic regime, such a development
of quasi-periodic theory is of course unnecessary.
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Quantization of Transition States

An assumption of transition state theory is that the states
of the internal degrees of freedom in the transition state are
quantized, i.e., have discrete energics. Because the transition
state is a dynamical entity, one cannot automatically assume
the existence of such quantization, although this topic has
not really been analyzed. The subject of quantization of
transition states is particularly important in the low pressure
region in unimolecular reactions, since it determines (via
“zero-point energy”) thc minimum encrgy nceded by a
molecule to reach the transition statc and hence react. In
turn, this second-order low pressure rate constant for the
reaction depends on this minimum, in RRKM theory largely
through a density of states of the energized molecule.

We consider now this quantization of transition states
ABC" for the case of long-lived energetic molecules ABC
(in Equation (16) later), first for the case of a loose transition
state. An example is the dissociation of ethane,

C2H6 b d 2CH3, (15)

where the methyl radicals rotate frecly in the transition state,
judging from the high collision efficiency for the reverse
reaction of recombination of methyl radicals. In this reverse
reaction there is therefore no coupling between the internal
motions and the translational one beforc reaching the transi-
tion state from the separated CH,'s. Since the vibrations of
CH, are quantized in the isolated statc, they are fully quantized
in the same freely rotating free state when they are in the
transition state. Similar remarks apply to loose transition
states in general.

We consider next the quantization of tight transition
states, the analysis of which is more difficult, e.g., in

ABC -~ ABC* - AB + C, (16)

where ABC® is the transition state. An example of such a
reaction is the second half of the chemical activation step in
Equation (1).

If, in the reverse reaction to (16), the internal motions were
vibrationally adiabatic [20], i.e., retained the values of their
vibrational quantum numbers n;, or in the classical case their
actions J;, the vibrational levels of the transition state which
identifiably arise from the vibrations of AB and of C would
be quantized, since they are fully quantized in those species.
(Adiabaticity preserves numerical values of quantum numbers
and action variables.) If, on the other hand, a nonadiabaticity
occurred before, between (AB, C) and ABC* in the reverse
reaction to (16), due to coupling between these vibrations
and the reaction coordinate, the levels of the transition state
would presumably be broadened. A possible semiclassical
description is given later. There are also rotations of AB
and of C which, when coupled with orbital motions of the
AB,C pair, become bending vibrations in the transition
state. Such a transformation is even less likely to be adiabatic,
though may be on the average (“statistically adiabatic* [21]).

No unimolecular reaction has apparently been studied
quantum mechanically, but relevant effects have been obscrved
computationally for tight transition states in a bimolecular
reactions. We consider it first, in particular the H+H, —

H, + H reaction, which has a tight transition state. An analysis
reveals nonadiabatic effects [22]. Such effects may be more
extensive in bimolecular reactions than in unimolecular:
A typical skewed-axis plot [23] for a unimolecular reaction
is indicated in Fig. 4. In bimolecular reactions most of the
very highly nonadiabatic effects (leading to population
inversion for example) occur in “early downhill exothermic
reactions™ [24] and particularly in the curved region, near
the acute angle of the skewed-axes. In unimolccular rcactions,
in contrast, this region is pre-empted by the ABC molecule
as in Fig.4 and the transition state ABC* is situated in the
(AB, C) exit channel.

)

Fig. 4
A skewed-axis plot, in which the kinetic energy in the center of mass
system has no cross-terms, for unimolecular Reaction (16). The
x-axis is & scaled-distance between C and the center of mass of AB,
and the y-axis is a scaled AB distance. The diagonal line is a scaled
distance between A and the center of mass of BC

We turn nevertheless to the H + H, — H; + H reaction,
a mildly nonadiabatic one, since it illustrates an analysis
which can be used and ultimately applied to unimolecular
reactions. Along the reaction path the H, vibration evolves
into a symmetric stretching vibration of Hj in the transition
state and then into a vibration of the H, product. Vibrationally
nonadiabatic effects occur because of coupling with the
curvilincar reaction coordinate: Classical trajectorics show
that when the system has an initial translational-vibrational
energy partitioning which is not quite such on the average
to permit it to surmount the barrier, some systems surmount
it while others do not, depending on the initial vibrational
phase [25].

To sce the quantum implications of this classical result
we turn to semiclassical theory: The reaction probability
can be obtained from an integral involving the wave function
for the collision [26], and this wave function in turn involves
in its phase an integral { pdq from the initial coordinates and
momenta to the final ones. Because of the vibrational non-
adiabaticity just cited, this [ pdg integral will be real for some
initial values of the vibrational w; and complex-valued for
others, when the system has an energy near that of the top
of the barrier. In this threshold region, thereby, not all systems
contributing to the wave function and starting in the lowest
vibrational state of H, will behave as though they had exactly
the same vibrational energy in the transition state H,; some
will have less vibrational energy.

The semiclassical conclusion [27] from such an argument
is that the quantum reaction probability will exceed that of
the usual transition state theory, a theory which requires



Bd. 81, Nr. 2
1977

R. A. Marcus: Energy Distributions in Unimolecular Reactions 195

that the transition state be (at low energies) in the zero-point
H, vibrational state. The conclusion agrees with the findings:
the numerical quantum reaction probability exceeds that
calculated from transition state theory [28]. Further, since a
“nonadiabatic leak” [22] thereby occurs both classically and
quantum mechanically, the former should provide information
on the latter. Specifically, on the previously mentioned
semiclassical grounds, the quantum mechanical reaction
probability P, in a plot of P versus initial translational energy,
is expected to rise appreciably with increasing translational
energy (~0.3, say) at the threshold energy for the classical
reaction probability, and then (for a collinear collision) rise
to its maximum value of unity. This result provides an inter-
pretation of a numerical [29] comparison of classical and
quantum results.

It is important to note that when the system has an energy
placing it near the top of barrier these nonadiabatic effccts
can occur long before the system reaches a transition state
configuration. I am not aware of it being treated adequately
by any “local” (separable or nonseparable) transition state
theory. Rather, it may be necessary to include the accumulated
nonadiabatic effects incurred before reaching a transition
state, as indicated above [30].

In the case of reactions in three dimensions there are of
course additional effects not present in the one-dimensional
collinear case. Whereas the zero-point energy in the collinear
system decreased on formation of H,, and nonadiabaticity
resulted in enhanced rates, the three-dimensional reaction
involves this decrease and also an increase due to formation
of bending modes from rotations. It will be interesting to
compare forthcoming 3-D results [31] with transition state
theory in this case.

In summary, when the frequencies of any vibration are
relatively unchanged when the system proceeds from the
products in (16) to the transition state ABC?®, the vibrations
are expected to be fully quantized. When the vibrations are
strongly coupled to motion along the reaction coordinate
between ABC* and products, nonadiabatic effects can occur,
probably resulting in some broadening of the quantized levels.

Molecular Beam Reactions Involving Complexes

In recent experiments the translational energy distribution
of products of molecular beam reactions involving complexes
has been measured [3], with a view to determining the extent
of intramolecular energy randomization. In the case of a
loose transition state there is no coupling betwcen the internal
degrees of freedom and the reaction coordinate when the
system moves from ABC* to products in (16). In such a case
one can learn about the translational energy distribution in
the transition state directly from the translational energy
distribution in the products. Thereby, one learns about
intramolecular energy randomization in the intermediale
complex. In a reaction such as [3c]

F + CIRC = CR'R” — CIFRCCRR" ,
1
— Cl+ FRC = CR'R" an

the products’ channel probably has a loose transition state.

The translational encrgy distribution for this reaction agreed
reasonably well with that expected from an energy ran-
domization model (¢. g., “RRKM theory plus angular momen-
tum”, or phase space theory) [3c].

Reaction (1) appeared instead to show a large discrepancy
between theory and experiment [3a], as in Fig. 5 where the
phase space theory result is compared with the experimental
one. However, this reaction has a tight rather than a loose
complex: the steric factor for addition of a methyl radical
to an olefin is of the order of 1072 rather than unity [32].
There are thereby exit channel effects, which are omitted
in phase space theory. For example, the steric factor indicates
that the rotations of CH, and of FRC=CR'R" have become
bending vibrations in the transition state for the products’
channel. The translational energy distribution of the products
is complicated by this interaction, and so does not, without
further knowledge of the dynamical effects in this exit channel,
provide immediate information about prior energy ran-
domization.

1E,)

Fig. §
Distribution function f(E;) of product translational encrgies E,
for Reaction (1), obtained by experiment, by phase space thcory,
and by the present analysis. E, is in kcal/mol

Some idea of the dynamical coupling in the products’
channel can be seen from the adiabatic correlation diagram
in Fig. 6. The bending vibrational states of the transition
state are more widely spaced than the rotational states of the
products, and it is this difference which is ultimately responsible
for the steric factor (and is related to an entropy of activation).
In the formation of ABC™* from AB and C, the larger the excess
translational cnergy, i.e., the translational energy of products
E, minus the potential energy barrier U* and minus the
centrifugal potential E¥, the better the chance that the
system can surmount the effective potential energy barrier.
Using this idea and microscopic reversibility, it was possible
to construct a theory [33] for the translational energy dis-
tribution of products, for systems having tight transition
states, as follows.

BC asc’

AB+C

MSWMA
Fig. 6
Exit channel properties. Omitted for brevity is the vibrational energy
of the other coordinates, which can be regarded as included in
Ebeud and Ernl
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Microscanonical transition state theory [34] for a given
total angular momentum yields

NF(E=U®)=Zw,={-f[w,didjdj,dn, (18)

where N} (E— U*) is the number of quantum states of the
transition state when its total angular momentum quantum
number is J and its total energy is E; j; and j, are rotational
quantum numbers of the two products, ! is the orbital angular
quantum number, and n is the totality of remaining quantum
numbers, including those involved with constructing a
particular J from 1, j, and j,; wy is the reaction probability
for a given (EJ!j,j,n). Equation (18) presupposes, in its
very nature, that an energy randomization has occurred in
ABC. (All states in ABC* of the same E and J have equal
a priori probability in NJ.)

The assumption made regarding w; is that it depends on
(EJ1j,j,n) only via the excess translational energy [33]:

Wy = WJ(EP_ El‘ - U*) = wJ(E - E,uun - El‘ - U$)’ (19)

where E, ,, is the rotational-vibrational energy of the
products. Since N} is known for any model of the transition
state, Equations (18) and (19) serve as an integral equation
to be solved for the unknown function w,. The solution of
this equation was given for the case that ! ~ J in an earlier
paper from this laboratory [33]. More recently, Gary Worry
has obtained a solution for general { [4]. He first showed
that in spite of the complicated limits on j,,j; and I (triangle
inequalities and energy bounds), one can write the integral
as a convolution integral, because of the form (19) assumed
for w;. He showed thereby that

(20)

*
N; = Woeflyw s

where the p's, in effect, denote densities of states. Application
of a Laplace transform then yielded a solution for w;, which
was used to obtain the translational energy distribution.
The results involved a summing over all J consistent with the
distribution of J's appearing in the entrance channel. The
results are given in Fig. 5 (and are fairly close to some obtained
with | = J). The E,-distribution is shifted to higher trans-
lational energies, compared with phase space theory, since
some of the bending vibrational energy of the tight transition
state in the product channel has gone into translational
energy E,. The agreement with cxperiment [3a] may be
considered to be within experimental error.

This type of agreement does not prove the assumptions
made. It is possible that some other sct of assumptions may
also be in agreement. However, any assumptions must take
into account the coupling that exists between the translational
and internal motions in the case of a tight transision state,
and one can no longer conclude (as had been done earlier)
that energy randomization occurred only among a few modes.

The experiments themselves [3], together with those of
McDonald and coworkers [35] on the vibrational energy
distribution of products, have been an important development
in providing information for theoretical analysis of uni-
molecular processes. The theory presented here can also be
used to compute rotational and vibrational energy distri-
butions of products and the angular distribution.

A portion of this rescarch was performed while the writer was a
Visiting Professor at Oxford and later an Alexander von Humboldt
Awardee at the Technical University in Munich. He is particularly
indebted to Professor Schlag (Munich) and Dr. Child (Oxford] for
a wonderful sabbatical year.

References

[1] 2) D. W. Noid and R. A. Marcus, J. chem. Physics 62, 2119
(1975); b) cf. W. Eastes and R. A. Marcus, J. chem. Physics
61, 4301 (1974). These papers give methods for obtaining action
variables, but by measuring trajectory times from caustics they
can be used to obtain angle variables also.

[2] a) D. W. Noid, Ph. D. Thesis, University of Hllinois, April 1976;
b) D. W. Noid and R. A. Marcus, J. chem. Physics (to be
submitted).

{3] a) J. M. Parson, K. Shobotake, Y. T. Lee, and S. A. Rice,
J. chem. Physics 59, 1402 (1973); b) D. R. Herschbach, Faraday
Discuss. Chem. Soc. 55, 233 (1973) and references cited therein;
D. L. Kingand D. R. Herschbach, Faraday Discuss. Chem. Soc.
55,331 (1973); ¢) Y. T. Lee, Ber. Bunsenges. physik. Chem. 78,
135 (1974), and references cited therein; d) cf. P. J. Dadigan,
H. W. Cruse, A. Schultz, and R. N. Zare, J. chem. Physics 61,
4450 (1974); ) . St. A. G. Radlein, J. C. Whitchead, and R.
Grice, Molec. Physics 29, 1813 (1975).

{4) G. Worry and R. A. Marcus, J. chem. Physics (to be submitted).

(5] E. g., M. Henon and C. Heiles, Astron. J. 69, 73 (1964); G.
Contopoulos and M. Moutosoulas, Astron. J. 70, 817 (1965);
W. H. Jeffreys, Astron. J. 71, 306 (1966); G. H. Walker and
). Ford, Physic. Rev. /88, 416 (1969).

[6] ). Moser, Stable and Random Motions in Dynamical Systems,
Annals of Mathematical Studics, No. 77, Princeton University,
Princeton, N. J., 1973. and references cited therein.

[7) H. Goldstein, Classical Mechanics, Chap. 9, Addison Wesley,
Reading, Mass., 1950.

(8] H. Poincaré, New Methods of Celestial Mcchanics, Vol. 3
(1897) (Transl. NASA, Washington, D. C., 1967), Chap. 27,
where the theory of the surface of sections is called the theory
of consequents.

[9] D. W. Noid and R. A. Marcus, J. chem. Physics (to be sub-
mitted).

[10] D. A. Dixon and D. R. Herschbach, this symposium.

(11) B. V. Chirikov, Research Concerning the Theory of Non-
lincar Resonance and Stochasticity (CERN Trans. 71-—40,
Geneva, Oct. 1971); G. M. Zaslavskii and B. V. Chirikov,
Sov. Phys. Usp. /4, 549 (1972).

(12] a) D. L. Bunker, J. chem. Physics 40, 1946 (1964); b) D. L.
Bunker and M. Pattengill, J. chem. Physics 48, 772 (1968);
¢) ¢f. W. H. Hase and D. F. Feng, J. chem. Physics 64, 651
(1976).

[13] J. D. McDonald and R. A. Marcus, J. chem. Physics 65, 2180
(1976).

{14] J. D. Rynbrandt and B. S. Rabinovitch, J. physic. Chem. 75,
2164 (1975); J. F. Meagher, K. J. Chan, J. R. Barker, and
B. S. Rabinovitch, J. physic. Chem. 78, 2535 (1974).

{15] M. Koszykowski, D. W. Noid, and R. A. Marcus, J. chem.
Physics (to be submitted).

(16} R. V. Ambartzumian, V. S. Letokhov, E. A. Ryabov, and

N. V. Chekalin, JETP Lett. 20, 273 (1974); D. M. Larsen and
N. Bloembergen, Optics Comm. /7, 254 (1976); V. S. Letokhov
and C. B. Moore, Sov. J. Quantum Electronics 3, 259 (1976)
and references cited thercin; M. J. Coggliola, P. A. Schultz,
Y.T.Lee, and Y. R. Shen, Physics Rev. Letters (to be published)
and references cited therein; J. P. Aldridge, J. H. Birely, C. D.
Cantrell, and D. C. Cartwright, Physics Quant. Electr. 4, 57
(1976).

[17] a) D. W. Noid, M. Koszykowski, and J. D. McDonald (un-
published); b) D. W. Noid, M. Koszykowski, and R. A. Marcus
{unpublished).

(18] N. B. Slater, Theory of Unimolecular Reactions, Cornell
University Press, New York 1959.



Bd. 81, Nr. 2
1977

S. F. Fischer: Final State Energy Distribution for Reactive Collision Products 197

{19] a) Ref. [18}, p. 152fT; b) Ref. [18], p. 92fF.

{20) M. A. Eliason and J. O. Hirschfelder, J. chem. Physics 30,
1426 (1959); R. A. Marcus, J. chem. Physics 43, 1598 (1965).

[21] R. A. Marcus, Discuss. Faraday Scc. 44, 7 (1967).

[22] R. A. Marcus, Discuss. Faraday Soc. 44, 87 (1967).

[23] CI. S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of
Rate Processes, Chap. 3, for skewed-axcs plots, McGraw-Hill,
New York 1941.

(24] E. g..J. C. Polanyi, Faraday Discuss. Chem. Soc. 55, 389 (1973).

[25] J. R. Stinc and R. A. Marcus, to be published.

[26] Cf. R. A. Marcus, J. chem. Physics 59, 5135 (1973) and referen-
ces cited therein; ¢f. W. H. Miller, Adv. chem. Physics 25, 69
(1974), and references cited therein.

[27] Nevertheless some caution should be obscrved in drawing
precise conclusions from the integral expression which is, after
all, an approximate one.

{28) E. Mortensen, J. chem. Physics 48, 4029 (1968); D. G. Truhlar
and A. Kuppermann, J. chem. Physics 56, 2232 (1972).

[29] E. Mortensen, J. chem. Physics 49, 3526 (1968). One can show
from these results that the reaction occurs classically at cnergies
below the vibrationally-adiabatic classical threshold energy,
and hence shows a nonadiabaticity.

(30) In contrast, for energics well below the top of the barrier, the
tunnelling region is a wide onec, and a “local™ transition state
theory becomes a ‘“‘global” one, when trajectorics are used to,
calculate the tunneling. A very interesting analysis applicable
to this large tunncling case, has been given by S. Chapman,
B. C. Garrett, and W. H. Miller, J. chem. Physics 63, 2710
(1975).

(31] Early 3-D results have been given by A. B. Elkowitz and R. E.
Wyatt, J. chem. Physics 63, 702 (1975); A. Kuppermann and
G. C. Schatz, J. chem. Physics 62, 2502 (1975).

{32) Cf. R. J. Cvetanovic and R. S. Irwin, J. chem. Physics 46, 1694
(1967), Table II, where the Arrhenius pre-exponential factor is
of the order of 10'' cc mol~! sec™!, which is about 10~* of
the collision frequency value (10'4).

(33] R. A. Marcus, J. chem. Physics 62, 1372 (1975).

[34] R. A. Marcus, J. chem. Physics 45, 2138 (1966).

[35] J. F. Durana and J. D. McDonald, J. chem. Physics 64, 2518
(1976), and references cited therein.

E 3561



