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The semiclassical quantum conditions for bound states are studied for a nonseparable system of two 
coupled oscillators which possesses a collection of quasiperiodic trajectories. The semiclassical energy 
levels are found to be in excellent agreement with the exact quantum levels. This treatment differs 
from previous work in that periodic trajectories are not needed and in that the potential surface is 
smooth and nonseparable in all regions. 

INTRODUCTION 
The calculation of bound state properties within the 

semiclassical approximation for systems with more thaI1 
one degree of freedom has attracted considerable atten-
tion for many years. In spite of this, there exists no 
practical semiclassical quantum condition which allows 
one to decide which classical states correspond to quan-
tum mechanical bound states for general multidimension-
al systems unless the system happens to be separable. 
In the present work the quantum conditions are studied 
for a nonseparable, two dimensional system which pos-
sesses a collection of trajectories which generate a com-
plete, multivalued solution of the Hamilton-Jacobi equa-
tion throughout a region of coordinate space. The ener-
gy levels computed from the quantum conditions for this 
system are then compared with the exact, numerically 
computed, quantum mechanical energy levels of the sys-
tem. 

Historically, the problem of finding the quantum con-
ditions for a mechanical system was circumvented by the 
formulation of quantum mechanics. However, there re-
mains interest in the problem in part because there ex-
ist many systems which can be treated by classical me-
chanics but which are intractable by quantum mechanical 
methods. Then such semiclassical quantum conditions 
would'provide a way of extracting information about 
quantum mechanical bound states from the available 
classical mechanical data. 

The approach in this study is most like that of Keller1 
in that it depends on the multivalued solutions of the 
Hamilton-Jacobi equation. In Keller's treatment, the 
quantization condition is derived from the requirement 
that the various branches of the semiclasSical wave-
function connect properly along the caustic curves. The 
same quantum conditions were derived by Marcus2 by 
requiring that the semiclassical wavefunction go over to 
an exponentially decreasing function at all points on the 
caustic curve. Keller and Rubinow3 applied the theory 
to a free particle in two dimensions constrained by hard 
walls. In the system used in the present work the par-
ticle moves on a smooth potential in which the two de-
grees of freedom are coupled in all regions of the co-
ordinate space. 

Another approach to the semiclassical theory of bound 
states is that of Gutzwiller4- 7 and W. H. MillerS which 
is based on a semiclassical approximation to the quan-
tum mechanical Green's function. Their result is that 

a system has a bound state at an energy if the classical 
system has, at this energy, a periodic trajectory which 
satisfies a quantum condition. In contrast, the exis-
tence of quantized periodic trajectories is neither nec-
essary nor sufficient in the present treatment. 

Pechukas9 has extended to several dimensions the 
transformation of the SchrMinger equation used by S. C. 
Miller and Good10 and has studied the class of multidi-
mensional systems which result from a Miller-Good 
transformation of separable systems. The system stud-
ied in the present work has the qualitative features of 
the Miller-Good transformed systems, but the treat-
ment here does not require one to find the Miller-Good 
transform or even to know if it exists. Pechukas9 also 
gives a critical review of previous work on the semi-
classical treatment of bound states. 

In the next section the properties of the system are 
discussed, and the quantum conditions are exhibited. 
The last section contains the details of the method for 
computing the semiclassical energy levels of the sys-
tem and the comparison with the quantum energy levels. 

QUANTUM CONDITIONS 

The Hamiltonian for the system to be considered here 
is given by 

E w!x2 +h(y2 +11x2) • (1) 

The coordinates are x and y; the corresponding momen-
ta P" and P y; W,,' w y , X, and 11 are constants; and E is 
the total energy of the system. Physically this Hamil-
tonian represents a system of harmonic oscillators of 
unit mass with frequencies w" and Wy coupled by a cubic 
potential, the strength of which is determined by X and 
11. A Hamiltonian of this form might be obtained, for 
example, by transforming an anharmonic triatomic os-
cillator into some approximate normal mode coordi-
nates, neglecting bending. Then the strength of the an-
harmonicity would determine X and 11. This system has 
been studied extensively in the past by workers in many 
fields. 11-14 

It has been shown by Kolmogorov, Arnold, and 
that many coupled, multidimensional sY!'tems 

possess quasiperiodic trajectories, by which it is meant 
that the coordinates and momenta may be expanded as 
functions of time in a convergent Fourier series with a 
finite number of fundamental frequencies. One result 
of this theorem is that such a system may be confined 
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to a region of coordinate space smaller than that al-
lowed by the total energy of the system. One of the sim-
plest of such systems is that of Eq. (1). A typical tra-
jectory of this Hamiltonian is shown in Fig. 1. This 
trajectory fills a "box" with slightly curved sides ABCD, 
which is contained within the oval-shaped equipotential 
curve. The equipotential curve encloses the area in 
which the trajectory is confined by energy conservation 
and is the locus of points (X, y) satisfying 

(2) 

The trajectory touches the equipotential curve only at 
zero momentum, which is the case at the "corners" of 
the box ABCD. The "sides" or envelopes AB, BC, CD, 
and DA are called the caustic curves for the trajectory 
since they are the curves on which adjacent trajectories 
cross each other. The caustic curves are the analogs 
of the turning points in one dimension. It would appear 
from Fig. 1 that there exist no other such caustic 
curves. 

For a trajectory such as that in Fig. 1, a multi valued 
pair of momentum functions px(xy), p)xy) may be de-
fined by the equations 

px(x(t), y(t» =Px(t); p)x(t), y(t» =p)t) , (3) 

where x(t), y(t), Px (t) , and py(t) are the coordinates and 
momenta as functions of time t satisfying Hamilton's 
equations of motion corresponding to the Hamiltonian of 
Eq. (1). There are four branches of this pair of func-
tions, since the trajectory may pass through a given 
point (x, y) moving in four different, general directions. 
The branches are distinguished by a superscript Roman 
numeral I, II, III, or IV depending on whether the tra-
jectory which passes through the point (x, y) is moving 
in the general direction of the upper right, upper left, 
lower left, or lower right portion of Fig. 1, respective-
ly. In Fig. 2 a portion of the trajectory of Fig. 1 is 
shown along with the Roman numeral denoting the branch 
of the momentum function generated by the trajectory 
between successive points where it touches the caustic 
curve. 

The fact that only four such branches of px(xy), Py(xy) 

y 

x 

FIG. 1. A typical trajectory of the coupled, two dimensional 
system considered in this work, having the Hamiltonian of Eq. 
(1). The trajectory appears to stay forever within the "box" 
ABeD rather than wandering throughout the energetically al-
lowed region within the oval-shaped curve. This particular 
trajectory has frequencies such that O. 29375, =2.12581; 
coupling parameters A = - 0.1116, 1) = 0.08414; and is initially 
at the origin with positive momenta determined by the total en-
ergy, E = 2.42, and fraction of energy in the x oscillator, Ix 
=0.25, cf., Eq. (18). 

exist and are well defined over the same region of the 
x-y plane is a consequence of the assumption that there 
are four well defined caustic curves as shown in Fig. 1. 
Studies of the system of Eq. (1) have indicated that most 
of the trajectories at the energies where the system has 
bound states have these properties. 16 Exceptions to this 
statement occur for trajectories in which most of the 
energy is in one degree of freedom, 16 for systems in 
which the frequencies Wx and Wy are equal,17 and in cer-
tain other systemsll at high total energy E or with large 
values of the coupling parameters A and 17. In these ex-
ceptional cases the trajectories may fill a more com-
plicated regionll or may appear to be ergodic and not be 
confined to any region smaller than that allowed by the 
conservation of energy. For such systems other meth-
ods than those described here would be needed and are 
under investigation. 

A multivalued solution of the Hamilton-Jacobi equa-
tion may be written in terms of the momentum functions 
p,,(xy), py(xy). The'Hamilton-Jacobi equation corre-
sponding to Eq. (1) is 

.!.[(a<l>(x y »)2 + (a<l>(x y »)2 
2 ax ay x y J 

• 

Solutions of Eq. (4) are well known to be18,19 

(4) 

y = I, II, Ill, IV , (5) 

where the point (xo, Yo) and the value ,pY(xoYo) at that 
point are arbitrary. Here y indicates the branch I, II, 
Ill, or IV of the functions px(xy) and Py(xy) and there-
fore of the multivalued function <I>(xy). The integral in 
Eq. (5) is a line integral and may be shown to be inde-
pendent of path. 

Action variables J x and J y , which are constants of the 
motion along the trajactory, are defined by 

J,,= JT [P!(xy)dx+P!(xy)dy] 

+ J' 
r (6) 

J y= f [P!(xy)dx+P!(xy)dy] 

+ fb 
u 

Here l is a point on the left caustic curve AD of Fig. 1, 
r is a point on the right caustic BC, b is on the lower 
caustic AB, and u is on the upper caustic CD. Since the 
line integrals in Eqs. (6) are independent of path, it may 
be shown that J x and J y are independent of the location 
of the points l, r, b, and u as long as the pOints are on 
the indicated caustic curve. 

So far only one trajectory has been conSidered. Other 
trajectories of the type shown in Fig. 1 will generate 
other multi valued solutions <I> (x y) and define different 
action variables J x , J y by Eqs. (6). For example, if the 
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collection of trajectories with initial conditions x(O) = xo, 
y(O) = Yo for some xo, Yo are considered, there will exist 
a multivalued solution <I>(xy) and J"" J y for each different 
set of initial momenta P",(O), p/O) provided the trajec-
tories are of the type pictured in Fig. 1. The trajec-
tories may as well be considered to be indexed by the 
action variables J"" J y so that <I> may also be considered 
to be a function of these constants. The multivalued so-
lution <I>(xyJ",J) of the Hamilton-Jacobi Eq. (4) is a 
complete solution in the sense that it is a solution con-
taining two arbitrary constants, J", and J y. 18,19 There-
fore <I>(xyJ",Jy) generates a canonical transformation 
from coordinates x, y and momenta P", P y to new mo-
menta (action variables) J", Jyand new coordinates 
(angle variables) w"" Wy defined by the equations 

P = • 
" ax ,Py ay (7) 

_ a<l>(xyJ,.J.) • 
w,,- aJ ' 

" 
The new Hamiltonian is just the old Hamiltonian, Eq. 

expressed in terms of the new coordinates and mo-
menta and is a function of the new momenta J"" Jyonly, 
since they are constants of the motion. Therefore the 
angle Wy are linear functions of time. 

The quantum conditions for the system are1,2 

J,,=21T(n,,+t)n; J y=21T(ny+t)n, (8) 

where n", and ny are positive integers. That is, an en-
ergy E is an allowed energy level of the system if there 
exists a classical trajectory at that energy of the type 
in Fig, 1 defining action variables satisfying Eqs. (8). 
In what follows it will be convenient to define continuous 
quantum numbers n" and ny for every J", and J y by Eqs. 
(8), If the classical Hamiltonian in action-angle vari-
ables is 

(9) 

then the total energy E may be considered to be a func-
tion of n", ny thus: 

(10) 

Therefore, an equivalent statement of the quantum con-
ditions is that E =E(n"n) is an allowed energy of the 
system if both n" and ny are integers. 

These quantum conditions may be derived or ration-
alized in a variety of ways. In the old quantum theory, 
for example, the restriction of Eqs. (8) is a matter of 
hypothesis,20 except that in most nonseparable, multi-
dimensional systems it is difficult to define unique ac-
tion variables. The present system is an example of 
one in which action variables may be defined as previ-
ously discussed. 

The quantum conditions (8) may be justified in an in-
tuitive manner by solving the semiclassical Schrodinger 
equation in action-angle variables. The semiclassical 
Schrodinger equation is obtained from Eq. (9) by the use 
of the approximate, semiclassical prescription21- 28 

J y=n/ia/aW y+1Tn (11) 

to be 

H(n/ia/aW,,+1Tn, n!ia/awy+1T1l)W(W",W) 

=EW(w"w y) , (12) 

where w(w" w) is the wavefunction. The substitution of 
Eqs. (11) is correct only within the semiclassical ap-
proximation. 28 In Eqs. (11), the term 1T n has been 
added to the well known prescription of Dirac21,22 and 
others in order that the prescription give the quantum 
conditions which are known to be correct for the special 
case of a separable system of independent oscillators. 
A solution of Eq. (12) is24 

(13) 

where n", and ny are constants. It is a property of the 
transformation generated by <I>(xyJ"J) by Eqs. (7) that 
the mapping is periodiC with unit period in each of the 
angle variables w" and wy • 18,19 For example, both of 
the points (w",wy,J",J) and (w" + 1,wy,J,,,Jy ) in the phase 
space of action-angle variables represent the same 
point in the phase space of the old coordinates and mo-
menta. In order to be single valued, W(w",w y ) must be 
periodic in w'" and wyand thus the constants n" and ny 
must be integers. The energy levels are obtained by the 
substitution of Eq. (13) into Eq. (12) with the result 

which is equivalent to Eq. (10). The constants n"" ny 
are seen to be the same as those in Eqs. (8). 

The same quantum conditions have also been derived 
by Keller1 by requiring that the semiclassical wavefunc-
tion be single valued in the x-y coordinates and making 
use of a phase integral method. An intuitive view of the 
appearance of the half-integers in Eq. (8) is provided 
by the effect of the turning points of each vibration on 
the phase of the semiclassical wavefunction. 1 Each 
turning point reflects the wave, causing a phase loss of 
1T/2 per reflection, and two reflections occur in one 
complete period. The quantum conditions have also 
been obtained by Marcus2 as discussed in the last sec-
tion. The treatment of Marcus makes use of an approx-
imate separation of variables in the vicinity of each point 
on the caustic curve to match the semiclassical wave-
function in the classically allowed region to a function 
which vanishe s asymptotically. 

CALCULATIONS 

In general terms, the semiclassical calculation of the 
energy levels of the system of Eq. (1) was carried out 
by computing J" and J y from the definitions (6) using tra-
jectory data computed numerically. The calculation was 
repeated for different trajectories until J" and were 
obtained satisfying the quantum conditions (8). 

In prinCiple any path between the left and right caustic 
curves of Figs. 1 and 2 would be suitable for the com-
putation of J", for example, by Eqs. (6). But in prac-
tice it was found most convenient to use a path along the 
lower or upper caustic curve AB or CD of Fig. 1. The 
reason for this choice is that once the location of the 
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y 

x 

FIG. 2. A portion of the trajectory of Fig. 1 with the four 
branches of the momentum functions P ,,(xy), Py{x y) generated 
by it marked. The dots indicate the pOints where the trajec-
tory touches the caustic curves, which are the nearly straight 
lines forming the sides of the ''box'' ABeD. 

caustic curve is known from numerical trajectory data, 
the momenta P % and P y at each point on the curve are 
known from the Hamiltonian and the total energy of the 
system. More precisely, if x, yare the coordinates of 
a point on the lower caustic curve AB, then the momen-
tum of the trajectory at the time when it touches AB at 
(x,y) is tangent to AB at (x,y). Thus, the components 
P%, P y of the momentum at the point (x,y) are related by 

P,,/P%=m(xy) , (15) 

where m(xy) is the slope of AB at (x,y). If Eq. (15) is 
solved for P li and is substituted into the Hamiltonian Eq. 
(1), the result for P% and P y is 

P%(xy) =±([2E - - -

[1 +m(xy)2]}1/2 , (16) 

PlI(xy)=m(xy)P%(xy) . 

The solution with the positive square root yields the mo-
menta on branch I and the negative root yields branch 
II. Since the values of the momenta on the two branches 
have the same magnitude along AB, the expression for 
J" from Eqs. (6) reduces to 

J%=21
B 

[lp%(xy)ldx+ Ip/xy)ldy] (17) 

with p,,(xy), p/xy) given by Eqs. (16). A similar ex-
pression is obtained for J y • 

The computation was carried out with a program writ-
ten in FORTRAN for an IBM 360 Model 75 digital computer. 
The details of the calculation are as follows. For sim-
pliCity only the integration along the lower caustic curve 
AB of Fig. 1 is described since the calculation for an-
other caustic is similar. Initial conditions for a tra-
jectory are chosen to be x(O) = 0, y (0) = 0, and positive 
P%(O) and py(O) determined by the specification of the 
total energy E and J%, the fraction of energy initially in 
the "x oscillator." That is 

(18) 

The trajectory is computed by solving Hamilton's equa-
tions for Eq. (1) by a Hamming predictor-corrector 
method. In the vicinity of each lower turning point where 
Py(t) has a zero and y(t) is negative, y is approximated 
as a quadratic function of x. After the trajectory has 
been computed to such an extent as to clearly define the 
caustic curve, the points on the caustic curve are com-

1.5 0.5 

ny 

1.0 - -

nx 
nx 

ny 

0.5 -0.5 

0.3 0.5 0.7 
fx 

FIG. 3. The quantum numbers n" and ny computed from various 
trajectories. All of the trajectories have the same total energy 
E =1. 6870 and differ in/x, the energy initially in the x oscil-
lator. This total energy is clearly a semiclassically allowed 
energy level of the system since both nx and ny are integers at 
/,,=0.6120. The system has the Hamiltonian of Eq. (1) with 
frequencies such that w! =0.49, and coupling parame-
ters A=-0.1, 1)=0.1. 

puted to be those points where a straight line is tangent 
to the quadratic apprOximation to the trajectory in the 
vicinity of two adjacent turning points. The computed 
points nearest the corners A and B are linearly extrap-
olated to the corners by using the fact that the coordi-
nates of the points A and B satisfy Eq. (2). Finally the 
integral in Eq. (17) is performed numerically down 
straight line segments joining the points on the caustic 
curve just computed using Simpson's rule in each seg-
ment. In each segment the momenta P %(x y) and P y(x y) 
in the integrand of Eq. (17) are given by Eqs. (16). 

It may be seen that the above procedure will yield the 
actions J% and Jyor, by Eqs. (8), the quantum numbers 
n" and ny to any deSired accuracy provided a sufficient 
number of points on the trajectory are computed to high 
enough accuracy and enough steps are taken in the nu-
merical integration of Eq. (17) and provided that the 
caustic curve is not too severely slanted. Tests have 
shown that the method is entirely adequate for the sys-
tem studied here. 

In Fig. 3 the quantum numbers n% and ny are plotted 
as a function of the fraction of the energy initially in the 
x oscillator, J%, at a single total energy E. The two 

0.60 fx 0.62 

FIG. 4. Enlarged drawing of Fig. 3. The dashed line shows 
nx and ny for E = 1. 7000 which is the energy level for the un-
coupled system having A = 0, cf., Eq. (1). The shift in the nx 
= 1, ny = 0 energy level due to the coupling for the nonzero A is 
clearly seen. 
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TABLE 1. Comparison of the semiclassical and quantum energy levels for various systems. 

Quantum 
numbers E(n",'ly) Uncoupled 

;\ 1) nx ny Quantum Semiclassical ;\=0 

0.29375 2.12581 - O. 1116 O. 08414 0 0 0.9916 
1 0 1. 5159 
2 0 2.0308 
0 1 2.4188 

0.36 1. 96 - 0.1 0.1 0 0 0.9939 
1 0 1. 5809 
2 0 2.1612 

0.49 1. 69 - O. 1 0.1 0 0 0.9955 
1 0 1. 6870 
0 1 2.2781 
2 0 2.3750 
1 1 2.9583 

0.81 1. 21 - 0.08 0.1 0 0 0.9980 
1 0 1. 8944 
0 1 2.0890 
2 0 2.7899 

aparameters of Eq. (1). 

constants E and f. determine a trajectory with the indi-
cated values of n" and ny • The total energy considered 
in Fig. 3 is a semiclassical energy level of the system 
since and ny are simultaneously integers for 
j" = O. 6120. The same data are plotted on an expanded 
scale in solid lines in Fig. 4. Also shown in dashed 
lines are the n" and ny computed at a higher energy which 
would be an energy level of the system in the absence of 
the coupling term in Eq. (1), i. e., if A = O. It may be 
clearly seen from Fig. 4 that the cubic coupling due to 
nonzero A has shifted the energy level. 

In order to compute the semiclassical energy levels, 
E(n",n) of Eq. (10) with integer n" and ny, the values of 
n" and ny were computed for three different trajectories 
corresponding to different values of the pair E, j". 
These data were used in an interpolation scheme to be 
described presently to obtain an estimate of the E, j" 
which would yield the desired integer values of n" and 
ny• The values of n", ny actually computed from this 
last estimated E, j" were used in the interpolation 
scheme together with the data from the previous two 
trajectories to obtain a better estimate of E, j". This 
procedure was repeated until E was obtained to the de-
sired accuracy.. Generally only one or two iterations, 
which is a total of four or five trajectories, were re-
quired to obtain an energy level to the five Significant 
figures reported in this work. 

The interpolation precedure makes use of the fact that 
n", and ny are nearly linear functions of j" and E as is 
partially evident from Figs. 3 and 4. Values of n" and 
ny from three different trajectories were fitted to ex-
pressions of the form 

(19) 

and the constants a", b", C,,' ay, by, and cy were deter-
mined. Then the desired integer n" and ny were inserted 
into Eqs. (19) and the resulting pair solved for the new 
estimate of E andj". 

0.9920 1. 0000 
1. 5164 1. 5420 
2.0313 2.0840 
2.4196 2.4580 

0.9942 1. 0000 
1. 5813 1.6000 
2.1615 2.2000 

0.9955 1. 0000 
1. 6870 1. 7000 
2.2780 2.3000 
2.3750 2.4000 
2.9584 3.0000 

0.9978 1.0000 
1. 8941 1. 9000 
2.0897 2.1000 
2.7895 2.8000 

In order to compare with these semiclassical results, 
the exact, quantum mechanical energy levels of the sys-
tem of Eq. (1) were computed numerically. The wave-
function of the system was expanded in the set of eigen-
functions of the uncoupled system, which is the system 
having the classical Hamiltonian of Eq. (1) with A = O. 
Substitution of this expansion into the SchrCidinger equa-
tion corresponding to the Hamiltonian of Eq. (1) leads to 
the usual algebraic eigenvalue problem, which was 
solved by standard numerical methods. 25 

All calculations reported here were carried out on the 
system given by Eq. (1) with units chosen such that 

(20) 
One consequence of this choice of units is that the ground 
state of the uncoupled system (A = 0) is at E = 1. 

In Table I some of the semiclassical energy levels 
computed as described above are compared with the ex-
act quantum results for various systems and coupling 
strengths. The first system in Table I, expressed in 
other units, is a system which has been studied in the 
past by several workers26 - 28 from a purely classical 
point of view. Care was taken to insure that all of the 
energy levels were computed accurately to ± 1 in the 
least Significant figure reported. 

It may be seen in Table I that the agreement between 
the semiclassical and quantum energy levels is excel-
lent throughout, being generally better than ± 4 in the 
fourth decimal place. 
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