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The semiclassical theory of spectral line broadening developed in the previous paper of this series is
used to calculate the half-widths and shifts of nonoverlapping rotational spectral lines of CO, HCI,
and OCS, broadened by inert gases. Comparisons are made with the available experimental data and
with related theoretical analyses, and reasonable agreement is obtained. The method used applies both
to fairly quantum systems as well as to the relatively classical ones. A symmetrized semiclassical

expression for Wigner 6-j symbols is given and applied.

. INTRODUCTION

The effect of collisions on molecular spectral line
shapes has been calculated by a variety of perturbative
and nonperturbative methods.' In the present paper we
apply the semiclassical theory of the linewidths and
shifts developed in the preceding paper of this series®
(hereafter referred to as Part I). These first applica-
tions are made to the CO-He, HCl-He, HCl-Ar, OCS-
He, and OCS-Ar systems,® each of which has been ex-
tensively studied and for each of which a potential ener-
gy function is available. 3

The CO, OCS, and HCl-He systems have been treated
by a classical-type method by Gordon, * who calculated
linewidths. " Using instead a classical path method,
widths and shifts have been calculated for the HCl—-Ar
system by Neilsen and Gordon. ® This latter method as-
sumed a zeroth order decoupling of the relative transla-
tional and internal motions, of which the former was
treated by classical mechanics and the latter by time-
dependent quantum mechanics for the coupled internal
states. Although this second method was called semi-
clagsical, it is not to be confused with “semiclassical”
as used in the present series. It has been suggested®
that the HCl1-Ar system is best treated using the classi-
cal path method for the low rotational angular momenta
and the classical method for the higher ones. The pres-
ent paper investigates the use of the semiclassical meth~
od for both cases for this and the other systems.

During the course of many studies on the collisional
broadening of spectral lines, three collisional effects
occur, and at least some have been included in each of
those studies. These effects are collisional deactiva-
tion, collisionally induced phase shift of the molecular
motion of the absorber, and collisionally induced reori-
entation of that rotating molecule (absorber). The first
of these effects has a major effect on the linewidth, while
the second has a major effect on the line shift, and the
third has some influence on both. A helpful discussion
of all three has been given by Gordon in his classical-
like analysis. ?

All three of these effects occur automatically in the
semiclassical theory, and that aspect of the relation be-
tween that theory and the classical theory of Gordon was
discussed in Part I. In the present paper, numerical
results are obtained, compared with the experimental
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data®! and with the previous theoretical results in
Refs. 4 and 5.

One minor difference from Part I, apart from the ty-
pographical and other corrections given in Appendix A,
is the introduction of a symmetrized semiclassical ex-
pression for the Wigner 6-j symbol, which is used to re-
place the less symmetrical one given in Edmonds, 22
A comparison of the two with the exact values of these
coefficients is given later in Table I.

H. METHODOLOGY

The reduced line shape expression for nonoverlapping
rotational lines is the familiar Lorentzian, one with a
negative-resonance term, given in PartI as

I(w)::r—lml Gyl lidsy 2

Py Py
X[w—wo—d—iw+w+w0+d-iw] 2.1)
where I(w) is the reduced line shape; Im denotes “imag-
inary part of”; j; and j, denote the initial and final rota-
tional quantum numbers, respectively; u is the dipole
moment operator in a term which is the reduced matrix
element of y; p; and p; are the normalized Boltzmann
density distributions of j; and j;, apart from the relevant
degeneracies”; w is the angular frequency of the inci-
dent radiation; w, is the angular frequency corresponding
to the transition j; -~j,; and w and d are half-width and
shift of the line j;—-j,, respectively. The latter are de-
fined by the real and imaginary parts of a velocity-
weighted ensemble-averaged collision cross section:

w=N Re<UCfU'¢f> s (2 2)
d:-NIm(vc;f,U) 5 )

where N is the number density of the perturbers, ¢ and
S denote j; andj,, and where

<1)Uu,if>:f o V04, 4(0)p,dv (2.3)

Here, v is the relative velocity of the perturbing atom
and the rotor and p, is the Maxwell-Boltzmann distribu-
tion function

po= (/2mkgT)*? amv?exp(- uv?/2k,T) (2.4)
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where u is the reduced mass of the atom—diatom pair,
kp is Boltzmann’s constant, and 7' is the temperature of
the system of interest.

J; Jy K

T
o{{'f't‘fz—kj Z ]f l

(- 1)+ didg (2J,+1)(2J 4+ 1){
1,

where the subscript i’s and f’s denote the quantities be-
fore and after interaction with the radiation, respec-
tively; unprimed and primed variables represent pre-
and post-collisional quantities; j’s, I’s, and J’s repre-
sent the appropriate rotational, orbital, and total quan-
tum numbers; the terms in braces are Wigner 6-j sym-
bols; K is the tensorial order of the interaction with the
radiation, and is unity for dipolar microwave spectra;

% is the wavenumber of the relative motion between the
atom and diatom; and S denotes the scattering S matrix.
The assumptions used in deriving (2.1), (2.3), and (2. 5)
were (i) the system is dilute enough in absorber mole-
cules that absorber—~absorber interactions may be ne-
glected, (ii) the system is at sufficiently low pressures
that the approximation of uncorrelated binary absorber—
perturber molecular collisions and distribution functions
may be used, and (iii) most importantly, the impact ap-
proximation is valid,

The details of the transformation of (2. 5) into its
semiclassical form were given in Part I. The assump-
tions made in this transformation were the following:

(1) use of a primitive semiclassical form of the S ma-
trix, or some uniform version when necessary, (ii)
sums in (2. 5) over the quantum numbers I, I, and J,
may be converted into integrals so that a partial averag-
ing technique!* may be utilized, (iii) use of a semiclas-
sical-like expression for the Wigner 6-j symbol, given
by Eq. (2.6) below. There is also an approximation
used analogous to that used in the normalization of the
primitive semiclassical wavefunctions in general: The
preexponential factors of the two semiclassical S ma-
trices are replaced by a common one which uses an
average j, J, and E, and the phases of those two S ma-
trices are expanded about this average j, J, and E, re-
taining only the linear terms in the expansion. This ap-
proximation of course works better the closer the colli-
sion dynamlcs of the j; and j, states. The symbols ];,

l andJ, will be used to denote j;+ 3, I+ %, and J; + 2,
and h‘ is set equal to umty The arithmetic mean of ],
and ], and that of J, and J, are denoted by] and J re-
spectively.

An expression is available in the literature for the
6-j symbol valid for the case where five of the six angu-
lar momenta are large relative to the sixth.? In the
present case, three of the angular momenta, J,, Jy,
and I, are usually large, while K is unity, j, isj,;+1,
and j; is usually small. A semiclassical expression,
obtained by symmetrizing the one given in Part I, is

Jpdy K Tk (s "
‘j"j" l}z (= LYK (Gyfig+ I+ dp+ D]V 205 (E)
(2.6)

J, J; K
o g 1

fi
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The general quantum mechanical form of a generalized
collision cross section 0,’5,,',, for an atom-rigid rotor
system is'2

*
’ } (8514, By%9,O1rs = Sfteeyy, 1(E1)Sf§z' pEp)l
(2.5)

T

wherex=J, - J;, 6=7j; - j;, and £ is the angle between the
classical variables jand J shownin Fig, 1andis givenby
given by

+j2=1%)/257 (2.7)

The expression in Part I, which had (2j;+1)(2J;+1)
instead of (j;+j;+1)J,+J,+ 1), was prompted by the ex-
pression in Edmonds'? for the case of five large mo-
menta. Equation (2. 6) satisfies the relevant symmetry
relations®® exactly, while that in Edmonds satisfies some
of them only approximately (see Footnote b in Table 1
given later). The comparison with exact values for the
6-j symbols is given later.

cost = (J2

The semiclassical expression for the of ., in (2. 5)
is as obtained in Part I, apart from a few changes which
are described in Appendix A of the present paper. We
have, thereby,

05f0'1f= 27 bdb S(b) , (2. 8)
0
where i'f’, if denotes j;j;, j;js; b is the impact param-
eter

b=T/uv (2.9)
(i=1); and
B s
S(b):é,.,é,.f—fli_il dJ(J/zjz)fo(dq,/n)p;,,; ., (2.10)

TABLE I. Quantum and approximate values of some 6-j
symbols. ®
Approximation Approximation

Je  Jy K:ijg gy 1 Quantum Present Refs. 12,2
11 11 0:2 2 12 —0.0933 -0.0933 —0.0933

3 2 1.1 2 2 -0.1633 —0.1595 —0.1443

2 3 1:1 o 2 0.2582 0.2345 0.1982

6 5 1:5 4 8 0.0545 0.0542 0.0542

8 9 1:4 5 12 —0.0583 -0.0581° —0.0590°

4 5 1:8 9 12 —0.0583 -0.0581° —0.0578°

11 9 2:4 6 12 —0.0113 —0.0123 ~0.0040(!)
1 9 2:2 4 11 0.0129 0.0155 0.0013(1)
9 7 2:5 7 8 0.0318 0.0321° 0.0267°

5 7 2:9 7 8 0.0318 0.0321° 0.0342°

a {J, Jy ‘K} ,

jv g 1

where j;, jr, and K are typically, though not necessarily,
chosen to be smaller than J;, Jy, and 1.

bAlthough the approximations in the last two columns satisfy
the symmetry relation

{J, & K}z{J, Jy K}

Jiodg 1 ir @ 147

only the present approximation satisfies the symmetry rela-
tion

{Jf Jy K}={jl Jy K}
Ji jf L Jf /7 4 .
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FIG. 1.
an atom and rigid rotor.
line of centers of the collision partners lies along OC at any
instant of time.

Internal coordinates g;, ¢q;, and ¢ for the motion of
The rotor axis lies along OD and the

where Pj, ; is a transition probabilitylike quantity,
whose primitive semiclassical value is (using the geo-
metric mean approximation referred to earlier)

P ;@;,J,7,0)=s 2 |8j'/0@,/2m) | DEy(aBy) .

SeDe

(2.11)
In these equations, primes denote post-collision quan-
tities, as before the coordinates canonically conjugate
toj, I, andJ, and Pg areq,, q;, 45, and R (the sepa-
ration dlstance), the angles being those described in
Fig.-1; 0 denotes j,—j;; for the present system of non-
overlapping lines, 6=56'=1 and K=1; g, and 7, are con-
stants defining initial conditions of a trajectory and are
equal to ¢, and ¢, - Rw,/v, respectively, at large enough
R; expressions at smaller R are given in Appendix B;
w; is the angular rotational frequency. Y denotes a sum
over stationary phase points (s.p. ).

The interaction potential will be denoted by V(R, x),
where x is the angle between the axis of the rotor and
the line of centers of the collision partners. When
V(R, x) equals V(R, m - x), one finds (Appendix B) that the
3 is over a #° interval in (7,,7,) space and s=4. When
the potential does not have that property and when any
interferences between the (0, 7) and (m, 27) intervals of
g, space are neglected, the sum over stationary phase
points is over a 7 interval of §; and a 27 interval of g,
and then s =1 (Appendix B), i.e.,

22,

-2,

£ 3 272

s=4 [V(x)=V(r-x)]

(2.12)

s=1 (otherwise) .

For the first line in (2. 12), one finds that 6 and &’ can
differ at most by an even integer (Appendix B), and one
also obtains the selection rule j; —j; = an even integer.
In Eq. (2.11), DF, (aBy) denotes an expression given by
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Eq. (C6) in terms of £, £/, and several other quantities.
It also proves to be a rotation matrix (Appendix C),
where 8 is the angle between j and j’, and is given by Eq.
(2.13); @ and y are phase shift angles defined by (2. 14)
and (2. 15) and described in Fig. 2:

cosf= cost cost’ + siné sing’ cos(qf, ~-qy , (2.13)
tan[a - (¢ - w,' t')] = sin¢’ sin(g}- q,)/[cost sin&’
— sinf cost’ cos(gs—a,)] , (2.14)
tanly - (g, - w,t)]= sin&’ sin(gs— q,)/[- cost’ sink
+sint’ cost coslgs—q ] . (2.15)

Both a- (g — wjt’) and ¥ - (g; — w; ) lie in the (0, 27) in-
terval, the quadrant in each case being determined from
the signs of both the numerator and the denominator on
the right hand sides of (2.14)-(2.15). The angle 8 lies
in the (0, 7) interval, the angle £ in (2.13)-(2.15) is
given by (2.7), and &’ is given by a similar relationship.
The angles ¢}~ wj{’ and g, — w,¢ are denoted by g’ and
q, respectively, in Fig. 2. (In Ref. 16a they are de-
noted by 7} and §,.)

Equations (2, 8)-(2. 11) have a relatively simple physi-
cal interpretation: 2ubdb is the probab1lity that the im-
pact parameter lies in (b b +db) Jdj/ ny is the proba-
bility that J lies in (J, J+dJ) for a givenj and { (i.e.

b); dq,/2mw is the probability that g, lies in (g,, §, +4dq, );
and Pj. jis a probability that the collision causes the
transitionf—f’, wherein, at the same time, each contri-
bution to the effectiveness of the latter, |8; '/8(17,/211)}",
is weighted by Do.o(aﬁ-y), which describes the reorient-
ing (B) and phase shifting (o, ¥) effectiveness of the colli-
sion, as discussed in Appendix C.

When the primitive semiclassical approximationbreaks
down, it can be replaced by a uniformlike approximation,
and indeed we have used the latter in some other studies
on rotational energy transfer. However, in the present
instance, the contribution to the line shape of such events

FIG. 2.

Phase shift angles o and ¥ and reorientation angle §.
Here g=g;—w;t and ¢’ = ¢j — wjt’ are constants in the asymptotic
regions of the trajectory. ON has the same significance as in
Fig. 1, and ON’ is the corresponding line after collision.

62, No. 9, 1 May 1975
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was relatively small, and it sufficed for the present pur-
poses to replace Eq. (2.11) by (2.16) for the event that
the former expression exceeded unity:

Lsep. | 371/3(41/277“-113 a(aBJ
Tsup ! a] /a(qf/z'”)l

Pj. j=

(“elastic collision™) . (2.16)

While the present calculations are concerned with pure
rotational lines, we shall also make use of some experi-
mental data on rotational-vibrational spectra. It is re-
called from Part I that the half-widths, wy and wp, and
the shifts, dy and dp, of the R and P branches, respec-
tively, can be written in the form

we=BN(1-Y Ccos(a+y+n,)),

wp=BN (1= Ccos(-a-y+n,)) ,

(2.17)
dg=BN () Csin(a+y+n,)) ,
dp=BN (Y Csin(- a-y+m,)) ,
S |
VR, X)= leeé?

The potential parameters €, R,,, a, ¥y, 73, a;, anda,
for those systems are given in Table II, and several
parameters in the latter had been optimized*® so as to
give reasonable agreement of the experimental data with
the theories that were used in Refs. 4 and 5.

For the OCS—-He and OCS~Ar systems, the potential
used? had an anisotropy in the attractive forces and no
adjustable parameters, and is given by

VR, x)=4€{(0/R)** - (o/R)1+a,Pylcosx)l} , (3.2)
where a, in (3. 2) is calculated from
az=(a’' - a’)/(a’ + 2a") | (3.3)

where o’ and o’/ are the longitudinal and transverse
polarizabilities of the linear molecule, The values of

o and € calculated from the usual combination rules are
0=3.35 A and €=58,5°K, and o= 3,87 & and €= 204 °K
for OCS-Ar, while a, was 0. 28 for OCS.'® These values
differ slightly from those used in Ref, 4. Since the po-
tential (3. 2) was of the form V(R, x)=V(R, m—¥), the
first expression in Eq. (2, 12) was utilized to calculate
the cross section in this case.

The method used in the present paper for evaluating
(2. 3) and (2. 8)—-(2. 11) was a standard Monte Carlo tech-
nique. In the initial studies (CO, HCl systems), the
integrals over J and 7, were evaluated by the so-called
crude Monte Carlo procedure, while the integrals over
v and I were evaluated by the stratified, group-sampled
method. '? In the later studies (OCS systems), the inte-
grals over J, §,, v, and b were evaluated by another
Monte Carlo procedure, 8

The results for the linewidths, obtained from Egs.

Semiclassical theory of spectral line shapes.

R € R, \ R
exp[a <I—R—m—)] [1+71P1(cosx)+1’sz(cosx)]—I—_—B/—Q(—ém) [1 +a1P1(cosx)—R}!+azP2(cosx)] .
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where 17, is the vibrational phase shift; ,, B, and C are
obtained by comparing with the appropriate equations in
Part I. They depend on v, b, §,, J, j, and the vibra-
tional state. The phase shifts are usually small enough
that the sines can be replaced by the angles themselves.
When 7, is small, wy and wp are approximately equal to
each other and to the w of the pure rotational spectra.
When the shifts are small, one may set sin(a+y+n,)

o~ @+y+7,. Then 3(dg-dp)is independent of 7, and is
approximately equal to the d of the pure rotational spec-
tra.

The comparison of Eq. (2. 6) for the Wigner 6-j sym-
bol with exact results and with the results based on the
equation in Part I is given in Table I,

Finally, we note that if one wished to calculate
o,,,,.,. as in Ref. 16, one could do S0 usmg (2. 8),
(2 11), and the relation O'ﬁ frie = 0,,,,.f.—0,.,. if .
lIl. RESULTS

For the CO-He, HCl-He, and HCl-Ar systems, a
Buckingham exp-6 type potential (3.1), was used*>®:

3.1)

(2.2)-(2.4) and (2. 8)-(2.186), are given in Table III,
where the available experimental results are also given.,
The latter include both the half-widths of the microwave
rotational lines, where available, and of the infrared
rotational-vibrational lines., Comparison is also made
there with the classical-type calculations of Gordon? for
the CO, OCS, and HCl-He systems, and with the classi-
cal path calculations of Neilsen and Gordon® for the
HCI-Ar system.,

In reporting experimental widths and shifts, some-
times a Lorentzian is first used to fit the actual absorp-
tion coefficient €(w) instead of the reduced linewidth
I(w). 18 The resulting error is negligible for the infrared
lines, but in the microwave case, the apparent shift
would be reduced by about w?/wy, thus reducing some-
what the pure rotation figures in Table IV, as indicated
there. The shifts d; and d, obtained from the R and P
branches in infrared vibrational—rotational spectra were
used to calculate 3(dz-dp), as noted in the previous
section. These shifts are also reported in Table IV.

In Table IV, a shift calculated by Neilsen and Gordon®
is also given,

To illustrate the velocity dependence of contributions

TABLE II. Potential energy parameters for HCl-Ar, HCl-He,
and CO~-He.

Molecule—atom ex10! R,

system (a.u.) (a.u.) « 7y 7y a, as
CO-He? 1.073 6.63 12.0 0.70 0.70 0.30 0.20
HCl-He® 1.893 6.25 12,0 0.36 0.10 0.18 0.10
HCIl-Ar® 6.374 7.21 13.5 0.35 0.65 0.30 0.09

*Reference 4. PReference 5.
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TABLE III. Comparison of theoretical and experimental half-widths expressed as cross
sections.

Classical or o i mental half-widths

Semiclassical classical path
Molecule—atom  Transition half-width half-width? Pure rot. 3Gwg+wp)®
system ji—d+1 (AY) (A% (A% (83
CO-He 10—~11 26 31 v 29
HCl-Ar 0—1 83 74 814 93
45 32 31 30d 38
HCl-He 01 14 17 144 17
12 13 e ... 14
4—5 12 14 gd 14
56 11.5 (RN (R 13
9—~10 8 10 e 10
OCS—He 0_.1 33c e cee .o
1—2 29¢ 35 30¢ v
OCS~Ar 0—1 143°¢ LR
12 146°¢ 147 125® ens

3The HCl-Ar system was treated (Ref. 5) by the classical-path-plus~quantum-internal-
states method. All other systems in this column were treated (Ref. 4 ) by the classical

method.

Ywg and wp are the R— and P-branch half-widths, respectively, of the corresponding in-
frared lines given in Ref. 9(j; —j;+1 and j; +1—j; for wg and wp, respectively).

°Reference 16.
dReference 9.
°Reference 11.

to the line broadening and shifting, some relevant results
for the He—HCI (5~ 6 line) system are given in Figs. 3
and 4. Using stratified sampling in which all variables
but the velocity v were integrated, the contribution of
each velocity interval to the half-width and spectral shift
is given in these figures.

IV. DISCUSSION

The results in Table III for the half-widths are in
quite reasonable agreement with those which Gordon and
co-workers obtained by two quite different methods,

namely by a classical method for the CO, OCS, and
HCl-He systems and by the quantum-internal-states-
plus-classical-path method for the HCl-Ar system.

Both the experimental and calculated line shifts in
Table IV are small except for the O- 1 line in the HCl-
Ar case. The line shift obtained in Ref. 5 for that system
is also given for comparison. There is an appreciable
uncertainty in one of the two experimental shifts for the
pure rotational lines, since it is not clear if they are
computed from line shape vs w or reduced line shape
vs w plots. An estimate of the possible correction

TABLE 1IV. Comparison of theoretical and experimental shifts expressed as cross

sections.
Semiclassical Previous calc. Experimental shift
Molecule—atom Transition shift shifts Pure rot. L (dg —dp)*
system Jt—Js (A?) (A% (&% (A%
CO-He 10—~11 0.0 0.0
HCl-Ar 0—~1 12, 8.1° 31[~-14] © 19
4—5 -5, e 0.0 3
HCl-He 0—~1 1.3 1.8[-0.1)° 0.6
1—2 0.4 . 0.0 0.4
4-—-5 0.2 oon 0.0 s
5-—+6 0.2 oo 0.0 tee
910 0.1 0.0 0.3
OCS-He 0—~1 0.14 0.0
1—2 0.04 .. 0.0 A x
OCS—Ar 0—~1 -0.2¢ 0.0
1—2 -0.1¢ 0.0 .

*Reference 10.

PReference 5.

°The w?/ w, term which would contribute to an apparent shift at a typical foreign gas pressure
of 20 atm is indicated, with sign, in brackets, thus making the HCl—-Ar systems have a
possible shift of 17 A%

dReference 16.

J. Chem. Phys., Vol. 82, No. 9, 1 May 1975
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3.0
o
o<
~ 2.0
>
~
PN
b
® 1.0
%
()
o
0.0
0 4 8 12 16
4
vx10 (a.u.)
FIG. 3. Contributions to the half-width (expressed as cross

sections) vs velocity are shown by (0) and are compared with
a v-weighted velocity distribution versus velocity shown by

(A). Each point (o) represents the contribution from a velocity
increment Ap=0.00015 a.u. and is an average over all
variables other than v.

(- w?/ w,) is given in Table IV. The theoretical shifts
themselves are less accurate than the theoretical widths,

The trends present in both the experimental and theo-
retical results include

(i) a tendency for the linewidth to decrease with in-
creasing 7 in the j; -7, lines,

(ii) a marked decrease of the lineshift with increasing
jl ) and

(iii) a larger shift for the HCl systems, particularly
the Ar one,

The present calculations indicate that effect (i) is pri-
marily due to an increase in the probability of an elastic
collision, with increasing}': The higher the frequency
of the internal motion, the more the principal rotational
quantum number tends to be unchanged by collision, other
things being equal. Effect (ii) is due to a decrease in
magnitude of the typical phase shifts a+vy at the higher
3"s, in part because of less distortion of the rotational
motion by collision. Effect (iii) is reflected primarily
in the larger values of a+y for the HCl systems, The
low moment inertia molecule undergoes relatively larger
distortions than a high moment of inertia molecule dur-
ingthe elastic collision. An analogous situationoccurred
in some collinear calculations of vibrational-transla-
tional energy transfer in an AB+ C system: where the
middle atom B was light it underwent large distortions
during an elastic collision. '® Analogously, Ar distorts
the HCI rotation, and more than does He.

The effect of the dependence of inelastic collisions on
the relative velocity of the collision partners may be
seen from Figs. 3 and 4: The contributions to the half-
width w and shift d from various velocity intervals
(v, v +dv) are given as a function of v and compared with
the velocity weighted distribution function v®exp(- pv?/
2k, T) which appears in the integrands. The parallelism
is quite marked, but a specific velocity effect is also
clear: The curve for the contribution to w is shifted to
higher v’s, while that for the contribution to d is shifted
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to lower v’s, relative to the v-weighted equilibrium dis-
tribution function. The higher v’s are more effective in
causing inelastic collisions and so contribute more to
the width and, at the same time, since this Pj ; is less,
contribute less to the shift,

V. CONCLUSION

The present results show that the semiclassical meth-
od yields reasonable results for the linewidths, both for
the cases where a classical-like method had been used*
and also for the case (HCl-Ar at low j’s) where a classi-
cal path plus coupled equations for quantum internal
states method had been employed.® As expected, the
results for the lineshifts are less accurate than those
for linewidths, but on the whole are reasonable.

APPENDIX A: ADDENDA TO PART |

We have located the following typographical errors in
Part I In Eq. (3.3), for w;, and w;, 7ead w;, and wy
attention is also called to the note added in proof (p.
4387) which applied to Eq. (3.12) as well; in (3.13), for
di,(&) vead d5(£): in (3.14), for i6'y read idy; in (3. 15),
for (8j'/8w,),, read (8j'/8w ), ; in (3.24) and the ensu-
ing paragraph, the (vo)’s should be multiplied by N.

The angles « and y were mislabelled in Fig. 2. [They
should be interchanged there and in Egs. (5. 3)-(5. 8),
second and seventh lines before (5.13), and in (5.13). ]
This mislabelling would not have affected any numerical
application of the basic equation, Eq. (3.12), since the
DX (aBy) in (3.12) was merely a symbol defined by
(3.13), which did not explicitly contain afy. Neverthe-
less, because of this error and because of the present
incorporation of the angle 6, in the definition of the
DX, ,(aBy) appearing in (3.12) of Part I, a proof given in
the present Appendix C has been written to replace Ap-
pendix D of Part I, It is shown there that o and y are
the angles given by the present Fig. 2,

Whereas in Fig. 1 of Part I we used a convention for
q ; given by Whittaker, we now in the present Fig. 1 use
that of Pars (cf. both in Ref. 15 of Part I) to conform
with other studies here. Since only q;— g% appears in
the theory, there is no correction to any equation or dis-
cussion of Part 1.

. .08
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>
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b
>
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£
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|
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vx10 (a.u.)
FIG. 4. Contribution to the shift (expressed as cross sections)

vs velocity. Same notation as in Fig. 3.
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APPENDIX B: SEVERAL PRACTICAL ASPECTS

The angles 7;, 7;, @}, 9j, wg, and wg appearing in
Part I, and used here, arise from a canonical transfor-
mation, As seen from Eqgs. (3.8)-(3.10) of Part I, they
are given by

qy=q;~Rw;/v, {Ji=qj-R'wj/v' (v<0,0'>0),

a,=49;, §i=4q;, (B1)

wp—wg=1"-t- R'/v')+ R/v) ,

where w; is i/, wj is 7’/I, and both R and R’ not only

lie outside the interaction region, but also at a large
enough R and R’ that the (long range) centrifugal poten-
tial is negligible, If, instead, one begins a numerical
integration of the trajectories at a point outside the inter-
action region but inside the “centrifugal potential region,’
the integration from that point to larger R(R=c and

R’ =) can be performed analytically, by integrating the
equations of motion using the unperturbed Hamiltonian

HO ]

Ho= (P3/20)+ G¥/20)+ (¥/2uR?) (B2)

The variables ¢q;, ¢;, and R are canonically conjugate

~

to 3, !, and P,. Hamilton’s equations of motion outside
the interaction region yield

3

(at large R) .

dj/dt=0, dq,/dt=3/1 ,
dl/dt=0, dq,/dt=1/uR?,

. 3
43/dt=0 dq,/dt=0 B3)

dPg/dt=1%/uR®, dR/di=Pg/p .

If we use x(¢) or x(t'), where x isq,, ¢q,, R, orv, to
denote the values of these varying quantities inside the
centrifugal potential region to distinguish them from the
values in (B1), the analytic integration of the equations
in (B3) and introduction of them into (B1) yields

7;=q,(t)- o, RE)v(t)/v*,

7;=q,t") - WjR({t")v(t")/ 0", (B4)
7;=q,(t)+sin[[ /Pg(- =)R()] , (B5)
T5=q,t")+ sin{I'/PR(=)R(t')] (B6)
we—wh=t' ~t=RE)v(E')/ 02+ REt)v(t)/v? . (B7)

The results in Eq. (2.12) can be obtained in the follow-
ing way. The integral expression for the semiclassical
S matrix is given byzo

ar g= 27 g
d d
Sneii= f S %
’ 0 ¥it 0 2%

8(@;31)/ 8@, , 7)) |*/? expia
(88)

where
- T _
8=G-3a+ @ -17- | 4,050
H

r Pr
_f q,(t)dz(t)—f R()dPg(t)+ 30 +1'+ 1)1, (BY)
1 Pn

where q,(¢) indicates the instantaneous value of ¢; along
the trajectory, etc., and where3, I, and Py denote the
final values of j (), I(¢), and Pg(t) at the end of the tra-
jectory.
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The interaction potential V(R, x) depends on R and Y,
where y is the angle defined in Sec. II and is given by

cosx=cosq,cosq; + [(F2-12-72)]/251 ] sing, sing, ,
(B10)

where x lies in the (0, 7) interval. A simultaneous de-
crease of ¢; and g, by 7 leaves (B10) unchanged. This
decrease also leaves the Hamiltonian [given by the H
in (B2) plus V(R, x)] unchanged, and so leaves the j(f),
(1), 7, and 7 in (B9) unchanged. g,(f) and q,(¢) are de-
creased by 7, however, and so thereby are g/ and q;.
Thus,

A@i-m,q;-m=8G;,q)-(G-j)1-A=-1")7.

Before using this property, we first rearrange the
domain of integration. If either g, or g, is changed by
27, the numerical value of neither expiA nor the Jaco-
bian in (B8) is changed. Thus, we can take the part of
the integral over (7=7,;=27), (0=7,=7) and write it as
the same integral over (71<=q,< 27), (27<g,<3n). We
can now write

(B11)

2r _ 27 r 2r 2r 3r
f a7, g d:j,:S dzi,S dg,+ | az, f dg,-+- (B12)
0 0 0 0 T T

Now if the transformation (7, ~7,— 7,4,~d;~ 7) is intro-
duced into the second integral on the right hand side of
(B12) and if (B11) is used [the Jaccbian in (B8) is unaf-
fected, by the transformation, since 7; and 7} are mere-
1y also decreased by 7], we see that

T 2r 2r ar
j dq,j dq,+f dc?,j dq,
0 0 L4 0
T 2r
~[tvexfiG-prei@ -0 | ag, | ag,e-
0 0

(B13)

Thus, S} ;.,;; vanishes if j/—j+1’-1 is an odd integer.
Thereby, for a givenj, I, andj’, it vanishes for one-
half the I*’s and its values for the other I’’s are twice the
values of the integral over the (0=7;=< 1), (0=<7,< 2m)
domain,

We see from (B8) and (B13) that the product

*

o Jr
sl;.l' 1th y

Sies s

which appears in Eq, (2.5) for of.; ,;, will vanish if
either j; —jj{+1-1' or j;~j}+1-1' is an odd integer,
Thus, for it not to vanish, it suffices that (1)j;—ji+I-1’
be an even integer and (ii) that j; - j{ - (j;—j}) also be an
even integer. This latter condition shows that 6 and &’
can differ at most by an even integer. When condition
(ii) is fulfilled, the St $77 is 4 times larger than the val-
ue computed from the (0, 7)(0, 27) domain in (B12). How-
ever, because of condition (i) only one-half the I’’s ap-
pear, and so on the average, if one sums over all I'’s,
as in (2. 5), the net result is only a factor of 2 greater
than that given by evaluating the S 57 in the [(0, 7),

(0, 27)] interval in (B13). When the 2 in d7,/27 in (B8)
is taken into account, the value of s =1 which appears

in (2.12) results.

We turn next to the verification of the first expression
in (2,12). When the potential has the symmetry that
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V(R, x) equals V(R, m~X), the change of 7; by an amount
7 causes no change in the Hamiltonian, and so there is
no change in the values of j(¢) and I(t). Introduction of
this result into the integral in (B8) shows that

L4 2r L4 L4
§ aq,{ ag,-Nrexpia-1ynlf azf az,eee (B19)
0 0 0 ]

Thus, one obtains from (B12)-(B14) the selection rule
that I -1’ is even. Since the selection rule that j’ -j
+1’ -1 is even was obtained earlier from (B13), the
collisional selection rule that j —§ is even also follows.
This selection rule was derived in an earlier article in
this series of semiclassical papers, 2

One sees from (B12)-(B14) that for even values of
j—j', S7 thus equals 4 times the integral over the (m)?
domain in (B14). The contribution to ™S’ is thus a
factor of 16, Repeating the argument given earlier,
summing over all the I’’s instead of just half reduces
this 16 to 8, and the 2 in the dg,/2n further reduces it
to 4, thus accounting for the s =4 in the first expression
in (2,12).

APPENDIX C: PROOF OF EQ. {3.13}) OF PART |

It will be noted from Fig, 2 that axes along j and oD
can be reached from axes along j’ and OD’ via six suc-
cessive rotations or via three, and we wish to obtain a
relation between them,

Conventionally, three successive Euler angle rotations
are performed by rotating through an angle @y about the
z axis of a set of axes S, then rotating through an angle
Bo about the y’ axis of the new set of axes S’ produced
by the first rotation, and then rotating through an angle
vo about the 2z’ axis of the set of axes S’ produced by
the second rotation, This series of rotations can be
described by the operator D, .(vy)Dys(Bg) D, (cp). Alter-
natively, using the argument in Ref, 22, this rotation
can be described as a rotation y, about the z axis, fol-
lowed by a rotation 8, about the y axis, and finally by a
rotation @y about the z axis, all in the original frame S.
Hence, as in Ref. 22,

Dt' ¢ (YO)Dy' (ﬁO)Dl(ao) = Dz(aO)Dy(BO)Dx(YO)

=D(apBev0) » (C1)
where the usual symbol D{a,fBg¥y,) for the rotation opera-
tor has been introduced. D, (ap)D,(Bp)D,(¥p), rather than
the left hand side of (Cl), is used to compute the rotation
matrix elements D?,_.(afy). Omitting the subscripts on
the o, B, y, for brevity, we have (Ref. 12, p, 55)
Dl (@By)=€'™* df . (B)e'™ . (C2)
Similarly, one may apply the rotations «; 8,7, followed
by o,8y,, denoting the successive sets of axes by S,
S g3 o 5 and $¢9: one rotates through o,
about z, then successively through B, about ‘¥, v, about
z®, @, about z'¥, ', about ¥, and y, about z'®. Using
a proof which parallels that in Ref, 22, but now applied
to six rotations instead of three, it can be shown that

3795
D,( 5)(7’1)Dy (4)(BI)D1(3) (a1)D.(z)(')’z)Dy(1)(Bz)Dz(az)
:Dz(az)Dy(Bz)Dz(YZ)Dg(al)Dy(BI)D:(YI)
=D(a3B2v2)D(0y By 71) (C3)

When the final result of the series of rotations on the
left hand side of (Cl) is the same as that on the left hand
side of (C3), they may be equated and so, therefore,
may the right hand sides. Thus,

D(a3B¥2) D (0 frv1)=D (g By o) (c4)

Computing matrix elements and introducing the closure
relation, one obtains the well-known expression (Ref.
12, p. 63)

X

;;—K D{ll(az Bzyz)Dfo(al B 71)=D§' o(ao BOYO) .

(C5)

In our case it is important to note that D(a; B, v»)
D(ay By 71) can be interpreted as the left hand side of
(C3). If one chooses an axis system S before the first
rotation such that the y axis lies down OD’ of Fig. 2 and
the z axis lies down j’ of the same figure, the six rota-
tions which can be executed to bring the final axis system
into a position such that the final y axis lies down oD
and the z axis lies down j are seen from Fig. 2 to be
-q', -&, -q%, q;, & andgq, respectively, This net
rotation brings the above axis system containing oD’
into OD and also corresponds to executing three rota-
tions through the angles — ¢, — 3, and —y in Fig. 2. In
either case, this net rotation of axes is equivalent to
rotating a field point D into D,

We now apply (C5). The DX (aBy) appearing in (2, 11)
is the same as the right hand side (rhs) of (3. 13) of Part
I, but now including the exp(i6,) term in its definition,
We thereby have from (3. 13) of Part I,

K
DEg(apy)in(2.11)= ) &'l df (£)df, (') , (C6)
ASTK

where 6, + 0, is found from Sec. III of Part I to be given
by

01+ 92=’7§ 5'—‘71 8+wg(E; —E,)—w%(E{—E}H @s—a)r .

(c7)
The §’s are the 2mw’s in Part I, When E, - E, equals
E}—-E}only wg—w% appears in (A2) and is given by (B7).
All of the calculations in the present paper involved
i=4', f=f', and hence E; - E,=E|-Ej}.

We wish to show that the lhs of (C6) defines a rotation
matrix, with angles apfy given by Fig. 2. First, accord-
ing to Eqs. (C6) and (C7), we have

lhs of (C8)
K [
=Y [ertwak (E)e | [o4 df, (&) e P (C8)
==K
where?
q'=qj~wit' , a=q,-w,t , (c8)
wj=E}-E} , w;=E;—E; .

Using the d- and D matrix relations (Ref. 12, p. 60) and
using (C5), Eq. (C8) may be manipulated to give (C10),
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Here, we have made the following identification for a,,
ﬁZ’ Y2, @, Bly Y1, Qo, ﬁO’ and YOin (Cs)- —qlv ""SI,
-q%, 45, &, g, —a, ~B, and -y, respectively.?* Thus,

lhs of (ce):;D{‘U.-x(— q', -, -q)DE s, £, 9)

:Dfa'-o(‘ -8, - Y)ZD{'a(aB?’) s (C10)

which shows that the lhs of (C6) equals D% (aBy) and
thus justifies using this symbol for it in (2, 11).

For purposes of additional interpretation of the rota-
tions in (C10), it is convenient to use a more conven-
tional notation (e.g., Ref. 25) for the D matrices. In
terms of this notation, which we shall denote by D, we
have®

Dgu(aPy)=Diy(- @, =B, =) . (C11)
Rotation of the axes through an angle ¢ is achieved in
this more common notation by the operator exp(-i@J,),
where J, is the operator for the z component of the an-
gular momentum: Dg,(~ @, — 8, —¥) in (C11) is thus the
matrix element for rotating the axes which lie along j’
and OD’ in Fig. 2 into ones which lie along j and OD. I
is also, thereby, the matrix element for transforming
a dipole OD into OD’ by a collision, since rotation of the
axes is equivalent to rotation of the system in the oppo-
site sense.

*Supported in part by a grant from the National Science Founda-
tion.
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