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The semiclassical theory of spectral line broadening developed in the previous paper of this series is 
used to calculate the half-widths and shifts of nonoverlapping rotational spectral lines of CO, HCI, 
and OCS, broadened by inert gases. Comparisons are made with the available experimental data and 
with related theoretical analyses, and reasonable agreement is obtained. The method used applies both 
to fairly quantum systems as well as to the relatively classical ones. A symmetrized semiclassical 
expression for Wigner 6-j symbols is given and applied. 

I. INTRODUCTION 

The effect of collisions on molecular spectral line 
shapes has been calculated by a variety of perturbative 
and nonperturbative methods. 1 In the present paper we 
apply the semiclassical theory of the linewidths and 
shifts developed in the preceding paper of this series2 

(hereafter referred to as Part I). These first applica-
tions are made to the CO-He, HCI-He, HCl-Ar, OCS-
He, and OCS-Ar systems, 3 each of which has been ex-
tensively studied and for each of which a potential ener-
gy function is available. 4,5 

The CO, OCS, and HCl-He systems have been treated 
by a classical-type method by Gordon, 4 who calculated 
linewidths. 6,7 Using instead a classical path method, 
widths and shifts have been calculated for the HCl-Ar 
system by Neilsen and Gordon. 5 This latter method as-
sumed a zeroth order decoupling of the relative transla-
tional and internal motions, of which the former was 
treated by classical mechanics and the latter by time-
dependent quantum mechanics for the coupled internal 
states. Although this second method was called semi-
classical, it is not to be confused with "semiclassical" 
as used in the present series. It has been suggested8 

that the HCl-Ar system is best treated using the classi-
cal path method for the low rotational angular momenta 
and the classical method for the higher ones. The pres-
ent paper investigates the use of the semiclassical meth-
od for both cases for this and the other systems. 

During the course of many studies on the collisional 
broadening of spectral lines, three collisional effects 
occur, and at least some have been included in each of 
those studies. These effects are collisional deactiva-
tion, collisionally induced phase shift of the molecular 
motion of the absorber, and collisionally induced reori-
entation of that rotating molecule (absorber). The first 
of these effects has a major effect on the linewidth, while 
the second has a major effect on the line shift, and the 
third has some influence on both. A helpful discussion 
of all three has been given by Gordon in his classical-
like analysis. 4 

All three of these effects occur automatically in the 
semiclassical theory, and that aspect of the relation be-
tween that theory and the classical theory of Gordon was 
discussed in Part I. In the present paper, numerical 
results are obtained, compared with the experimental 
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data9
-

11 and with the previous theoretical results in 
Refs. 4 and 5. 

One minor difference from Part I, apart from the ty-
pographical and other corrections given in Appendix A, 
is the introduction of a symmetrized semiclassical ex-
pression for the Wigner 6-j symbol, which is used to re-
place the less symmetrical one given in Edmonds. 12,2 

A comparison of the two with the exact values of these 
coefficients is given later in Table I. 

II. METHODOLOGY 
The reduced line shape expression for nonoverlapping 

rotational lines is the familiar Lorentzian, one with a 
negative-resonance term, given in Part I as 

x[ PI Pf ] 
w-wo-d-iw +w+wo+d-iw 

(2.1) 

where I(w) is the reduced line shape; 1m denotes "imag-
inary part of"; j I and j I denote the initial and final rota-
tional quantum numbers, respectively; J.L is the dipole 
moment operator in a term which is the reduced matrix 
element of J.L; PI and P, are the normalized Boltzmann 
denSity distributions of j I and j /' apart from the relevant 
degeneracies13; w is the angular frequency of the inci-
dent radiation; Wo is the angular frequency corresponding 
to the transition j 1- j /; and w and d are half-width and 
shift of the line j 1- j /' respectively. The latter are de-
fined by the real and imaginary parts of a velocity-
weighted ensemble-averaged collision cross section: 

w=N Re(VUI/,I/) ' 

d=-NIm(VUI/,I/) , 
(2.2) 

where N is the number density of the perturbers, i and 
f denote hand j /' and where 

(VUI/,If)= J: vUI/,I/(v)Pvdv • (2.3) 

Here, v is the relative velocity of the perturbing atom 
and the rotor and Pv is the Maxwell- Boltzmann distribu-
tion function 
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where /J. is the reduced mass of the atom-diatom pair, 
kB is Boltzmann's constant, and T is the temperature of 
the system of interest. 

where the subscript i's and fs denote the quantities be-
fore and after interaction with the radiation, respec-
tively; unprimed and primed variables represent pre-
and post-collisional quantities; j's, l's, and J's repre-
sent the appropriate rotational, orbital, and total quan-
tum numbers; the terms in braces are Wigner 6-j sym-
bols; K is the tensorial order of the interaction with the 
radiation, and is unity for dipolar microwave spectra; 
k is the wavenumber of the relative motion between the 
atom and diatom; and S denotes the scattering S matrix. 
The assumptions used in deriving (2.1), (2.3), and (2.5) 
were (i) the system is dilute enough in absorber mole-
cules that absorber-absorber interactions may be ne-
glected, (ii) the system is at sufficiently low pressures 
that the approximation of uncorrelated binary absorber-
perturber molecular collisions and distribution functions 
may be used, and (iii) most importantly, the impact ap-
proximation is valid. 

The details of the transformation of (2.5) into its 
semiclassical form were given in Part 1. The assump-
tions made in this transformation were the following: 
(i) use of a primitive semiclassical form of the S ma-
trix, or some uniform version when necessary, (ii) 
sums in (2.5) over the quantum numbers 1, 1', and J I 
may be converted into integrals so that a partial averag-
ing technique14 may be utilized, (iii) use of a semiclas-
sical-like expression for the Wigner 6-j symbol, given 
by Eq. (2. 6) below. The re is also an approximation 
used analogous to that used in the normalization of the 
primitive semiclassical wavefunctions in general: The 
pre exponential factors of the two semiclassical S ma-
trices are replaced by a common one which uses an 
average j, J, and E, and the phases of those two S ma-
trices are expanded about this average j, J, and E, re-
taining only the linear terms in the expansion. This ap-
proximation of course works better the closer the colli-
sion dynamics of the j I and j, states. The symbols j I> 

f, and.Il will be used to denote j 1+ t, 1 + t, and J; + t, 
and Ii is set equal to unity. The arithmetic mean of J I 
and and that of .II and i, are denoted by J and J, re-
spectively. 

An expression is available in the literature for the 
6-j symbol valid for the case where five of the six angu-
lar momenta are large relative to the sixth. 12 In the 
present case, three of the angular momenta, J I , J" 
and 1, are usually large, while K is unity, j, isj j ± 1, 
and h is usually small. A semiclassical expression, 
obtained by symmetrizing the one given in Part I, is 

The general quantum mechanical form of a generalized 
collision cross section ,If for an atom-rigid rotor 
system is1,2 

where A = J, - , 15 = j, - jl, and is the angle between the 
classical variablesj and Jshown in Fig. 1 and is given by 
given by 

= (J2 +? - f2)/2JJ . (2.7) 

The expression in Part I, which had (2jl+ 1)(2JI + 1) 
instead of (j 1+ j, + 1)( J I + J, + 1), was prompted by the ex-
pression in Edmonds12 for the case of five large mo-
menta. Equation (2. 6) satisfies the relevant symmetry 
relations15 exactly, while that in Edmonds satisfies some 
of them only approximately (see Footnote b in Table I 
given later). The comparison with exact values for the 
6-j symbols is given later. 

The semiclassical expression for the ,I, in (2.5) 
is as obtained in Part I, apart from a few changes which 
are described in Appendix A of the present paper. We 
have, thereby, 

211 f: bdb S(b) , (2.8) 

where i'f', if denotesj;j" jli,; b is the impact param-
eter 

b = fI/J.v 

(Ii= 1); and 
(2.9) 

TABLE 1. Quantum and approximate values of some 6-j 
symbols. a 

Approximation Approximation 
J, J, K:h h I Quantum Present Refs. 12,2 

11 11 0:2 12 -0.0933 - O. 0933 - O. 0933 
3 1:1 - 0.1633 - 0.1595 - 0.1443 

1:1 0 0.2582 0.2345 0.1982 
6 5 1:5 4 8 0.0545 0.0542 0.0542 

9 1:4 12 -0.0583 -0.0581b - O. 0590b 
5 1:8 12 -0.0583 - O. 0581b - O. 0578b 

11 2:4 6 12 -0.0113 - 0.0123 -0.0040(!) 
11 9 2:2 4 11 0.0129 0.0155 O. 0013(!) 

7 2:5 7 0.0318 0.0321b 0.0267b 
5 7 2:9 7 0.0318 0.0321b 0.0342b 

a {:: 
where ii, it, and K are typically, though not necessarily, 
chosen to be smaller than Jj, J" and 1. 

bAlthough the apprOximations in the last two columns satisfy 
the symmetry relation 

K} = J, K} 
JI J, 1 J, iI 1 ' 

only. the present approximation satisfies the symmetry rela-
tion 
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J z 

y 

FIG. 1. Internal coordinates qj, q" and qJ for the motion of 
an atom and rigid rotor. The rotor axis lies along OD and the 
line of centers of the collision partners lies along OC at any 
instant of time. 

where Pj"j is a transition probabilitylike quantity, 
whose primitive semiclassical value is (using the geo-
metric mean approximation referred to earlier) 

Pj.,;Vjj,J,f,f)=s L . 
B.1). 

(2. 11) 
In these equations, primes denote post-collision quan-
tities, as before; the coordinates canonically conjugate 
to I, f, and J, and P R are q j, q" q .1, and R (the sepa-
ration distance), the angles being those described in 
Fig. 1; 5 denotes j ,- jl; for the present system of non-
overlapping lines, 5 = 5' = 1 and K = 1; q I and li j are con-
stants defining initial conditions of a trajectory and are 
equal to q, and qj-Rw/v, respectively, at large enough 
Rj expressions at smaller R are given in Appendix B; 
Wj is the angular rotational frequency. L denotes a sum 
over stationary phase points (s. p. ). 

The interaction potential will be denoted by V(R, X), 
where X is the angle between the axis of the rotor and 
the line of centers of the collision partners. When 
V(R, X) equals V(R, 7T - X), one finds (Appendix B) that the 
L is over a 7T2 interval in (li" lij ) space and s = 4. When 
the potential does not have that property and when any 
interferences between the (0, 7T) and (7T, 27T) intervals of 
lij space are neglected, the sum over stationary phase 
points is over a 7T interval of li, and a 27T interval of lij , 
and then s = 1 (Appendix B), i. e. , 

L=L s=4 [V(X) = V(11 - X)] 
'.P. (2.12) 

L=L, s=1 (otherwise) So,. 272 

For the first line in (2.12), one finds that 5 and 5' can 
differ at most by an even integer (Appendix B), and one 
also obtains the selection rule j: - j j = an even integer. 
In Eq. (2.11), n:' e(af3y) denotes an expression given by 

Eq. (C6) in terms and several other quantities. 
It also proves to be a rotation matrix (Appendix C), 
where f3 is the angle between j and j', and is given by Eq. 
(2. 13); a and yare phase shift angles defined by (2. 14) 
and (2.15) and described in Fig. 2: 

cosf3= + - q .1) , (2.13) 

tan[ a - (q; - w; t')J = sin(q q 

- cos(q q .1)] , (2.14) 

tan[y - (q J - Wj t)] = q .1)/[ - cose 

+ cos(qj-qJ)] • (2.15) 

Both a - (qJ - wj t') and y - (q J - Wj t) lie in the (0, 27T) in-
terval, the quadrant in each case being determined from 
the signs of both the numerator and the denominator on 
the right hand sides of (2.14)-(2.15). The angle f3lies 
in the (0, 7T) interval, the angle in (2.13)-(2.15) is 
given by (2.7), is given by a similar relationship. 
The angles qJ - w; t' and qj - Wj t are denoted by q' and 
q, respectively, in Fig. 2. (In Ref. 16a they are de-
noted by iij and ii j .) 

Equations (2.8)-(2.11) have a relatively simple physi-
cal interpretation: 211bdb is the probability that the im-
pact parameter lies in (b, b + db); :JdJ /23f is the proba-
bility that J lies in (J,J +aJ) for a givenj and f (i. e., 
b); dlir/211 is the probability that li,lies in (li/,li,+dli/); 
and Py. ,j is a probability that the collision causes the 
transitionj -p, wherein, at the same time, each contri-
bution to the effectiveness of the latter, I aj'/a(lij/211)1-1, 
is weighted by n:' o(af3y), which describes the reorient-
ing (f3) and phase shifting (a, y) effectiveness of the colli-
sion, as discussed in Appendix C. 

When the primitive semiclassical approximation breaks 
down, it can be replaced by a uniformlike approximation, 
and indeed we have used the latter in some other studies 
on rotational energy transfer. However, in the present 
instance, the contribution to the line shape of such events 

j 
j J 

\ 
\ , 
N· I 

/ J 
N' 

FIG. 2. Phase shift angles 0' and 'Y and reorientation angle {3. 
Here q = qJ - Wjt and q' = - are constants in the asymptotic 
regions of the trajectory. ON has the same significance as in 
Fig. 1, and ON' is the corresponding line after collision. 
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was relatively small, and it sufficed for the present pur-
poses to replace Eq. (2.11) by (2.16) for the event that 
the former expression exceeded unity: 

(" elastic collision") . (2.16) 

While the present calculations are concerned with pure 
rotational lines, we shall also make use of some experi-
mental data on rotational-vibrational spectra. It is re-
called from Part I that the half-widths, W R and W p, and 
the shifts, dR and dp , of the R and P branches, respec-
tively, can be written in the form 

wp=BN (1-L:C cos(- a - Y+ 11,,» , 

dR=BN (L C sin(a+y+ 11v» , 

dp=BN(LCsin(- a-Y+11"» , 

(2.17) 

The potential parameters 10, R m , a, r1, rz, a1, and az 
for those systems are given in Table II, and several 
parameters in the latter had been optimized4.5 so as to 
give reasonable agreement of the experimental data with 
the theories that were used in Refs. 4 and 5. 

For the OCS-He and OCS-Ar systems, the potential 
used4 had an anisotropy in the attractive forces and no 
adjustable parameters, and is given by 

V(R, X)= 4E:{(a/Riz- (a/R)6[1 + aZP2(coSX)]} , (3.2) 

where az in (3.2) is calculated from 

az= (a ' - a")/(al + 2a") , (3.3) 

where a' and a" are the longitudinal and transverse 
polarizabilities of the linear molecule. The values of 
a and 10 calculated from the usual combination rules are 
a= 3.35 A and 10= 58. 5 OK, and a= 3. 87 A and 10= 204 OK 
for OCS-Ar, while az was 0.28 for OCS. 16 These values 
differ slightly from those used in Ref. 4. Since the po-
tential (3.2) was of the form V(R, X)= V(R, 1T- X), the 
first expression in Eq. (2.12) was utilized to calculate 
the cross section in this case. 

The method used in the present paper for evaluating 
(2.3) and (2.8)-(2.11) was a standard Monte Carlo tech-
nique. In the initial studies (CO, HCI systems), the 
integrals over J and ij I were evaluated by the so-called 
crude Monte Carlo procedure, while the integrals over 
v and l were evaluated by the stratified, group-sampled 
method. 17 In the later studies (OCS systems), the inte-
grals over J, ([" v, and b were evaluated by another 
Monte Carlo procedure. 16 

The results for the linewidths, obtained from Eqs. 

where 11v is the vibrational phase shift; 11", B, and Care 
obtained by comparing with the appropriate equations in 
Part I. They depend on v, b, ij" J, 3, and the vibra-
tional state. The phase shifts are usually small enough 
that the sines can be replaced by the angles themselves. 
When 11., is small, w R and wp are approximately equal to 
each other and to the W of the pure rotational spectra. 
When the shifts are small, one may set sin( a + Y ± 11v) 
20' a + Y + 11v. Then t(d R - d p) is independent of 11v and is 
approximately equal to the d of the pure rotational spec-
tra. 

The comparison of Eq. (206) for the Wigner 6-j sym-
bol with exact results and with the results based on the 
equation in Part I is given in Table I. 

Finally, we note that if one wished to calculate 
af;",i' , as in Ref. 16, one could do so using (2.8), 
(2.11), and the relation af;,,'I' = aft:;,!, = aM.,I!' 

III. RESULTS 

For the CO-He, HCI-He, and HCI-Ar systems, a 
Buckingham exp-6 type potential (301), was used4.5: 

(2.2)- (2.4) and (2.8)- (2.16), are given in Table Ill, 
where the available experimental results are also given. 
The latter include both the half-widths of the microwave 
rotational lines, where available, and of the infrared 
rotational-vibrational lines. Comparison is also made 
there with the classical-type calculations of Gordon4 for 
the CO, OCS, and HCI-He systems, and with the classi-
cal path calculations of Neilsen and Gordon5 for the 
HCl-Ar system. 

In reporting experimental widths and shifts, some-
times a Lorentzian is first used to fit the actual absorp-
tion coefficient E:(w) instead of the reduced linewidth 
J(W).18 The resulting error is negligible for the infrared 
lines, but in the microwave case, the apparent shift 
would be reduced by about wZ/ wo, thus redUCing some-
what the pure rotation figures in Table IV, as indicated 
there. The shifts d R and d p obtained from the R and P 
branches in infrared vibrational-rotational spectra were 
used to calculate i(dR-dp ), as noted in the previous 
section. These shifts are also reported in Table IV. 
In Table IV, a shift calculated by Neilsen and Gordon5 

is also given. 

To illustrate the velocity dependence of contributions 

TABLE II. Potential energy parameters for HCI-Ar, HCI-He, 
and CO-He. 

Molecule-atom EX 104 Rm 
system (a.u.) (a.u.) 0< rl r2 al 
CO-He a 1. 073 6.63 12.0 0.70 0.70 0.30 0.20 
HCI-Hea 1.893 6.25 12.0 0.36 0.10 0.18 0.10 
HCI-Arb 6.374 7.21 13.5 0.35 0.65 0.30 0.09 

'"Reference 4. "Reference 5. 
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TABLE III. Comparison of theoretical and experimental half-widths expressed as cross 
sections. 

Classical or Experimental half-widths Semiclassical classical path 
Molecule-atom Transition half-width half-widtha Pure rot. HWR+Wp)b 
system h-h+ 1 (A.2) (,\2) (;\.2) UF) 
CO-He 10-11 26 31 29 
HCl-Ar 0-1 83 74 81d 93 

4-5 32 31 30d 38 
HCl-He 0-1 14 17 14d 17 

1-2 13 14 
4-5 12 14 Sd 14 
5-6 11.5 13 
9-10 S 10 10 

OCS-He 0-1 33e 
1-2 2ge 35 30c 

OCS-Ar 0-1 143e 
1-2 146e 147 125" 

HCl-Ar system was treated (Ref. 5) by the classical-path-plus-quantum-internal-
states method. All other systems in this column were treated (Ref. 4 ) by the classical 
method. 

bWR and Wp are the R- and P-branch half-widths, respectively, of the corresponding in-
frared lines given in Ref. 9 (11-h + 1 and h + 1-h for WR and Wp, respectively). 

cReference 16. 
dReference 9. 
"Reference 11. 

to the line broadening and shifting, some relevant results 
for the He-HCI (5- 6 line) system are given in Figs. 3 
and 4. Using stratified sampling in which all variables 
but the velocity v were integrated, the contribution of 
each velocity interval to the half-width and spectral shift 
is given in these figures. 

IV. DISCUSSION 

The results in Table III for the half-widths are in 
quite reasonable agreement with those which Gordon and 
co-workers obtained by two quite different methods, 

namely by a classical method for the CO, OCS, and 
HCI-He systems and by the quantum-internal-states-
plus-classical-path method for the HCI-Ar system. 

Both the experimental and calculated line shifts in 
Table IV are small except for the 0- 1 line in the HCI-
Ar case. The line shift obtained in Ref. 5 for that system 
is also given for comparison. There is an appreciable 
uncertainty in one of the two experimental shifts for the 
pure rotational lines, since it is not clear if they are 
computed from line shape vs w or reduced line shape 
vs w plots. An estimate of the possible correction 

TABLE IV. Comparison of theoretical and experimental shifts expressed as cross 
sections. 

Molecule-atom 
system 

CO-He 
HCI-Ar 

HCI-He 

OCS-He 

OCS-Ar 

aReference 10. 
5. 

Transition 
j,-it 
10-11 
0-1 
4-5 
0-1 
1-2 
4-5 
5-6 
9-10 
0-1 
1-2 
0-1 
1-2 

Semiclassical 
shift 
(},2) 

0.0 
12. 
-5. 

1.3 
0.4 
0.2 
0.2 
0.1 
O.ld 
O.Od 

-O.ld 

Previous calc. Experimental shift 

shifts Pure rot. ! (dR _dp)a 
(,\2) (;\.2) (;\.2) 

0.0 
8.1b 31[-14) e 19 

0.0 3 
1.8[-0.l)C 0.6 
0.0 0.4 
0.0 
0.0 
0.0 0.3 
0.0 
0.0 
0.0 
0.0 

eThe w2/wo term which would contribute to an apparent shift at a typical foreign gas pressure 
of 20 atm is indicated, with sign, in brackets, thus making the HCl-Ar systems have a 
possible shift of 17 ,\2• 

dReference 16. 
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3.0 
N 
o<{ - 2.0 

> 
'" ........ 
b 1.0 > 
'" <lI 
0:: 

0.0 
0 4 8 12 16 

4 
V x 1 0 (a.u.) 

FIG. 3. Contributions to the half-width (expressed as cross 
sections) vs velocity are shown by (0) and are compared with 
a v-weighted velocity distribution versus velocity shown by 
(A). Each point (0) represents the contribution from a velocity 
increment Av = O. 00015 a. u. and is an average over all 
variables other than v. 

(- w 2/ wo) is given in Table IV. The theoretical shifts 
themselves are less accurate than the theoretical widths. 

The trends present in both the experimental and theo-
retical results include 

(i) a tendency for the linewidth to decrease with in-
creasing j in the iI-j f lines, 

(ii) a marked decrease of the line shift with increasing 
j" and 

(iii) a larger shift for the HCI systems, particularly 
the Ar one. 

The present calculations indicate that effect (i) is pri-
marily due to an increase in the probability of an elastic 
COllision, with increasing 3: The higher the frequency 
of the internal motion, the more the principal rotational 
quantum number tends to be unchanged by collision, other 
things being equal. Effect (ii) is due to a decrease in 
magnitude of the typical phase shifts a + ')' at the higher 
3's, in part because of less distortion of the rotational 
motion by collision. Effect (iii) is reflected primarily 
in the larger values of a + ')' for the HCI systems. The 
low moment inertia molecule undergoes relatively larger 
distortions than a high moment of inertia molecule dur-
ingthe elastic collision. An analogous situation occurred 
in some collinear calculations of vibrational-transla-
tional energy transfer in an AB+ C system: where the 
middle atom B was light it underwent large distortions 
during an elastic collision. 19 Analogously, Ar distorts 
the HCI rotation, and more than does He. 

The effect of the dependence of inelastic colliSions on 
the relative velocity of the collision partners may be 
seen from Figs. 3 and 4: The contributions to the half-
width w and shift d from various velocity intervals 
(v, v + dv) are given as a function of v and compared with 
the velocity weighted distribution function v 3exp(- /lv2/ 
2kBT) which appears in the integrands. The parallelism 
is quite marked, but a specifiC velocity effect is also 
clear: The curve for the contribution to w is shifted to 
higher v's, while that for the contribution to d is shifted 

to lower v's, relative to the v-weighted equilibrium dis-
tribution function. The higher v's are more effective in 
causing inelastic collisions and so contribute more to 
the width and, at the same time, since this Pj,j is less, 
contribute less to the shift. 

V. CONCLUSION 

The present results show that the semiclassical meth-
od yields reasonable results for the linewidths, both for 
the cases where a classical-like method had been used4 

and also for the case (HCI-Ar at low j's) where a classi-
cal path plus coupled equations for quantum internal 
states method had been employed. 5 As expected, the 
results for the line shifts are less accurate than those 
for linewidths, but on the whole are reasonable. 

APPENDIX A: ADDENDA TO PART I 

We have located the following typographical errors in 
Part I: In Eq. (3.3), for Wi, and w" read Wi, and w,; 
attention is also called to the note added in proof (p. 
4387) which applied to Eq. (3. 12) as well; in (3.13), for 

read in (3.14), for ill'')' read ill')'; in (3.15), 
for (aj'/awi)w, read (aj' /aw i );l,; in (3.24) and the ensu-
ing paragraph, the (va)'s should be multiplied by N. 

The angles a and 'Y were mislabelled in Fig. 2. [They 
should be interchanged there and in Eqs. (5.3)- (5.8), 
second and seventh lines before (5. 13), and in (5.13). ] 
This mislabelling would not have affected any numerical 
application of the basic equation, Eq. (3. 12), since the 

in (3.12) was merely a symbol defined by 
(3.13), which did not explicitly contain ai3')'. Neverthe-
less, because of this error and because of the present 
incorporation of the angle 82 in the definition of the 

ai3'Y) appearing in (3.12) of Part I, a proof given in 
the present Appendix C has been written to replace Ap-
pendix D of Part I. It is shown there that a and 'Y are 
the angles given by the present Fig. 2. 

Whereas in Fig. 1 of Part I we used a convention for 
q J' given by Whittaker, we now in the present Fig. 1 use 
that of Pars (cf. both in Ref. 15 of Part I) to conform 
with other studies here. Since only q J'- appears in 
the theory, there is no correction to any equation or dis-
cussion of Part I. 

.08 
N 

.06 -> 
'" "- .04 /'.. 
b 
> 
"" .02 E ...... 

.00 
0 4 8 12 16 

4 Vx10 (a.u.) 
FIG. 4. Contribution to the shift (expressed as cross sections) 
vs velocity. Same notation as in Fig. 3. 
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APPENDIX B: SEVERAL PRACTICAL ASPECTS 

The angles qJ ,q t, q:, WE, and appearing in 
Part I, and used here, arise from a canonical transfor-
mation. As seen from Eqs. (3.8)- (3. 10) of Part I, they 
are given by 

qJ=qJ-RW/v, (v<O,v'>O), 

(Bl) 

(R'/v')+ (R/v) , 

where wJ is J /1, wj is i' /1, and both Rand R' not only 
lie outside the interaction region, but also at a large 
enough R and R' that the (long range) centrifugal poten-
tial is negligible. If, instead, one begins a numerical 
integration of the traj ectories at a point outside the inter-
action region but inside the "centrifugal potential region, " 
the integration from that point to larger R (R = 00 and 
R' = (0) can be performed analytically, by integrating the 
equations of motion using the unperturbed Hamiltonian 
Ho, 

Ho= (p%/2/.L)+ (]2/21) + (f2/2/.LR 2) (at large R) • (B2) 

The variables qJ' q" and R are canonically conjugate 
to J, f, and P R' Hamilton's equations of motion outside 
the interaction region yield 

aI/dt= 0, 

df/dt=O, 

dq/dt=J/I, 

dq,/dt=f//.LR2 , 

dJ/dt= 0, dq,,/dt= 0, 

dPR/dt=f2//.LR 3 , dR/dt=PR//.L. 

(B3) 

If we use x(t) orx(t'), wherexisqJ' q" R, orv, to 
denote the values of these varying quantities inside the 
centrifugal potential region to distinguish them from the 
values in (Bl), the analytic integration of the equations 
in (B3) and introduction of them into (Bl) yields 

qJ=qj(t)- Wj R(t)v(t)/v2 , 

qj = q j(t') - wi R(t')v(t')/V,2 , (B4) 

q,=q,(t)+ sin-1[f /PR(- oo)R(t)] , (B5) 

q;=q,(t')+ sin-1[f'/PR(00)R(t')] , (B6) 

WE - = t' - t - R(t')v (t')/V,2 + R(t )v(t)/v2 (B7) 

The results in Eq. (2.12) can be obtained in the follow-
ing way. The integral expression for the semiclassical 
S matrix is given by20 

2. d- 2·d- I I " f q, r o::!lJ.... 1-'-')/ (- -) 1/2 . SJ"';Jl= 0 z:iT Jo 21T 8\qjq, 8 qj, q, , 
(B8) 

where 

- fT (j - j')qj + (1 -l')q; - qj(t)dj(t) 
J 

- jT q,(t)dl(t)_jP
R 

R(t)dPR(t)+ i(l+l'+ 1)1T, 
, PR 

(B9) 

where q,(f) indicates the instantaneous value of qj along 
the trajectory, etc., and where], 1, andPR denote the 
final values of j (t), 1 (t), and P R(t) at the end of the tra-
jectory. 

The interaction potential V(R, X) depends on R and X, 
where X is the angle defined in Sec. II and is given by 

COsX = cos q j cosq, + [(J2 _72 - J2)]/2J1] sinq j sinq, , 
(BI0) 

where X lies in the (0, 1T) interval. A simultaneous de-
crease of qj and q, by 1T leaves (BI0) unchanged. This 
decrease also leaves the Hamiltonian [given by the H 0 
in (B2) plus V(R, X)] unchanged, and so leaves the j (t), 
l(t), ), and 1 in (B9) unchanged. q/t) and q,(t) are de-
creased by 1T, however, and so thereby are q / and q; . 
Thus, 

- 1T,q;- 1T)= - (j - j') 1T- (1-1')1T • (Bll) 

Before using this property, we first rearrange the 
domain of integration. If either q) or q, is changed by 
21T, the numerical value of neither nor the Jaco-
bian in (B8) is changed. Thus, we can take the part of 
the integral over (1T::::; q,::::; 21T), (0:'5 q}:'5 1T) and write it as 
the same integral over (1T::::;q,:'5 21T), (21T::::;q}:'531T). We 
can now write 

Now if the transformation (ql-q,-1T,qJ-q}-1T) is intro-
duced into the second integral on the right hand side of 
(BI2) and if (Bll) is used [the Jacobian in (B8) is unaf-
fected, by the transformation, since qf and qj are mere-
ly also decreased by 1T], we see that 

S
• 2. 2. 2. 

o dq, So dq} + S • dq, S 0 dq} 

(BI3) 

Thus, Sf. ,',j' vanishes if j' - j + l' -1 is an odd integer. 
Thereby, for a givenj, 1, andj', it vanishes for one-
half the l"s and its values for the other l"s are twice the 
values of the integral over the (O:'5q,:'5 1T), (0::::;qJ:'521T) 
domain. 

We see from (B8) and (BI3) that the product 

which appears in Eq. (2.5) for c!f'!',jf, will vanish if 
either j i - j l + 1 -1' or j! - j! + 1 -1' is an odd integer. 
Thus, for it not to vanish, it suffices that (i)ji -if +1-1' 
be an even integer and (ii) that j i - j S - (j r j ,) also be an 
even integer. This latter condition shows that 6 and 6' 
can differ at most by an even integer. When condition 
(ii) is fulfilled, the 5"i 51 is 4 times larger than the val-
ue computed from the (0, 1T)(0, 21T) domain in (BI2). How-
ever, because of condition (i) only one-half the l"s ap-
pear, and so on the average, if one sums over alll"s, 
as in (2. 5), the net result is only a factor of 2 greater 
than that given by evaluating the S"i S"i'in the [(0, 1T), 
(0, 21T)] interval in (BI3). When the 2 in dq ,/21T in (B8) 
is taken into account, the value of s = 1 which appears 
in (2.12) results. 

We turn next to the verification of the first expression 
in (2.12). When the potential has the symmetry that 
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VCR, X) equals VCR, rr - X), the change of ql by an amount 
rr causes no change in the Hamiltonian, and so there is 
no change in the values ofj(t) and let). Introduction of 
this result into the integral in (BS) shows that 

J: dq I f:w 
dq j = [1 + exp i (l - l') rr] f: dq IS: dq J ••• (B14) 

Thus, one obtains from (B12)- (B14) the selection rule 
that l - l' is even. Since the selection rule that j' - j 
+ l' -l is even was obtained earlier from (B13), the 
collisional selection rule that j - j' is even also follows. 
This selection rule was derived in an earlier article in 
this series of semiclassical papers. 21 

One sees from (B12)- (B14) that for even values of 
j - j', S". thus equals 4 times the integral over the (rr)2 
domain in (B14). The contribution to SJi s'i is thus a 
factor of 16. Repeating the argument given earlier, 
summing over all the l"s instead of just half reduces 
this 16 to S, and the 2 in the aiil/2rr further reduces it 
to 4, thus accounting for the s = 4 in the first expression 
in (2.12). 

APPENDIX C: PROOF OF EO. (3.13) OF PART I 

It will be noted from Fig. 2 that axes along j and aD 
can be reached from axes along j' and aD' via six suc-
cessive rotations or via three, and we wish to obtain a 
relation between them. 

Conventionally, three successive Euler angle rotations 
are performed by rotating through an angle (10 about the 
z axis of a set of axes S, then rotating through an angle 
(30 about the y' axis of the new set of axes S' produced 
by the first rotation, and then rotating through an angle 
'Yo about the z" axis of the set of axes S" produced by 
the second rotation. This series of rotations can be 
described by the operator D",'('Yo)Dy ,({:lo)D.«(1o). Alter-
natively, using the argument in Ref. 22, this rotation 
can be described as a rotation 'Yo about the z axis, fol-
lowed by a rotation {30 about the y axis, and finally by a 
rotation (10 about the z axis, all in the original frame S. 
Hence, as in ReL 22, 

(Cl) 

where the usual symbol D«(1o{3o'Yo) for the rotation opera-
tor has been introduced. D A (1o)D y(.80)D A 'Yo), rather than 
the left hand side of (C1), is used to compute the rotation 
matrix elements Omitting the subscripts on 
the (1, {:l, 'Y, for brevity, we have (Ref. 12, p. 55) 

(C2) 

Similarly, one may apply the rotations (12 (32 'Y2, followed 
by Ct1{31'Y1, denoting the successive sets of axes by S 

1 ' S( ), S(2), S(3), S(4), and S(5); one rotates through (12 
about z, then successively through (32 about y(l), 'Y2 about 
z(2), (11 aboutz(3), '(:ll abouty(4), and 'Yl aboutz(S). Using 
a proof which parallels that in Ref. 22, but now applied 
to six rotations instead of three, it can be shown that 

D A 5) ('Yl)D y (4) ({:ll)D ,(3) (Ctl)D .(2)(')'2)Dy(1) ({32)D .«(12) 

= D ,,( (12)Dy ({:l2)D ,,('Y2)D ,,( (11)D y ({31)D ,('Yl) 

=D«(1a (32 'Y2)D «(11 (31 'Yl) • (C3) 

When the final result of the series of rotations on the 
left hand side of (Cl') is the same as that on the left hand 
side of (C3), they may be equated and so, therefore, 
may the right hand sides. Thus, 

(C4) 

Computing matrix elements and introducing the closure 
relation, one obtains the well-known expression (Ref. 
12, p. 63) 

K L: Df'A( Ct2{32')'2)Df6«(11 (31 (C5) 
A=-K 

In our case it is important to note that D «(12 (:l2 ')'2) 
D«(11 {31 'Yt> can be interpreted as the left hand side of 
(C3). If one chooses an axis system S before the first 
rotation such that the y axis lies down aD' of Fig. 2 and 
the z axis lies down j' of the same figure, the six rota-
tions which can be executed to bring the final axis system 
into a position such that the final y axis lies down 015 
and the z axis lies down j are seen from Fig. 2 to be 
-q', q"., andq, respectively. This net 

brings the above axis system containing aD' 
into aD and also corresponds to executing three rota-
tions through the angles - (1, - (3, and - 'Y in Fig. 2. In 
either case, this net rotation of axes is equivalent to 
rotating a field point D into 15'. 

We now apply (C5). The Df'o«(1{3'Y) appearing in (2.11) 
is the same as the right hand side (rhs) of (3.13) of Part 
I, but now including the exp(i02 ) term in its definition. 
We thereby have from (3.13) of Part I, 

K 
Df'6«(1{3y)in (2.11)= L e l(81+82) (C6) 

A=-K 

where 01 + 02 is found from Sec. III of Part I to be given 
by 

01 + 02=7ij 5' -qJ 5+wE (Ej -Ef )- w'E(Ej - E;)+ (q5-- q ,) X • 

(C7) 
The q's are the 2rrw's in Part I. When E j - E I equals 
Ej - E f only WE - w'E appears in (A2) and is given by (B7). 
All of the calculations in the present paper involved 
i=i', /=/', and hence Ei -Ef=El -E}. 

We wish to show that the lhs of (.C6) defines a rotation 
matrix, with angles Ct{3'Y given by Fig. 2. First, accord-
ing to Eqs. (C6) and (C7), we have 

lhs of (C6) 

K 
= L , (CS) 

A=-K 

where23 

q'=qj-wJt', q=qJ-wJ t , 

wj=E;-Ej wJ=ErE j 

(C9) 

Using the d- and D matrix relations (Ref. 12, p. 60) and 
using (C5), Eq. (CS) may be manipulated to give (Cl0). 
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Here, we have made the following identification for a2 , 

{32, 1'2, ai, {31, n, ao, {30, and Yo in (C5): -q', - e, 
-qj, qJ, q, - a, - (3, and - 1', respectively.24 Thus, 

(C10) 

which shows that the lhs of (C6) equals Df.o(a{3y) and 
thus justifies using this symbol for it in (2.11). 

For purposes of additional interpretation of the rota-
tions in (C10), it is convenient to use a more conven-
tional notation (e. g., Ref. 25) for the D matrices. In 
terms of this notation, which we shall denote by 15, we 
have25 

(Cll) 

Rotation of the axes through an angle cp is achieved in 
this more common notation by the operator exp(- icpJIf ), 

where J" is the operator for the z component of the an-
gular momentum: 150'6(- a, - (3, - 1') in (Cll) is thus the 
matrix element for rotating the axes which lie along j' 
and aD' in Fig. 2 into ones which lie along j and aDo It 
is also, thereby, the matrix element for transforming 
a dipole 015 into aD' by a COllision, since rotation of the 
axes is equivalent to rotation of the system in the oppo-
site sense. 
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