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Several energetic and dynamical aspects of proton transfers are treated. The effect of intrinsic
barrier asymmetry on BEBO calculated Bronsted plots is investigated, and contributions to work
terms are also considered. The dynamics of transfer of a light particle between two heavier ones is
discussed for a particular potential energy surface, making use of classical trajectories, semiclassical
concepts, and a previous quantum study. The question of nonequilibrium polarization of solvent
is also considered.

1 INTRODUCTION

It is a pleasure to participate in this symposium honouring Professor R. P. Bell,
whose work has illuminated so many parts of the proton transfer field. In this paper
I would like to comment on several aspects of proton transfer, both energetic and
dynamic: (1) effect of  intrinsic barrier asymmetry  on Bronsted plots, (2) dynamics
revealed by recent classical and quantum mechanical studies for an H-atom transfer,
(3) contributions to the *“ work terms, > and (4) the possibility, as in electron transfers,
of nonequilibrium polarization of the solvents.

2 INTRINSIC BARRIER ASYMMETRY AND BRONSTED SLOPES
Sometime ago we considered a model of a proton transfer reaction,*
A1H+A2 - A1 +HA2 (2.1)

(charges are omitted for notational brevity), in which the process occurred in three
steps .

A1H+A2 - AlH‘ : 'Az (2.2)
AIH' * 'A2 s Al‘ ¢ ‘HAZ (2.3)
Al. * 'HA2 ad A1 +HA2. (2.4)

Of these only the middle one depended on the standard free energy of reaction AG®
for (2.1).*

Step (2.2) involves a free energy change w* (called a * work term ) for bringing
the reactants close together; w* includes steric (orientation) effects and, where
necessary,? partial desolvation. The next step (2.3) is the actual proton transfer
and involves intramolecular and solvent reorganization to form the transition state,
followed by an intramolecular and solvent relaxation. Step (2.4) is a *“ disorienting ™
and resolvating one; it contains a work term —w®, w® being the analogue of w* for
the reverse reaction.

* AG™ is actually the “ standard * Gibbs free energy change in the prevailing medium and at the
prevailing temperature.
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In an approximation which was quadratic for treating (2.3) and which at the same
time neglected ** A-asymmetry » (4,-4,, defined later), the rate constant was given by

k, = Z exp(~AG*/kT), (2.5)

apart from the usual statistical factors.* Z is the collision frequency in solution,
AG* is

AG* = w4+ (A1 +AGy'[A)? (IAGR'| < 4) (2.6)
and

AGY = AG® +wP—w'. 2.7)
/ is the * intrinsic ” free energy barrier,! i.e., the barrier in (2.3) when AGR’ = 0.
AGY' is seen from eqn (2.7) to be the effective standard free energy of reaction for
the proton transfer step itself.

Similarly, in a bond energy-bond order (BEBO) type of calculation, the corres-

ponding value of AG* is given ! by eqn (2.8) when J-asymmetry is neglected and when
the E’s in ref. (1) are replaced by free energies,

AG* = wr+(A/4)+(AGE' [2)+ (1/4y)in cosh(2yAGY’ /), 2.8)
where 7 is In2. '

The difference between eqn (2.6) and (2.8) was typically relatively small.! Implica-
tions of the equations are apparent : a small 1 implies a large curvature of a Bronsted
plot; a small A also implies a large limiting rate at large negative AGR’ when w* is
small, but the limiting rate is small when w* is large.

A question which arises is the effect of A-asymmetry. Specifically, if a potential
energy surface is varied by varying AG* of reaction (2.1), holding constant the intrinsic
barriers of the exchange reactions

AH+A, » A;+HA,, (=12 (2.9)

do the preceding considerations prevail?®* The intrinsic barrier 4,/4 for the reaction
in eqn (2.9) may depend on i, and the difference in 1,-4; is called here the A-asymmetry
Differences in 4, and 1, were neglected in deriving eqn (2.6), prompted in part by a
finding that such effects were relatively minor in the quadratic case, i.e., in eqn (2.6).4
We consider now their effect on the BEBO derived formula, eqn (2.8).

The problem is how to calculate the effect of varying AG®’ holding the intrinsic
barriers constant and not assuming A, = A,. Typically, a potential energy surface
is not automatically characterized in terms of 4,, 4, and AGR’. For example, in a
BEBO model 5 for the reaction in eqn (2.9), the potential energy of formation of an
intermediate state can be written as

AE = Vl - Vln’{‘ - Vzngz, (2-10)

where, along the reaction path, bond order is conserved :
ni+n, =1 (2.11)

n, and V, are the bond order and bond energy of the A,H’th bond, p; is an exponent
which reflects a property of that bond. For the exchange reaction in eqn (2.9), n,
is 1 in the transition state, and so AE for that reaction, which we may call AE,, or
better yet, 1,/4, is found from eqn (2.10) to be ¥; [1-2(3)"'].

* If sr and sP are the statistical factors for forward and reverse steps. it suﬁic_es to replace wr and
wP by wr—kT In st, wp—KkT In sP, to include their effect.! Further, k; is the k in footnote 3 of ref

(1) in the case of diffusion effects.
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The potential energy change accompanying the reaction in eqn (2.3) is AV:

AV =V,-V,. (2.12)
Thus, the effect of AV on the potential energy barrier to reaction AE can be investi-
gated, holding the intrinsic barriers 4, and A, constant, only by varying p, and/or p,
simultaneously. (It is not clear that this precaution was followed previously.)?
The value of n, in the transition state is obtained by setting JAE/on, = 0 and intro-
ducing the resulting #, and 7, into eqn (2.10).

Investigation of the effect of AV on AE, holding 4, and 4, constant, is considerably
simplified, as in eqn (10) of ref. (1), by noting that p; = 1 and expanding nP in eqn
(2.10) in a Taylor series, retaining only the first two terms. The barrier AE is found
(eqn (12) of ref. (1)) to be

AE = uﬁAV—‘; ) (A /4y)n} In nf, (2.13)

where n% and n} are the solution of AE/dn% = 0, i.e., of

0 = —AV —(A,/4y)(In n} +1)+(4,/4y)(In ny +1) 2.14)

ni+nd =1, '
(Eqn (2.8) can be obtained from eqn (2.13) and (2.14) by setting A=l =A
replacing AV by AGg/, and adding to (2.13) the barrier w* of the first step (2.2).)

Now, at last, AE depends only on AGR’, A, and 4,. .
The slope of a (AE, AV) plot at a given 4, and 4, is obtained by observing ?hat
dAE/dAV is the sum of (GAE[0AV,}) and of (BAE/0n)ay(0n}[0AV). Since

(OAE[0n3) 4y is zero, one finds from eqn (2.13) that
OAEJOAV = nb. (2.15)

The AE in eqn (2.13) can be obtained by first introducing values for n} and n}
into eqn (2.14), solving the latter for AV, and introducing this result into eqn (2.13).
In table 1 the resuits of such a calculation are given choosing a rather large asym-
metry: 4;/4 = 12 and 4,/4 = 2.

TABLE 1.—EFFECTS OF REACTANT ASYMMETRY ON (AE, AV) PLOTS ¢

'li AV AE nf AV AE
0.1 —19.2 04 0.6 0.0 7.2
0.2 —15.2 1.0 0.7 5.4 10.7
0.3 —11.7 1.8 0.8 12.8 16.3
04 —8.2 3.1 0.9 25.1 26.9
0.5 —4.4 4.8

From table | one sees that the 1/4 in eqn (2.6), namely AE at AV =0, is 7.2. The
latter is close to (1, +4,)/2. The Bronsted slope JAE/GAV for the system is seen
from eqn (2.15) to be ni. Thus, when the true slope is 0.1, 0.3, 0.6 and 0.8, say,
one finds from the above A and the corresponding AV’s in table 1 that the slope
calculated from eqn (2.6) is 0.17, 0.30, 0.50 and 0.72, respectively, values which are
fairly close to the true slopes.

3SOMEDYNAMICAL ASPECTS OFLIGHT PARTICLE TRANSFER

Chemical kinetics has received additional insight from recent studies with mole-
cular beams, lasers, and infra-red chemiluminescence.® On the theoretical side .the
main method for interpreting these data has involved computer-calculated classical
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trajectories of the atoms,®> 7 because of the difficulty of solving the fully three-
dimensional reactive collision problem numerically and quantum mechanically.
Numerical quantum mechanical studies have been almost entirely confined to collinear
collisions.® In the case of proton transfers no trajectory or quantum mechanical
numerical studies appear to have been made as yet.

Some insight into the dynamics can be obtained by studying instead the transfer
of a hydrogen atom between two heavier particles. The only quantum mechanical
study which has appeared ° is that of a collinear collision between HBr and Cl.

Cl+HBr —» CIH+Br, 3.1

using a London-Eyring-Polanyi-Sato potential energy surface. This limitation of
collinearity is perhaps not in itself too dismaying; the actual collisions in solution,
with major steric or solvation features, can differ substantially from the usual three-
dimensional gas phase collisions.

The transmission probability was calculated for the reaction and, more specifically,
for the formation of various vibrational states of the product HCI of this exothermic
process.® To analyze the results of this study and to obtain implications for other
light particle transfer, Dr. Ellis of this laboratory has undertaken some classical
trajectory studies on this and related systems. While the results will be described
elsewhere,'° some features are summarized below.

3 4 R a.u.

FiG. 1.—Skewed-axes plot of potential energy contours for reaction (3.1). R; = Rg—H, Ry =
Ru-B:/C, where C is the usual mass-scaling factor ! (0.987 here). The dotted line denotes a
transition state, and a reactive trajectory is also indicated.

A diagram of the surface used is given in fig. 1 in the usual skewed-axes form.!!
(As is well known, plots in rectangular-axes form, while frequently used, are misleading
for purposes of analyzing the dynamics of individual trajectories.) The radial
coordinate is, essentially, a scaled Cl - - - Br distance, while the angular coordinate is
the protonic coordinate. In one definition, the transition state is the line of steepest
ascent from the saddle-point, indicated in fig. 1 by the dotted line. The latter is seen
to be curved in the present highly exothermic instance.

A typical trajectory for reactants with ap initial zero-point vibrational energy and
with a substantial initial translational energy (9 kcal/mol above the barrier height
of 1 kcal/mol) is indicated in fig. 1. For most of the trajectories corresponding to
these and lower energies the relevant part of the dotted line is effectively perpendicular
to the horizontal axis. Thereby, the reaction coordinate in this appreciably exother-
mic system is essentially the Cl - - - Br distance.

We found that the classical probabilities agreed approximately with the quantum
mechanical values, for the transitions which were classically allowed, i.e., those for
which the final vibrational states of products were attainable from the initial ones of
reactants via real-valued classical mechanical trajectories. (Classically-forbidden
transitions are those which require complex-valued trajectories.'?)

A substantial fraction of the trajectories which passed through the transition
state region (i.e., across the dotted line) did or did not recross it to reform reactants,
depending on the initial translational energy. The behaviour in.the preliminary
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studies appears to suggest that a proper phasing of the H—and Cl—Br motions is
needed for reaction. The recrossing itself * wastes ” phase space. It implies that,
apart from tunnelling corrections, the rate will be typically less than that predicted
by transition state theory.!®* However, even a factor of three as a discrepancy
between transition state theory and the actual dynamics is a minor one, considering
the large variations in rate which can be studied by variation of factors such as AGY'.

A second deduction can be made from the classical trajectories using semi-
classical '* arguments : Because the zero-point energy of the vibrational motion (more
precisely, a vibrational * action variable " J) is roughly constant up to the transition
state region in the above study, the vibrational motion is substantially ** adiabatic > 14
in this region of space. The “quantum number > of the vibration N is related to J
by the well-known Bohr-Sommerfeld eqn (3.2) for a vibrational coordinate, a formula
later justified by the WKB solution of the Schrédinger equation.

J = (N+}h. (3.2)

While N can have any real value classically but only integer values quantum mechani-
cally, the same approximate adiabatic behaviour which led to a tendency to preserve
J classically in the present case, in the region up fo the transition state, will lead to a
similar tendency to preserve N quantum mechanically in that spatial region. The
vibrational energy is, for a harmonic oscillator of frequency v, equal to Jv, both
classically and quantum mechanically. Thus, apart from minor variations of v in
this region, the vibrational energy is also roughly constant. Since isotopic effects on
the rate constant, in the absence of tunnelling, are largely attributed to differences in
zero-point energies of reactants and the transition state,!5 there should be essentially
no isotopic effect on the rate constant in this appreciably exothermic system, when H
is substituted for D.

Finally, a type of Franck-Condon principle also operates in the region where the
system moves from one channel to another, the momentum of the ** slow * coordinate
Cl—Br being substantially conserved in that region. Here, the protonic motion is
very nonadiabatic, and a significant increase of its vibrational action (and energy)
occurs. Thus, in the reverse reaction vibrational energy should facilitate the proton
transfer, an effect which might be observable in a suitably stabilized (e.g., intra-
molecularly hydrogen-bonded) system using short laser pulses.

In the case of the corresponding thermoneutral system

Cl+HCIl - CIH+Cl, (3.3)

the potential energy surface is quite different from that depicted in fig. I. The surface
is now symmetrical about the bisector of the acute angle, and the dotted line repre-
senting the transition state now lies along that bisector. The reaction coordinate is,
in the vicinity of the transition state, perpendicular (as before) to the dotted line and
so now is substantially a motion of the proton. The original zero-point energy of
the protonic motion has thus been lost, or really converted to motion along the
reaction coordinate, when the system passes across the dotted line region. The full
effect of an H and D isotopic difference in zero-point energy is thereby felt, yielding
a maximum isotope effect (tunnelling corrections aside). These facts are well-
known,!* but it is interesting to see them borne out by the behaviour of the trajectories.
The various dynamical results, classical and semiclassical, thus have implications for
approximate dynamical treatments of light particle transfer, but we shall omit here
further discussion of them.

The above remarks apply to potential energy surfaces such as that in fig. 1 and
its analogues for less (or more) exothermic reactions. In the case of proton transfers
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in solution the effective surface is more apt to have potential energy wells in the two
channels rather than free escape channels out to infinity, wells created by hydrogen
bonding or by cage effects. Nevertheless, from semiclassical considerations, effects
similar to those described above are expected to apply in this case also.

4 WORK TERMS w' AND wp

The work term can be a composite of several terms. In the case of carbon acids
or bases, which do not participate in hydrogen bonding, some desolvation of an
attacking nitrogen oxygen base or acid may be needed 2 and not compensated for by
a favourable AGg’, and so contribute a term wi., to w*. Again, in the large molecules
which are usually involved and when the reactants are not joined by hydrogen bonding,
an appreciable steric restriction may occur, and contribute a term wi. For example,
in the gas phase abstraction of a hydrogen atom from an alkane by a methyl group

CH,;+HR - CH,+R, 4.1

a steric factor of the order of 10-2 can be anticipated,'® and would correspond to a
work term w* of about 4 kcal/mol. Such steric factors might be reduced somewhat
by favourable AGg’, but only a slight effect would be anticipated in the present case.

If one assigns to the partial desolvation a contribution of the order of 6 kcal/mol
and assumes a steric effect of the above magnitude the net w* for nonhydrogen bonded
reactants would be about 10 kcal/mol, which is of the same order as that needed to
explain the data.?: 17

Another contribution to the work term can also occur, when the immediate
product of the third step in the reaction, eqn (2.4), is not the separated products but
rather is a metastable intermediate which later ruptures, (cf. eqn (5.1) later).
Whenever this last step has an activation barrier wj.. which exceeds the barrier for
the intermediate to reform the reactants, this w§.. should in effect be added to the
previously computed free energy barrier. We then have

W' = Wies + Wer+ Wiee. (4~2)
Of these w* contributions, only the first two contribute to the w* in eqn (2.7).

5 NONEQUILIBRIUM SOLVENT POLARIZATION

In electron transfer reactions a charge transfer occurs between two reactants, and
the * charge centres > are usually some 5 to 10 A apart. In the transition state the
electron cannot be in both places at the same time, and the solvent orientation-
vibrational polarization adopts a value which is some compromise. The solvent
electronic polarization, on the other hand, can largely follow the motion of the electron
being transferred. This situation, where the nuclear part of the solvent polarization
is not that dictated by either charge centre alone and where the electronic part is
dictated by the instantaneous position of the transferred electron and by the field due
to the4m:c;lear part, was termed “ nonequilibrium polarization ” and treated in some
detail.*- :

In the case of a simple proton transfer between two adjacent centres, as in eqn
(2.3), the charge is transferred only over a relatively short distance, and an effect such
as the above would be expected to be minor. In some cases, however, the assumed
mechanism involves rearrangement of several bonds, with a somewhat larger dis-
placement of charge in the proton transfer step (5.1). One example might be

AH+R,;R,C=N*+=N- - A-+R,;R,CH—N+ =N (5.1
(followed by elimination of N, and by other processes).
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To obtain the potential energy of the transition state for any given configuration
of the nuclei of the reaction complex and of the surrounding solvent, the Schrédinger
equation is solved for the clectronic wave function. When attention is focused on
the electrons of the reactants, and the electrons of the solvent are treated, for reason
of simplicity, as forming a polarizable dielectric continum, one obtains a nonlinear
Schrédinger equation.

The free energy of formation of a nonequilibrium polarization state with an
arbitrary orientation-vibration solvent polarization is given by !°

Weey = ~[(1=1/D,,)(82] [ D*dr— | P.D dr+2nc (P2ar - (5.2)

neglecting dielectric image effects. D(r) is the field directly due to the charges on the
reactants, 1/c is 1/D,,—1/D;, r is any point in the solvent, P(r) is a function of the
arbitrary orientation-vibration polarization, and D,, and D, are the optical and static
dielectric constants of the solvent, respectively. Ultimately, eqn (5.2) can be replaced
by a more rigorous, statistical mechanical expression, but it will suffice for purposes
of the present discussion.

The Schradinger equation for the wave function ¥ of the electrons of the reactants,
for any nuclear configuration r, of the reactants and (positions) of solvent molecules
is obtained by minimizing 2° the following functional () with respect to  at a
given P.

ﬁ(w-—j VY2 dr,+jV(r1,r.,>|w1’dr,{ o ¥ (53)

where r, denotes the totality of coordinates for the reactants’ electrons, and | Vi |2
really denotes a summation over such electrons a, b, ... : | V¢ |2+| V¥ |2+
V(r, r,) includes the potential energy arising from interactions within the reactants
and with the solvent molecules, apart from that included in the relatively long-range
polarization term W,,.

Ultimately, all values of the r, are considered and a suitable quantum and statistical
mechanical average is made over r,. The D appearing in eqn (5.2) is

D) = -, @W gl r=rs | (5.4)

1/| r—r; | being an abbreviation for a sum over reactants’ electrons, 1/ r—r, |+
lr—ri+.

When the resulting (nonlinear) Schrédinger equation is solved for i, one obtains
a y which depends on P(r). #(¥) then becomes a function of P which can then be
obtained by then minimizing & with respect to P. In the case of electron transfer
reactions it was possible to introduce a simplifying approximation, writing { as a
linear contribution of two terms with weak overlap between them, one term being the
same as for the reactants and the other being the same as for the products, and both
reactants treated as spherical.!® The results obtained from eqn (5.2)—(5.4) can be
shown (Appendix 1) to be equivalent to those obtained !® earlier by a different and
in some respects less general method.

To the extent that the electronic wave function for the transition state of the
reaction in eqn (5.1) could be similarly approximated for this purpose! the
previous * *8 results for electron transfers could be adapted to that for proton transfer,
and added to the contribution to AE in eqn (2.10). When ¥ cannot be written as a
linear combination eqn (5.2)-(5.4) remain applicable but more formidable. Elect-
ronic structure calculations for the transition state of reactions such as (5.1) would
therefore be helpful. ,
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When the electronic energy of the system has been obtained as a function of
r, and P, the latter remain to be treated, statistically as in transition state theory or
dynamically. Examples of dynamical treatments for other or related potential
energy surfaces are given in ref. (21) and (22).

6 SUMMARY

A substantial *‘ reactant asymmetry >’ does not have a large effect on the slope of
Bronsted plots (Section 2). Possible contributions to the work terms are summarized
in Section 4, and the relation of the nonequilibrium polarization study in electron
transfers to a possible one in proton transfer is considered in Section 5. On the
dynamics side, some results and implications of a recent study of dynamics of light-
particle transfer are described in Section 3.

APPENDIX 1
RELATION OF EQN (5.3) TO THOSE IN REF. (18)

If Y, denotes the electronic wave function for the pair of reactants, as in ref. (18) and
¥, denotes that for the products, a trial Y is

V= \/C1 Vit \/Cz Ya. | (A1)

This y is introduced into eqn (5.3) and the variation, 6.4, is calculated at fixed P, and set
equal to zero. The dc; and dc¢, are subject to

citer=1. (A2)

When the assumption of weak overlap of ¥, and ¥, is imposed, one can show that one
obtains the result that the free energy of reactants with an arbitrary P equals that of the
products, in this same P environment. This condition is identical with that imposed in
ref. (18) to satisfy the Franck-Condon principle for these weak overlap systems. One
next finds P by minimizing & subject to this new constraint, obtaining a relation the same
as that used in ref. (18), The results in that paper are then obtained when the approximation
of spherical reactants is introduced.
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