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The semiclassical quantum conditions for bound states are studied for a nonseparable system of two
coupled oscillators which possesses a collection of quasiperiodic trajectories. The semiclassical energy
levels are found to be in excellent agreement with the exact quantum levels. This treatment differs
from previous work in that periodic trajectories are not needed and in that the potential surface is

smooth and nonseparable in all regions.

INTRODUCTION

The calculation of bound state properties within the
semiclassical approximation for systems with more than
one degree of freedom has attracted considerable atten-
tion for many years. In spite of this, there exists no
practical semiclassical quantum condition which allows
one to decide which classical states correspond to quan-
tum mechanical bound states for general multidimension-
al systems unless the system happens to be separable.

In the present work the quantum conditions are studied
for a nonseparable, two dimensional system which pos-
sesses a collection of trajectories which generate a com-
plete, multivalued solution of the Hamilton~Jacobi equa-
tion throughout a region of coordinate space. The ener-
gy levels computed from the quantum conditions for this
system are then compared with the exact, numerically
computed, quantum mechanical energy levels of the sys-
tem.

Historically, the problem of finding the quantum con-
ditions for a mechanical system was circumvented by the
formulation of quantum mechanics. However, there re-
mains interest in the problem in part because there ex-
ist many systems which can be treated by classical me-
chanics but which are intractable by quantum mechanical
methods. Then such semiclassical quantum conditions
would-provide a way of extracting information about
quantum mechanical bound states from the available
classical mechanical data.

The approach in this study is most like that of Keller!
in that it depends on the multivalued solutions of the
Hamilton-Jacobi equation. In Keller’s treatment, the
quantization condition is derived from the requirement
that the various branches of the semiclassical wave-
function connect properly along the caustic curves. The
same quantum conditions were derived by Marcus? by
requiring that the semiclassical wavefunction go over to
an exponentially decreasing function at all points on the
caustic curve. Keller and Rubinow?® applied the theory
to a free particle in two dimensions constrained by hard
walls. In the system used in the present work the par-
ticle moves on a smooth potential in which the two de-
grees of freedom are coupled in all regions of the co-
ordinate space.

Another approach to the semiclassical theory of bound
states is that of Gutzwiller*”" and W. H. Miller® which
is based on a semiclassical approximation to the quan-
tum mechanical Green’s function. Their result is that
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a system has a bound state at an energy if the classical
system has, at this energy, a periodic trajectory which
satisfies a quantum condition. In contrast, the exis-
tence of quantized periodic trajectories is neither nec-
essary nor sufficient in the present treatment.

Pechukas® has extended to several dimensions the
transformation of the Schrédinger equation used by S. C.
Miller and Good'® and has studied the class of multidi-
mensional systems which result from a Miller-Good
transformation of separable systems. The system stud-
ied in the present work has the qualitative features of
the Miller—Good transformed systems, but the treat-
ment here does not require one to find the Miller—Good
transform or even to know if it exists. Pechukas?® also
gives a critical review of previous work on the semi-
classical treatment of bound states.

In the next section the properties of the system are
discussed, and the quantum conditions are exhibited.
The last section contains the details of the method for
computing the semiclassical energy levels of the sys-
tem and the comparison with the quantum energy levels.

SEMICLASSICAL QUANTUM CONDITIONS

The Hamiltonian for the system to be considered here
is given by

E=3(P2+ PP+ i+ 029®) 4 nx(y2 4 i) . 1)

The coordinates are x and y; the corresponding momen-
ta P, and P,; w,, w, A, and 5 are constants; and E is
the total energy of the system. Physically this Hamil-
tonian represents a system of harmonic oscillators of
unit mass with frequencies w, and w, coupled by a cubic
potential, the strength of which is determined by A and
7. A Hamiltonian of this form might be obtained, for
example, by transforming an anharmonic triatomic os-
cillator into some approximate normal mode coordi-
nates, neglecting bending. Then the strength of the an-
harmonicity would determine A and 7. This system has
been studied extensively in the past by workers in many
fields. 11714

It has been shown by Kolmogorov, Arnold, and
Moser®® that many coupled, multidimensional systems
possess quasiperiodic trajectories, by which it is meant
that the coordinates and momenta may be expanded as
functions of time in a convergent Fourier series with a
finite number of fundamental frequencies. One result
of this theorem is that such a system may be confined
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to a region of coordinate space smaller than that al-
lowed by the total energy of the system. One of the sim-
plest of such systems is that of Eq. (1). A typical tra-
jectory of this Hamiltonian is shown in Fig. 1. This
trajectory fills a “box” with slightly curved sides ABCD,
which is contained within the oval-shaped equipotential
curve. The equipotential curve encloses the area in
which the trajectory is confined by energy conservation
and is the locus of points (x, y) satisfying

E=3(w?x% + wip?) s 2x(y%+mad) . (2)

The trajectory touches the equipotential curve only at
zero momentum, which is the case at the “corners” of
the box ABCD. The “sides” or envelopes AB, BC, CD,
and DA are called the caustic curves for the trajectory
since they are the curves on which adjacent trajectories
cross each other. The caustic curves are the analogs
of the turning points in one dimension. It would appear
from Fig. 1 that there exist no other such caustic
curves.

For a trajectory such as that in Fig. 1, a multivalued
pair of momentum functions P,(xy), Py(xy) may be de-
fined by the equations

P(x(t), y))=P(8); Pyx#), yt)=P,1), (3)

where x(¢), y(¢), P,(f), and P,(¢) are the coordinates and
momenta as functions of time ¢ satisfying Hamilton’s
equations of motion corresponding to the Hamiltonian of
Eq. (1). There are four branches of this pair of func-
tions, since the trajectory may pass through a given
point (x,y) moving in four different, general directions.
The branches are distinguished by a superscript Roman
numeral I, II, I, or IV depending on whether the tra-
jectory which passes through the point (x,y) is moving
in the general direction of the upper right, upper left,
lower left, or lower right portion of Fig. 1, respective-
ly. In Fig. 2 a portion of the trajectory of Fig. 1 is
shown along with the Roman numeral denoting the branch
of the momentum function generated by the trajectory
between successive points where it touches the caustic
curve.

The fact that only four such branches of P,(xy), P,(xy)
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FIG. 1. A typical trajectory of the coupled, two dimensional
system considered in this work, having the Hamiltonian of Eq.
(1). The trajectory appears to stay forever within the ‘“box”
ABCD rather than wandering throughout the energetically al-
lowed region within the oval-shaped curve. This particular
trajectory has frequencies such that w;=0.29375, w3=2. 12581;
coupling parameters A=—0.1116, n=0.08414; and is initially
at the origin with positive momenta determined by the total en-
ergy, E=2.42, and fraction of energy in the x oscillator, f,
=0.25, cf., Eq. (18).

Q)

exist and are well defined over the same region of the
x-y plane is a consequence of the assumption that there
are four well defined caustic curves as shown in Fig. 1.
Studies of the system of Eq. (1) have indicated that most
of the trajectories at the energies where the system has
bound states have these properties, 16 Exceptions to this
statement occur for trajectories in which most of the
energy is in one degree of freedom, ¥ for systems in
which the frequencies w, and w, are equal, 7 and in cer-
tain other systems'! at high total energy E or with large
values of the coupling parameters A and 7. In these ex-
ceptional cases the trajectories may fill a more com-
plicated region'* or may appear to be ergodic and not be
confined to any region smaller than that allowed by the
conservation of energy. For such systems other meth-
ods than those described here would be needed and are
under investigation.

A multivalued solution of the Hamilton-Jacobi equa-
tion may be written in terms of the momentum functions
P,(xy), Py{xy). The-Hamilton-Jacobi equation corre-
sponding to Eq. (1) is

() (2]

+Ax(y2+nd) =E . (4)

Solutions of Eq. (4) are well known to bel®!?

xy
<I>’(xy)=<1>’(xoyo)+f [PUx"y")dx'+ Py ) dy'] ,
0¥

y=1, I, I, IV, (5)

where the point (x,, y,) and the value ®"(x,y,) at that
point are arbitrary, Here 7y indicates the branch I, II,
III, or IV of the functions P,(xy) and P,(xy) and there-
fore of the multivalued function ®(xy). The integral in
Eq. (5) is a line integral and may be shown to be inde-
pendent of path.

Action variables J, and J,, which are constants of the
motion along the trajactory, are defined by

szf [Plxy) dx + PL(x y) dy]
1
+f [PH(xy)dx+ P (xy)dy],
Jy:fu [Pilxy)dx+P)(xy)dy]
b

b

+f [PY(xy)dx+ P (xy)dy] .

u
Here ! is a point on the left caustic curve AD of Fig. 1,
¥ is a point on the right caustic BC, b is on the lower
caustic AB, and « is on the upper caustic CD. Since the
line integrals in Egqs. (6) are independent of path, it may
be shown that J, and J, are independent of the location
of the points I, 7, b, and « as long as the points are on
the indicated caustic curve.

So far only one trajectory has been considered. Other
trajectories of the type shown in Fig. 1 will generate
other multivalued solutions ®(xy) and define different
action variables J,, J,by Egs. (6). For example, if the
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collection of trajectories with initial conditions x(0) = x,,
y(0) =y, for some x,, ¥, are considered, there will exist
a multivalued solution ®(xy) and J,, J, for each different
set of initial momenta P,(0), P,(0) provided the trajec-
tories are of the type pictured in Fig. 1. The trajec-
tories may as well be considered to be indexed by the
action variables J,, J, so that & may also be considered
to be a function of these constants. The multivalued so-
lution &(xyJ,dJ,) of the Hamilton-Jacobi Eq. (4) is a
complete solution in the sense that it is a solution con-
taining two arbitrary constants, J, and J,.**'® There-
fore ®(xyJ,J,) generates a canonical transformation
from coordinates x, y and momenta P,, P, to new mo-
menta (action variables) J,, J, and new coordinates
(angle variables) w,, w, defined by the equations

80 (xyd,J,) . 8%y d,J,) .
Py= ax T 8y ’
(7
w=a‘I>(nyJ), wzafb(ny,J) )
x al, =’ M ad,

The new Hamiltonian is just the old Hamiltonian, Eq.
(1), expressed in terms of the new coordinates and mo-
menta and is a function of the new momenta Jyy Jy only,
since they are constants of the motion. Therefore the
angle variables u,, w, are linear functions of time.

The quantum conditions for the system are!*2

Je=2mln,+3)i; J,=2nln,+3)%, (8)

where n, and n, are positive integers. That is, an en-
ergy E is an allowed energy level of the system if there
exists a classical trajectory at that energy of the type
in Fig. 1 defining action variables satisfying Egs. (8).
In what follows it will be convenient to define continuous
quantum numbers »n, and n, for every J, and J, by Eqs.
(8). 1If the classical Hamiltonian in action-angle vari-
ables is

HU,, J)=E, (9)

then the total energy E may be considered to be a func-
tion of n,, n, thus:

Emmn)=H@2rm +3)%, 2nn,+3)5) . (10)

Therefore, an equivalent statement of the quantum con-
ditions is that E=E(n,n,) is an allowed energy of the
system if both n, and 7, are integers,

These quantum conditions may be derived or ration-
alized in a variety of ways. In the old quantum theory,
for example, the restriction of Eqs. (8) is a matter of
hypothesis, 2° except that in most nonseparable, multi-
dimensional systems it is difficult to define unique ac-
tion variables. The present system is an example of
one in which action variables may be defined as previ-
ously discussed.

The quantum conditions (8) may be justified in an in-
tuitive manner by solving the semiclassical Schrodinger
equation in action-angle variables. The semiclassical
Schrddinger equation is obtained from Eq. (9) by the use
of the approximate, semiclassical prescription?™%

Jy=nfid/om+mhy Jy=R/is/ow,+TH (11)

to be
Hnfio/ow +nh, h/ia/ow,+1i)¥(w,w,)
=E¥(w,w,) , (12)

where ¥{w,w,) is the wavefunction. The substitution of
Eqgs. (11) is correct only within the semiclassical ap-
proximation.? In Egs. (11), the term 7% has been
added to the well known prescription of Dirac??? and
others in order that the prescription give the quantum
conditions which are known to be correct for the special
case of a separable system of independent oscillators.
A solution of Eq. (12) is®

I

¥(w,w,) =exp[2niln,w, +n,w,)] (13)

where %, and n, are constants. It is a property of the
transformation generated by ®(xyJ,J,) by Eqgs. (7) that
the mapping is periodic with unit period in each of the
angle variables w, and w,.'*'® For example, both of
the points (w,, w,,J,,J,) and (w, +1,w,,J,,J,) in the phase
space of action-angle variables represent the same
point in the phase space of the old coordinates and mo-
menta. In order to be single valued, ¥{w, w,) must be
periodic in w, and w, and thus the constants %, and =,
must be integers. The energy levels are obtained by the
substitution of Eq. (13) into Eq. (12) with the result
H@uln +3)%, 21(n,+3)0)¥w,w,) =E¥w,w,) , (14)
which is equivalent to Eq. (10). The constants »,, 7,
are seen to be the same as those in Egs. (8).

The same quantum conditions have also been derived
by Keller! by requiring that the semiclassical wavefunc-
tion be single valued in the x-y coordinates and making
use of a phase integral method. An intuitive view of the
appearance of the half-integers in Eq. (8) is provided
by the effect of the turning points of each vibration on
the phase of the semiclassical wavefunction. ! Each
turning point reflects the wave, causing a phase loss of
7/2 per reflection, and two reflections occur in one
complete period. The quantum conditions have also
been obtained by Marcus? as discussed in the last sec-
tion. The treatment of Marcus makes use of an approx-
imate separation of variables in the vicinity of each point
on the caustic curve to match the semiclassical wave-
function in the classically allowed region to a function
which vanishes asymptotically.

CALCULATIONS

In general terms, the semiclassical calculation of the
energy levels of the system of Eq. (1) was carried out
by computing J, and J, from the definitions (6) using tra-
jectory data computed numerically. The calculation was
repeated for different trajectories until J, and J, were
obtained satisfying the quantum conditions (8).

In principle any path between the left and right caustic
curves of Figs. 1 and 2 would be suitable for the com-
putation of J,, for example, by Eqs. (6). But in prac-
tice it was found most convenient to use a path along the
lower or upper caustic curve AB or CD of Fig. 1. The
reason for this choice is that once the location of the
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FIG. 2. A portion of the trajectory of Fig. 1 with the four
branches of the momentum functions P,(xy), P,{ry) generated
by it marked. The dots indicate the points where the trajec-
tory touches the caustic curves, which are the nearly straight
lines forming the sides of the “box’’ ABCD.,

caustic curve is known from numerical trajectory data,
the momenta P, and P, at each point on the curve are
known from the Hamiltonian and the total energy of the
system. More precisely, if x, y are the coordinates of
a point on the lower caustic curve AB, then the momen-
tum of the trajectory at the time when it touches AB at
(x, ) is tangent to AB at (v,y). Thus, the components
P,, P, of the momentum at the point (x,y) are related by

P,/P,=m(xy), 15)

where m(xy) is the slope of AB at (x,y). If Eq. (15) is
solved for P, and is substituted into the Hamiltonian Eq.
(1), the result for P, and P, is

P.(xy)=+{[2E - w?a? - w¥y® - 22x(s2 + P}/
[1+mcy?] P2, (16)
Pyxy)=mlxy) P (xy) .

The solution with the positive square root yields the mo-
menta on branch I and the negative root yields branch

0. Since the values of the momenta on the two branches
have the same magnitude along AB, the expression for
J, from Eqs. (6) reduces to

J,,=2f8[|P,,(xy)|dx+|P,,(xy)ldy] an
‘A

with P(xy), P,(xy) given by Eqs. (16). A similar ex-
pression is obtained for J,.

The computation was carried out with a program writ-
ten in FORTRAN for an IBM 360 Model 75 digital computer.
The details of the calculation are as follows. For sim-
plicity only the integration along the lower caustic curve
AB of Fig. 1 is described since the calculation for an-
other caustic is similar. Initial conditions for a tra-
jectory are chosen to be x(0)=0, y(0)=0, and positive
P_(0) and P,(0) determined by the specification of the
total energy E and f,, the fraction of energy initially in
the “x oscillator.” That is

fo=P(0)3/[P,(0)*+ P,(0)] . (18)

The trajectory is computed by solving Hamilton’s equa-
tions for Eq. (1) by 2 Hamming predictor-corrector
method. In the vicinity of each lower turning point where
P,(t) has a zero and y(¢) is negative, y is approximated
as a quadratic function of x. After the trajectory has
been computed to such an extent as to clearly define the
caustic curve, the points on the caustic curve are com-
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FIG. 3. The quantum numbers n, and n, computed from various
trajectories. All of the trajectories have the same total energy
E =1.6870 and differ in f,, the energy initially in the x oscil-
lator. This total energy is clearly a semiclassically allowed
energy level of the system since both », and n, are integers at
fx=0.6120. The system has the Hamiltonian of Eq. (1) with
frequencies such that wf, =0.49, wf,:l. 69 and coupling parame-
ters A=—=0.1, n=0.1.

puted to be those points where a straight line is tangent
to the quadratic approximation to the trajectory in the
vicinity of two adjacent turning points. The computed
points nearest the corners A and B are linearly extrap-
olated to the corners by using the fact that the coordi-
nates of the points A and B satisfy Eq. (2). Finally the
integral in Eq. (17) is performed numerically down
straight line segments joining the points on the caustic
curve just computed using Simpson’s rule in each seg-
ment. In each segment the momenta P,(xy) and P,(xy)
in the integrand of Eq. (17) are given by Eqs. (16).

It may be seen that the above procedure will yield the
actions J, and J, or, by Egs. (8), the quantum numbers
n, and n, to any desired accuracy provided a sufficient
number of points on the trajectory are computed to high
enough accuracy and enough steps are taken in the nu-
merical integration of Eq. (17) and provided that the
caustic curve is not too severely slanted., Tests have
shown that the method is entirely adequate for the sys-
tem studied here.

In Fig. 3 the quantum numbers %, and n, are plotted
as a function of the fraction of the energy initially in the
x oscillator, f,, at a single total energy E. The two

1.04F -9004

1.00

Nx

0.60

FIG. 4. Enlarged drawing of Fig. 3. The dashed line shows
ny and n, for E =1.7000 which is the energy level for the un-
coupled system having A=0, cf., Eq. (1). The shift in the n,
=1, n,=0 energy level due to the coupling for the nonzero i is
clearly seen.
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TABLE I, Comparison of the semiclassical and quantum energy levels for various systems.
Quantum
System?® numbers E(n,n,) Uncoupled

wd w? A n Ny Ny Quantum Semiclassical  A=0

0.29375 2.12581 —~0.1116  0.08414 0 0 0, 9916 0.9920 1. 0000
1 0 1.5159 1.5164 1.5420
2 0 2,0308 2,0313 2.0840
0 1 2.4188 2.4196 2.4580

0.36 1.96 -0.1 0.1 0 0 0.9939 0, 9942 1. 0000
1 0 1.5809 1.5813 1. 6000
2 0 2,1612 2.1615 2.2000

0.49 1.69 -0.1 0.1 0 0 0. 9955 0.9955 1, 0000
1 0 1.6870 1. 6870 1.7000
0 1 2,2781 2.2780 2.3000
2 0 2.3750 2,3750 2.4000
11 2.9583 2.9584 3. 0000

0.81 1.21 —0.08 0.1 00 0. 9980 0.9978 1.0000
1 0 1, 8944 1. 8941 1.9000
0 1 2,0890 2.0897 2.1000
2 0 2,7899 2.7895 2. 8000

3Parameters of Eq. (1).

constants E and f, determine a trajectory with the indi-
cated values of n, and n,. The total energy considered
in Fig. 3 is a semiclassical energy level of the system
since #, and #, are simultaneously integers for
f,=0.6120. The same data are plotted on an expanded
scale in solid lines in Fig. 4. Also shown in dashed
lines are the #, and n, computed at a higher energy which
would be an energy level of the system in the absence of
the coupling term in Eq. (1), i.e., if x=0. It may be
clearly seen from Fig. 4 that the cubic coupling due to
nonzero A has shifted the energy level.

In order to compute the semiclassical energy levels,
E(n,n,) of Eq. (10) with integer n, and n,, the values of
n, and n, were computed for three different trajectories
corresponding to different values of the pair E, f,.
These data were used in an interpolation scheme to be
described presently to obtain an estimate of the E, f,
which would yield the desired integer values of n, and
ny. The values of n,, n, actually computed from this
last estimated E, f, were used in the interpolation
scheme together with the data from the previous two
trajectories to obtain a better estimate of F, f,. This
procedure was repeated until E was obtained to the de-
sired accuracy. Generally only one or two iterations,
which is a total of four or five trajectories, were re-
quired to obtain an energy level to the five significant
figures reported in this work.

The interpolation precedure makes use of the fact that
n, and n, are nearly linear functions of f, and E as is
partially evident from Figs. 3 and 4. Values of n, and
7, from three different trajectories were fitted to ex-
pressions of the form

n,=a,E+b.f,+c,;

ny=a,E+byfe+c,, (19)

and the constants «a,, b,, c,, a,, b,, and ¢, were deter-
mined. Then the desired integer n, and n, were inserted
into Eqs. (19) and the resulting pair solved for the new
estimate of E and f,.

In order to compare with these semiclassical results,
the exact, quantum mechanical energy levels of the sys-
tem of Eq. (1) were computed numerically. The wave-
function of the system was expanded in the set of eigen-
functions of the uncoupled system, which is the system
having the classical Hamiltonian of Eq. (1) with A=0.
Substitution of this expansion into the Schr&dinger equa-
tion corresponding to the Hamiltonian of Eq. (1) leads to
the usual algebraic eigenvalue problem, which was
solved by standard numerical methods. 2°

All calculations reported here were carried out on the
system given by Eq. (1) with units chosen such that

=1 and w,+w,=2. (20)

One consequence of-this choice of units is that the ground
state of the uncoupled system (A=0) is at E =1,

In Table I some of the semiclassical energy levels
computed as described above are compared with the ex-
act quantum results for various systems and coupling
strengths. The first system in Table I, expressed in
other units, is a system which has been studied in the
past by several workers®~2® from a purely classical
point of view. Care was taken to insure that all of the

_ energy levels were computed accurately to +1 in the

least significant figure reported.

It may be seen in Table I that the agreement between
the semiclassical and quantum energy levels is excel-
lent throughout, being generally better than +4 in the
fourth decimal place.
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