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Theoretical energy distributions of reaction products in molecular beam systems are described for
reactions proceeding via transient complexes. Loose and tight transition states are considered for the
exit channel. For a loose transition state and the case of I » j, the result is the same as of Safron
et al. For the case of a tight transition state exit channel effects are included analogous to steric
effects for the reverse reaction. It is shown how, via one mechanism, bending vibrational energy of
that transition state can contribute to the translational energy of the reaction products. Expressions
are derived for the energy distributions of the products when [ > j and j > I.

. INTRODUCTION

In recent years illuminating experiments on the be-
havior of long-lived collision complexes have been per-
formed in molecular beam systems.!'® The overall re-
action can be represented as

A +BC~ABC*,
ABC*~ABC! -AB+C,

(1.1)
(1.2)

where ABC* is the long-lived collision complex and
ABC! is the transition state for the “exit” channel form-
ing AB +C. [The transition state for Eq. (1.1) has been
omitted for brevity.] In these experiments the transla-
tional energy distribution of the reaction products was
measured. In related experiments on some of these
systems vibrational® and rotational* energy distributions
of the reaction products have also been measured.

Comparison with the data has been made with an adap-
tation of RRKM theory for both “loose” and ‘tight”
transition states, as well as with phase space theory.'™
In chemical kinetics, loose transition state theory is ap-
propriate for reactions not having steric factors, while
tight transition state theory is needed for reactions
having steric effects.’ Phase space theory® is the same
as transition state theory when the transition states for
both (1.1) and (1.2) are loose and when angular momen-
tum restrictions on the latter are fully taken into ac-
count (e.g., Sec. V).

It has been suggested that the molecular beam results
can be used to test the energy randomization assump-
tion of RRKM theory,” although the latter theory was de-
signed for calculating rates®® rather than for calculat-
ing energy distributions of reactions products. When
the transition states are loose, no added assumptions
are indeed needed: In a loose transition state AB and
C rotate freely, and so their vibrational-rotational mo-
tion is uncoupled from the radial--orbital motions in
ABC? and g fortiori in the motion from ABC! to the
products AB+C, Thus, in this case RRKM theory can
be used without further approximation for discussing
energy distributions.

In the case of a tight transition state, only by adding
additional assumptions to it can one adapt it to yield ex-
pressions for these distributions. Thus, only when the
latter assumptions are valid do the beam data test RRKM
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theory itself.

In a recent stimulating theoretical study using transi-
tion state theory to obtain the energy distribution of re-
action products, it was assumed that the distribution of
vibrational and rotational energies in the products of
(1.2) was the same as that in the transition state ABC?.10
The translational energy distribution of relative motion
of the products was assumed to be greater than that in
ABC?! by a centrifugal plus potential energy term, and
an appropriate distribution function for this term was
included. The case of relatively large orbital angular
momentum quantum numbers I in (1.2) and large ones
1, in (1.1) was treated.'?

Given the above energy distribution in ABC?, what is
of particular interest now is an examination of possible
dynamical (or statistical and dynamical) effects in the
evolution of the degrees of freedom of a fight ABC! into
those of AB+C. Such effects would further influence
the internal and translational energy distributions of
the reaction products, both for the case of large and
small . For example, some of the bending vibrational
energy of ABC? may be converted into translational en-
ergy of AB+C in (1.2), as follows.!!

When the transition state in (1.2) is tight, there are
bending vibrations in ABC! which tend to become rota-
tions of the products. Because the spacing of bending
vibration levels is wider than that of rotational levels,
an extra energy is released into translational energy
E, of the products if the conversion of the bending to ro-
tational motion is “statistically adiabatic” (adiabatic on
the average). This effect, when it occurs, would cause
the translational energy of the products AB+C to be
shifted to higher values.

In the present paper an expression is derived for the
energy distribution of the reaction products, taking this
effect into account for a tight transition state. The re-
lation between loose transition state theory and phase
space theory is first summarized, so as to set a back-
ground for analysis of the tight transition state theory.

The organization of the paper is as follows. In Sec.
II the transition states for some reactions are discussed,
differentiating between loose and tight. In Sec. III the
distribution of total angular momenta in (1.1) for a
loose transition state for that reaction is given. 1In Sec.
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IV the assumptions used in treating (1.2) are listed.
State-selected cross sections are derived for the case
of a loose transition state for (1.2) in Sec. V and com-
pared with those of phase space theory. Approxima-
tions are then given for the cases of I>j and j>>1,
where ! and j refer to the orbital and rotational angular
momenta of the products of (1.2). The corresponding
cases (I>>j and j> ) when ABC! is a tight transition
state for (1.2) are treated in Sec. VI, and the former
is illustrated with several examples in Sec. VII.

The distribution of translational energies of reaction
products for the four limiting cases in Secs. V and VI
is deduced in Sec. VIII from the state-selected product
distributions given in those sections.  Rotational and
vibrational distributions are derived in Sec. IX. The
paper concludes with some further comments in Sec. X.

1l. TRANSITION STATES FOR SOME REACTIONS

When the reaction cross section for the forward step
in (1.1) leading to the formation of an ABC* is large,
steric effects in that step are small and so the transi-
tion state of (1.1) can be regarded as loose. Because
of detector sensitivity limitations the reactions studied
have had relatively large cross sections and so the
transition state has typically been regarded as loose for
this first step.

The transition state for the second step, ABC*~AB
+C, Eq. (1.2), however, is probably loose for some re-
actions but tight for others: Typically, one might ex-
pect that when the energy barrier for the reverse step
AB+C—~ABC* is large, the barrier will depend on the
relative orientation of AB and C, steric effects will
therefore be present and the transition state will be
tight. When the barrier is negligible for the more fa-
vorable directions of mutual approach, it might be non-
negligible for other directions, and some steric effects
might still occur.

An example of a chemical activation whose exit chan-
nel (1.2) appears to involve no significant potential en-
ergy barrier for the reverse step, AB+C-ABC¥, is

F +CRCI=CR'R"~ FRCI-CR'R" -~ FCR=CR'R"+Cl,

(2.1)
where the R’s are alkyl or other groups.2!?2 Treatment
of such reactions by a loose transition state statistical
theory in which all internal coordinates of ABC* partici-
pated in sharing the excess energy yielded reasonable
agreement with the data.®"”

Two other examples of chemical activation, the sec-
ond of which has a large potential energy barrier?®?
for the reverse step of AB+C - ABC?, involve H atom?"
or methyl radical®” elimination instead of CI elimina-
tion:

F+CHR=CR'R"” - CHRF - CR'R"*~FCR=CR'R" +H,
. (2.2)

F +CH;CR=CR'R" ~ CH,CRF - CR'R"*~ FCR
=CR'R" +CH, . (2.3)

Thus, tight transition states would be expected for the
dissociation step, at least in (2.3). On the basis of re-

cent beam data, one could infer either that all vibrations
of ABC* do not participate in the energy sharing during
the short life of the vibrationally hot molecule,®" or

that the added assumptions used to calculate the energy
distribution of AB +C were in error,® or possibly both.3!3
The added assumptions did not, for example, allow for
any possible statistical-adiabatic effect described in the
previous section. The effect is such that it would quali-
tatively reduce the discrepancy. Thus, numerical tests
of the present or other models is needed for systems
involving tight transition states, before more definite
conclusions can be drawn regarding the number of vi-
brations of ABC* participating in the energy sharing,
where ABC? is tight.

. ?lSTRIBUTION OF ANGULAR MOMENTA OF
ABC

We consider the case where the transition state of
(1.1) is loose. The final results for this aspect of prob-
lem can be altered when this step has instead a tight
transition state, by utilizing arguments analogous to
those employed for (1.2) in Sec. VI. All previous work

appears to have used a loose transition state for
(1.1).1,2,7,10,14

Let [; and j, denote the orbital and the fofal rotational
angular momentum quantum numbers for (1.1). The
total angular momentum quantum number k lies in the
interval (17, ~jy!, I +3,), by the usual rule for addition
of angular momenta.

The loose transition state occurs at the maximum of
the effective potential energy for the radial motion » of
AB and C: If Uylr) is the actual potential energy for
motion from ¥ =« to an 7 in the vicinity of the loose
transition state, the effective potential for the radial
motion BY(r) contains a centrifugal term

BYr)=Uylr ) +[1y(ly+1)B%/ 2 er?] . (3.1

L is the reduced mass of A and BC. The transition
state occurs at an 7, rfo, where BJ)(r) has its maximum.
(U, contains a long-range attractive term.) That is,

dBr)/dr =0 atr =r§0 , 3.2)
and d2B%(r)/dr? is negative at rfo .

The reaction cross section for A +BC to form ini-
tially an ABC* in (1.1) is 0. The cross section is given
by a standard relation?®
I 2 Qi+ ), (3.3)
k5 1570 0%
where w?O”O is the reaction probability for a colliding
pair A and BC having an initial orbital angular momen-
tum quantum number ; and an initial relative velocity
vg. w° is independent of the internal states of A and
BC, in the case of a loose transition state. k, is the
wavenumber po/# (= uovy/%). u® is a step function of
the energy excess Ey, - Br }0), where E,,, the initial
translational energy, is % uov:

Wiy =1 if Ep> B‘,’(rfo)

=0 if E, <B}r}) . (3.4)

0o~
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For a given E, , therefore, ®’ is unity for all /’s
up to some maximum value [,,,, defined by

Bi(r},) < Eyy f0r o<y . (3.5)
Using (3.4) and (3.5) the sum in (3.3) now yields
0=l +1)%/RE . (3.6)

Differences such as those between [,,, and [, +1 will
later be ignored.

The distribution of total angular momentum quantum
number « in the ABC*’s formed in (1.1) will be needed.
In the case of a loose transition state for (1.1) the prob-
ability of obtaining a particular x for ABC* depends only
on a statistical factor: The probability of forming a
particular « in step (1.1) equals the ratio of number of «
states to total number of j, and [, states, namely, (2«
+1)/(2§,+1)(21,+1), where « lies in (1jg— Lyl, 7o+ k).
Thus, the probability that a pair A +BC of a given [, and
vy Dot only reacts but forms a state of given « is

2k +1

Wiwy™ @jar )2l + 1) Y

?ovo (jo=lol <k <jy+k) .
’ 3.7

The distribution function of ABC*’s formed in (1.1)
with a given k, Py(x), is obtained by multiplying (3.7)
by the weighting factor 2];+1, summing over all I’s
consistent with the given « and j,, and dividing by a
normalizing factor:

K+j
EI(F?K ~jgl (2 lO + l)w?$0

E;}Q(ZZO +1 )w?o"o

(3.8)

P()(K) =

Further, w?ovo equals unity when /;< /,,, and zero when
Iy> 1, according to (3.4) and (3.5). Also, [, cannot
exceed x +j,. Thus, Egs. (3.7), (3.8), and (3. 3) yield

( ) &

2k +1

P, "HEoltiil) 2 : 1. 3.9
O(K) 00_0(2]0 + 1 10=|x-j0| ( )

The upper limit 12 on the 7, sum is either the energy-
limited value 1,,, defined by (3. 5) or the angular momen-
tum-limited value « +j,, whichever is the smaller. That
is,

1%=smaller{l,, ,« +jq} . (3.10)

The maximum value of «,k,, for the given j,, is the
maximum value of [;+j,, i.e.,

Km:lom+j0 . (3.11)

One may verify by interchanging the order of summa-
tions over « and [ that!'®

K=K gy

2 Pw)=1, (3.12)
k=0

as indeed it should. The limits in the reordered sums

are given below by (3.13) since, for a given j, and I, «

lies in the interval (ljo— k!, jo+ ), and since [, itself

must lie in the interval (0, I, ):
ljo = lol <k <do+ly, O<Iy< Iy - (3.13)

A useful simplification of (3.9) arises, one which will
not be used until Sec. VB, when [,>>j,. In this case,

since the Jy’s are clustered around k, we may set in
(3.9) and (3.10) (a) |« —jy|=« — jp and (b) 2=« +j, for
the large majority of x’s. The sum over [, in (3.9)
then becomes 2j,+1. Further, we may set Py(«) equal
to zero for « greater than [,,,, since « cannot exceed

lym +79, and this quantity is essentially 7,,,. Thus, Eqs.

(3.9) and (3. 6) yield
Pylx)=(2x+1)/B,., k<1, (3.14a)
=0, k>1., (3. 14b)

ignoring the difference in 1%, and (I, +1)?, for notational
brevity.

V. ASSUMPTIONS

It will be assumed that

(i) the transition state for (1. 1) is loose, as already
noted,

(ii) s vibrations of ABC* participate in the energy
sharing process, i.e., are active (the remaining, if
any, are adiabatic throughout (1.1) and (1. 2)');

(iii) transition state theory is valid for (1.2);

{(iv) in the case of a tight transition state, an addi-
tional assumption given later.

Assumption (iii) can be rephrased as

(iii) a quasiequilibrium approximation for (1.2)
(“microcanonical activated complex theory”),!® namely,
Eq. (4.3) below, is valid.

Assumption (i) can be replaced, as noted in the pre-
vious section; the transition state for (i) could be tight
and other reaction probabilities «f, could be introduced.

When the transition state ABC? for Eq. (1.2), is loose
the assumptions (i)-(iii) permit an immediate calcula-
tion of the energy distribution of the reaction products.
The results are given in Sec. V, and are the same as
those of phase space theory, as already noted. They
reduce to those of a recently formulated loose transi-
tion state theory'® for the reaction (1.2) when one intro-
duces the approximations, k=], and [=k, [ being the
orbital angular momentum quantum number of the prod-
ucts. That transition state theory employed these use-
ful approximations, and so this last result, too, is the
expected one. Another limiting case, [;=«=j, is also
given in Sec. V.

There may be several sets of reaction products from
ABC* in reaction (1.1)-(1.2), besides AB+C and A +BC,
We denote by o the ath set of products, and introduce
the following additional symbols for reaction probabili-
ties and cross sections: o'f‘ﬂ:«‘onoE is the cross section
for forming the ath set of products in a rotational-vi-
brational state jn from reactants in a state jyn, when the
total energy is E; 0g,;;jons dE, is the cross section for
forming the ath set of products with a translational en-
ergy (E, ,E, +dE,); wjmg is the probability of forming an
ABC* from a collision of the ath set of products having
agivenj, n, I, k, and E.

The second ¢ is related to the first by
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%, 11 gnox 9E» = jz:"fn:!unoB ,(E~E, - dE, < E}, < E- E,),
(4.1)
where the sum is such that the rotational—vibrational

energy EJ, of the ath set of products satisfies the condi-
tion in parentheses.

Throughout, j,and j denote the total rotational angu-
lar momentum of the reactants and of the ath set of
products, respectively. The remaining rotational quan-
tum numbers and the vibrational quantum numbers are
included in ny and n, which are discussed more fully in
Sec. IX.

Assumption (iii) for a given k and E can be written

aslg

ijnlE Zl

,m, (lk—jl<l<k+j,0<Ef,<E),

(4.2)
where the first sum is over all j, n, and [ consistent
with the given x, E, and @, namely, over j, n, and [
satisfying the conditions in parentheses. The sum over
n! in (4.2) is over all quantum states of the ABC? for
the ath set of products, consistent with the given E and
k. N}, denotes the number of such states, apart from
a degeneracy factor 2¢+1, which is absent from both
sides of (4.2).

To simplify the notation the subscript « present above
will be omitted in the future from all symbols, apart
from N :a

The total cross section for producing the ath set of
products, 0., 5, for the given j;, ny, and E is, in the
present statistical-type theory,

% = ooZPu(x)2 i (4.3)

since N, /2, N}, is the probability that a transition
state of a given k will be of the ath type, and oPy(x) is
the contribution of a given « to g,.

When (4.2) is introduced for N:a into the numerator
of (4.3), we have

OsgngE = ; Oin ,igngl

—‘702 P(K) ijnw ’

xa inl

(4.4)

where the conditions in (4. 2) on the jxnl sum apply. The
sums on the right-hand side can be reordered, without
any change in limits, to read 2,,2,2,.

The right-hand side of (4.4) is now seen to be the sum
of disjoint terms, since the reaction probability for AB
+C~ABC* starting from any xjn state of AB+C, 2w}z,
is independent of that starting from another «jn state at
the same E and a. Thus, terms of the same j and » on
both sides of the second half of (4.4) may be equated,
yielding

Polk) Z Wik » (4.5)

Cins UZ
! ’jonoE ¢ E Nnc 1=1k-jl

where «, is given by (3.11).

Assumption (iv) will be taken to be: wj,; 5 is a function
of the energy excess for overcoming the barrier for the
reverse of (1.2), AB+C—~ABC*. There is some mini-
mum barrier, denoted by Bf, in addition to the extra
component, present statistically, from the conversion
of rotations of AB+C into bending vibrations of a tight
ABC!. The energy excess is taken to be E, — B} . Thus,

w;an=wK(Ep"B¥) . (4.6)

By using microcanonical activated complex theory
[assumption (iii)] one introduces an effect arising from
the difference of densities of states of bending vibrations
in a tight ABC? and of rotations inAB +C, due tothe dif-
ference in energy spacing of quantum states. Assump-
tion (iv) permits the translational energy to help over-
come this mean difference in bending vibrational and ro-
tational energy.

The simplest value for B} would be

=Uut+E}, 4.7

where U? and E,’ denote the potential energy of the tight
transition state ABC?, relative to the ath set of prod-
ucts, and a centrifugal-type barrier, respectively:

El=1+V)m¥/21 . (4.8)

Here, I is a relevant moment of inertia of ABC . The
assumption of U* +E} as the minimal barrier provides

a simple way for assuring that appropriate impact pa-
rameters for the reverse step in (1,2) occur, via a suit-
able I*. More complex expressions for B! could be
tried instead. Some of the above symbols are illustrated
in Fig. 1.

Equations (4. 6)—(4. 8) automatically apply to a loose
transition state, with I* replaced by uR!?, where R} is
defined in Sec. V, and with w* being the simple step
function given in Sec. V by Eq. (5.4). For a tight tran-
sition state the moments of inertia could depend slightly
on the quantum numbers, but usually in chemical kinet-
ics any such dependence is ignored when the transition
state is tight.

The use of several additional symbols will prove
helpful. We denote by I,, the upper limit of the I’s satis-

ABC ac?

AB+C

FIG. 1. Properties in the exit channel,
as indicated, or negative.

Ut may be positive,
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1

L=wtj

[—

0

FIG. 2. Plot of (I,k) quantum states’s space available (shaded
area) for forming products of a given j and £,. The line k =x,,
is drawn for the case that j+1I,= k, >j.

fying the condition B} <E,. That is,
Bi<E, for I<L,(E,). (4.9)
l,, thus depends only on E,.

Since / can exceed neither [, nor «x +4 and since k can
exceed neither «,, nor I, +j, Eq. (4.5) can be rewritten
as

K¢ l<
- Pylk)
OsnsigngE = "oz 2 Wine

& Ta N 1B 410

where
© I.=smaller{j+x,1,}, (4.11)
k.=smaller{j+1,,x,} , (4.12)

and k,, is given by (3.11)., Thus, the upper limit of I is
either an angular-momentum-limited value j+« or an
energy-limited value [,,. Similarly, the upper limit of
Kk is either j+1, or k,, (both are energy-limited plus
angular-momentum-limited values).

In two of the cases (Secs. VC and VIC) it will be con-
venient to interchange the order of the sums in (4. 10).
The new limits are seen from Fig. 2 to be

L - [
E:GOZ Z _P.o(i)_ K

T, w 4.13)
mid gy 150 «=13-11 2o Nia j"’,E ’ (
where
K. =smaller{j +I,k,} . (4.14)

In Sec. VI we shall need the following densities of
states of the ath set of products.

The number of active vibrational~rotational jn states
of the ath products when their energy E;, lies in the in-
terval (E - E, ~- dE,, E - E,) will be denoted by p(E - E,)
X dE, and equals

p(E - E)dE,=2_(2j+1),(E - E,~ dE, < E,;,< E-E,) .

in
(4.15)
Depending on the approximation used for p, p can con-
sist wholly of a sum of delta functions, or of delta func-
tions (for the vibrational eigenvalues) superimposed on
a continuous function, or of a continuous function.

A second density of states needed in Sec. VI involves

the sum of all » states in an energy range for systems
with a given j:

p’(E-E,)dE,=9 1 ,(E-E,~dE,<E,,<E-E,) .
" (4.16)

V. LOOSE TRANSITION STATE FOR ABC
A. Loose transition state for any £ and /

If U(R) denotes the potential energy for the radial
motion R in (1.2) in the vicinity of the transition state
and for larger R’s, the effective potential for the R mo-
tion B,(R) is

B,(R)=U(R) +1(1+1)%/2 uR? . (5.1)

The transition state occurs at an R=R: where B,(R) has
its maximum, R,‘ depends only on [, the orbital angu-

lar momentum gquantum number of the products AB +C.

The value of B, at R =R,1 is denoted by B,'.

The quantum numbers for ABC! are K, j, I, andn
when ABC! is a loose transition state, and all states of
this loose ABC' are equally probable a priovi, for the
given x and E, The total number of such states avail-
able is 2, N}, where

Ka?

¢
N:fZZZ 1,(0< E,;,<E), (5.2)
i

n I=lk=41
and I, is given by (4.11).

Since j, n, and [ are good quantum numbers along the
reaction coordinate R from ABC® to AB +C, the distri-
bution of j and » in AB +C is the same as that in ABC?.
All states of ABC' contributing to (5.2) are equally prob-
able. Thus, the probability of finding a transition state
in any one of these states is 1/3, N},, for the given «
and E. Since the probability of finding an ABC* with
any given k is Py(x), and since the total cross section
for forming an ABC* in (1.1) is 0y, the cross section
for forming any j and #» is obtained by summing over all
1 consistent with this j, x, and n, and then summing
over k:

k¢ 1
an;lonoE:%; Pylx) Z <1/Z N:,,,) , (5.3)

1=lk=f1
where I, and k. are given by (4.11) and (4.12).

Equations (5. 3) and (3.9) are equivalent to the phase
space theory result.?’

For later comparison we note parenthetically that the
reaction probabilities w’, z for the reverse of (1.2), de-
fined in Sec. IV, is given by the following equation, in
the case of a loose transition state:

Wime =1, (Ep > B;)
=0, (E,< B}) . (5.4)
Equation (5.3) could also have been obtained from (4.10)
using (5.4).
B. Loose transition state when£, >>j, and ¢>> j

A useful simplification of (5.3) arises when ;> 4, and
1> 4 for the more important /;’s and I’s contributing to
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FIG. 3. Plot of ¢, k) quantum states’s space available (shaded
area) for forming products of a given j and E, for the case of
j>>.1. The line k =k,, is drawn for the case that k,>j+1,.

(5.3). It has already been seen that when [;>3j,, Eq.
(3.9) for P,{x) reduces to {3.14),

When > j the values of I in (5.3) are largely clustered
around the given value of « being considered. Thereby,
in the sum over [ in (5.3), since j is so small, we can
set (a) L=k +j, for the large majority of the «’s, and
{b) lk-jl=k~j. Thus, the sum over [ in (5.3) equals
25 +1.

The upper limit & in the sum over « in (5.3) is seen
from (4.12) to be the smaller of the /,, and [, , since
j+l,=1,and k,=l, . Equations (5.3) and (3. 14) now
yield the following equation, since the sum of 2k +1 from
k=0 to k, is x? (neglecting unity relative to ,,):

Uln;jonoE = (Eii;;r]ily‘QA(Ep) ’ (5.5)

where
A(Ep):ly (lm2 lm) (5. 63.)
=L/ Tm)?s (U < Lom) - (5. 6b)

[If unity had not been neglected relative to 7, and to ,,,
the (I, /1,)? in (5. 6b) would have been (7, +1)2/(l,, +1).
The same remark applies later in (5.8b).] We have re-
placed the « in I, N}, by some mean value, an approxi-
mation which is a convenience rather than a necessity,
and have introduced a notation A(E,) to facilitate com-
parison with Ref. 10.%

C. Loose transition state when 20 >> o and j>> £

It will be convenient to use (4. 13) for o,, P with
w1z being replaced by unity for this case of a loose .
transition state [since I <1, in (4.13)]. The x in 2, N,
in (4.13) will be replaced by some averaged value, and
the Py(x) in (4.13) is given by (3.14).

Figure 3 shows that in evaluating the sums over « and
1 in (4.13) it is convenient to consider four cases which
differ in the value of k,,: (1) k,=j+1ln, 2)j+1,=x,>7,
3)jzkn>ji-1,, and (4) j- L,>k, . In the present case
j>1, and so in practice one need consider mainly cases
(1) and (4), with (2) and (3) only providing some small
transition region.

For the case of k, >j+1, the x; in (4.14) becomes j+1,
the |j—11 in (4.13) is j— I (since j> ), and so in (4.13)

the sum over k becomes a sum of 2x +1 from j- [ to j+1.
The value of this sum is (2§ +1)(2/+1). The sum of 2/+1
from 0 to [, then yields 12 (neglecting unity relative to
L)

Considering next the case k,, <j~1/,, we note that «
cannot simultaneously satisfy the angular momentum
addition rule, j-1,<k<j+l,, and the condition «k <«,
<j-1,. Thus, the corresponding O gmstgnoE vanishes.

These two cases can be written as [,,,>j and [, <7,
noting that x,,= [, and I, <j. Equations (4.13), (5.4),
and (3. 14) thus yield

(2j+1)o,
CinstgngE™ 27 Nt A'(Ep) ’ (5.7)
o Ko
where
A'(E,)=0 for j> Ioy (5.8a)
=L/ lgm)?, fOF §<lop . (5. 8b)

Equation (5. 7) plus (5. 8b) is identical with the (5. 5)
plus (5. 6b) apart from the condition j </,,, which re-
places [, <1[,,.

VI. TIGHT TRANSITION STATE FOR ABC?

A. General
Equations (4.2) and (4. 6) yield

> w=Nl,(|k-jl<1<i,05E, <E),
inl

(6.1)

where [, is given by (4. 12) and where w* and N}, denote
w*=w*(E, - B}), (6.2)
N,f‘,EN,‘m(E—B:K) ’ (6-3)

and B} and Ef are given by (4.7) and (4.8). A new guan-
tity B}, has been introduced: B, is the energy of ABC!
“fixed” as potential energy U*and as the part of the ro-
tational energy associated with the total angular momen-
tum quantum number «, and so it cannot be distributed
among the states nt of ABC!. While B} can contribute
only to E,, during the formation of the products from
ABC?, B}, can contribute both to the E, and E,, energies
of the products,

When k=, the moment of inertia appearing in B}, [cf.
Eq. {(6.14) later] will be the same as that appearing in
the exit channel barrier B,’, as in case (b) below. When
k = j, these two moments of inertia may differ, as in
case (c) below.

. The summation over j, n, [ is bounded by the limits in
(6.1). N} (E- B}) does not include a degeneracy factor
2k +1, it will be recalled, which is absent from both
sides. N3,(E- B}) is the number of active vibrational-
rotational states of ABC?, for given E and x, having an
internal energy equal to or less than E - B}‘. Equation
(6.1) is to be solved for the unknown function u*.

B. Tight transition state when Qo >> /'0 and £>> f

As in the corresponding case Sec. VB for the loose
transition state the values of ! are clustered around the
value of k. The ! in B} in (6. 2) is replaced by «x. Since
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l=>x, the moment of inertia in B, is the same one as
that in B}, and so B!, in (6. 3) is replaced by B.

The sum over [ in (6.1) is from |« -j| to I,, where I,
is, as in Sec. VB, set equal to «x +7 for almost all «’s,
because of the clustering of / values. Since |k - jli
equals « —j, the sum over [ once again yields 25 +1.

The sum of 2j+1 over j and n, for E, in a range (E,,

E, +dE,) yields by (4.15) p{E - E,)dE,, the number of
rotation—vibration states for the products « in the range
E-E,~dE,<E;,<E-E,. (It does not include the 2x+1
degeneracy factor.)

Equation (6. 1) then becomes

E

f p(E - E,)w"(E, - B)dE,=N},(E~ B} . (6.4)
EyB,

This equation is next solved for w" by Laplace trans-

forms: Multiplying both sides of (6. 4) by exp[- s(E

- BY)|dE, integrating from E= B} to «, using the convo-

lution theorem, and noting that the Laplace transform of

the right-hand side of (6.4) is Q}(s)/s, where @} is de-

fined below, we have

w*(s) = Q}s)/sQls), (6. 5)
where
w*(s) = r w*(x) exp(- sx) dx , (6.86)
0
Qls)= Lw plx)exp(~ sx}dx, (6.7
Qis)= J;w gﬂ:‘%‘c—(x—)exr)(— sx)dx . (6.8)

Inversion of (8.5) yields w*(x).
- B} we have

Setting x equal to E,
w}(nlE = “)K(Ep e B{n)
1 CHico Q,{(s)

“om i SQ(S)

and with [ =x.

(6.9)

exP[s(Ep - B;{)]ds )

To obtain an expression for the cross section 0y, ...z
using (4.13), it is first noted that since x> j, the values
of [ in the sum over [ are clustered around /= k. Setting
the 7 in w}, z equal to some mean value « in this small
interval of I’s, the sum over I in {4.10) is from « —j to
k+j and equals (2j +1)wj,,;z With I=x. We now have

K¢
P ) .
cj";jonoE:(2j+1)00Zz—%?—wj"m (with I=x).  (6.10)
k=0 “a‘Vxa

The upper limit k. in (6.10) is seen from (4. 12) to be the
smaller of j+7, and k,, i.e., of [ and [, in this case
of >4 and [;> j,. Introducing Eq. (3.14) for Py«), Eq.
(6. 10) thus becomes

lom
2k+1
O-In'jonDE=(2j+1)—%o' E —_K—-*'f_w;nll«',‘ for lm> lom (6- lla)
! lam x=0 zaNxa
= (2 +1)92 B 26kl g n,, (6 11b)
=lay+ A EaN,}awj"'E OF Ly < lom » .

where w},, 5 is given by (6. 9).

In Eq. (6.11) the sum over x can be replaced by an in~
tegral over 2«dxk, i.e., over d(x?). Thus,

2§+ 1)oy
Opei o p=dLAAE,) , (6.12)
InsionoE zaNx‘a t\p
where the ¢ denotes “tight” and
1 (Ym
4B =g [ wE, ~ B (1> 1) (6. 132)
lom k2=0
1 (% .
=), wiE, - BYA® (L, <ly) - (6. 13D)
om “x2=0

Here, the dependence of E‘,N}a on k has been presumed
small, and the « in N,f,, represents some averaged value.
(Otherwise, it can be placed in the integrand. )

From Eqgs. (4.7) and (4. 8), one sees that B} is the sum
Ur+[k(e+1)r%/21%]. I3, it will be recalled from Sec. IV,
is usually taken to be a constant in the case of a tight
transition state.

Equation (6.12) also applies to a loose transition state.
For a loose transition state @} equals @ in (6.9), and so
(6.9) reduces® to the step function value for u* given by
(5.4), namely, unity if E,> B} and zero if E,<B}. With
this value for w* Eq. (6.12) yields (5.5).

C. Tight transition state when{, >> j, and j>> ¢

In this case the I! associated with the centrifugal con-
tribution in B} is expected to differ from the I associ-
ated with the principal rotational quantum number of
ABC? k. We shall denote the latter by I}, so that U*
plus the part of the rotational energy of ABC* associated
with « will be denoted by B} , where

B!, =U'+E}L = U +x(k +1)R2/218 . (6.14)

As before, we shall suppose that E, has {0 exceed a
barrier B}, where B} is given by (4. 7).

In the sum over j in Eq. (6.1), the j’s are now clus-
tered around the given value of ¢. In fact, j ranges
from k-~ 1to k+1I, and [ <«<j. Summing over j in this
cluster and neglecting the variation in w*(E, - B}) over
this j interval, the sum over j equals 2{+1. The sum of
21+1 over [ is from 0 to /,,. At any j we may, in sum-
ming over n, introduce p’/, the density of the states de-
fined by (4.16). Equation (6. 1) becomes

E
J o’(E - E,WXE,)dE, =N},(E~ B},) , (6.15)
Ep=0
where k= j and where W* is defined by
12
X ™ x 1 2
w (E,):f w*{E, - By)dl* . {6.16)
12=0

The integrand in (6.16) depends only on E, and B!. The
upper limit I2 depends only on E, [¢f. Eq. (4.9)]. Thus,
the right-hand side of (6.16) depends only on E,, a re-
sult explicitly indicated by the argument in W*(E,).

Equation (6.15) is solved by a Laplace transformation.
Both sides are multiplied by exp(~ sE)}dFE and integrated
from E=0 to . The convolution theorem yields, as in
(6.4) and (6. 5),

W(s)=[QNs)/ sQ*(s)],

where

(6.17)
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#is)= [ wH)exp(- s)dy , (6.18)
0
as)- [ “laN (v~ BL)/dylexp(- sy)dy,  (6.19)
Q(s)= fo " pi(y) expl= sy)dy . (6. 20)
Inversion of (6.17) yields
W*(y) = L eds) expsydy . (6.21)

27 Joj  5Q,(8)

Q,f(s) defined by (6. 19) does not include the degener-
acy 2k +1, but the y in (6.19) does include the energy
B},. The integrand in (6.19) does not become apprecia-
ble until y exceeds B},. The p’(y) in (6. 20) is also es-
sentially zero until y, which is E;,, has some minimal
value E; for the rotational energy of the products con-
sistent with the given j. When E; and the rotational en-
ergy in B},‘ (with ¥ =j) are approximately equal, they tend
to cancel in the ratio Q}(s)/ Q,(s), and then W* tends to
be independent of or only weakly dependent on 5.

The cross section is obtained from the reaction prob-
ability using Eq. (4.13). When [, and hence k,, ex-
ceeds j+1,, the xin (4.13) and (4.14) is j+{. Since
j>1, k varies from j—1to j+1. If the variation of w*
over this small k range is neglected, the sum of (2«
+1)w* from k=j—1toj+1is (2j+1)(21+1)w’. Thus,
Eqgs. (4.13) and (3.14) yield for this case of 1, >j+1,,
i.e., of [,>7,

2
_ (2j+1)o, f’m 5 y 12
Tnitons TS NEJE, Jag B~ B

_(2j+1)ay, Wi(E,)
2aNia  lom

» Uom >3) 5 (6.22)

where the « in 2, N} _ is a suitably averaged value and
W/(E,) is given by (6.21) with k=j.

As in the loose case of Sec. VC, the cross section is
zero when [ and hence «,, is less than j-1/,.

From these results we have

Bl gy, (6.23)

Oinijgnge ™ Y. NE.

where
A(E)=05(j> L)

1 fcn‘o Q}(s)
e

T 2wl J. sQ,(s)

(eXPSEg) ds, (3 < zam) .
(6. 24)

As in Sec, VC, the conditions I,,<j—1,and [, >j+1,
were written as [, <j and [, >7, since [, <«<j. The
A{(E,) in (6.24) does not become appreciable until E, ex-
ceeds B}, - E,.

Equation (6. 23) reduces to Eq. (5.'7) for the loose
transition state when the assumptions appropriate to the
latter are introduced.” For a loose transition state Q} .
. can be written as

Q)= q,(s) fﬁ “esalgar . (6. 25)

Introduction of this result into the integral in {6.24) and
integrating over s first we have®®

1 c+joo Qi(s) «©
= i\s) - t
977 fc-i«: 50,(5) exp(sE,) ds—fo 21dtn(E, - By) ,(
6. 26)

where Z(E, - Bf) is the unit step function, which is the
same as the wj, , in Eq. (5.4). Thereby, h is unity if
I<1, and zero if 1>, [cf. Eq. (4.9)]. The right-hand
side of (6.26) thus equals [ 274! integrated from 0 to I,
and so equals /2. Thereby, Eq. (6.23) reduces to (5.7).

For a tight transition state the deviation of Q}(s)/Q,(s)
from the value in (6. 25) causes A;(E,) to deviate from
the value (5. 8) for the loose transition state.

VII. APPLICATIONS OF THE EQUATIONS IN SEC. VIB

For purposes of illustration and further discussion,
Eq. (6.9) for the tight transition state I>>j is evaluated
for several examples. It will be recalled that the equa-
tions of Secs. VIB and VIC applied not only to a tight
transition state for assumptions made, but also to a
loose transition state, when the assumptions appropriate
to the latter were introduced. Equations (5.5) and (5.7)
were obtained.

Since @}/Q in (6.9) was unity for a loose transition
state, the deviation of @!(s)/Q(s) from a value of unity
in (6. 9) represented the contribution of the steric effects
to w* for the reverse step AB+C—~ ABC*. (A loose
transition state occurs for a reaction having no steric
effects.) @(s) is known from the properties of AB+C.

If Q,f(s) is calculated from the properties of the transi-
tion state and introduced into (6.9), the w*’s can be
evaluated. The various cross sections can then be cal-
culated from (6.12). With I>j, the x can be replaced by
1 in the various equations.

For concreteness, two illustrations are given below
for the case where I>j and where the transition state is
tight, i.e., for the case Sec. VIB.

Example 1

We first consider an example where the high frequency
vibrations contribute little (close to a factor of unity) to
Q!(s) and to Q(s) for the s’s of interest. Their contribu-
tion to the ratio @!(s)/Q(s) is even closer to unity. We
also replace, as previously noted, « by [ since [>>;.

If the contributions of the lower frequency motions to
these partition functions are represented by

Yo)zal/s™ | @ls)za/s™, (7.1)
then
Qis)/Qs) = (aY/a)sm ™ (7.2)
Equation (6.9) is then readily evaluated to yield
w!lnlEE wl(Ep - Bf)
3
_A' (B, - B)" '
TA Tmt-m+1)’ (E, > By)
=0!(EP<B:), (7-3)

J. Chem. Phys., Vol. 62, No. 4, 15 February 1975



1380 R. A. Marcus: Theory of molecular beam reactions

where T'(y) is the I function of the argument y. When
(7.1) is a sensible approximation, the right-hand side
of (7. 3) will not exceed unity,* as indeed it should not.
Equation (7. 3) also reduces to Eq. (5.4) for a loose
transition state, when the properties of the latter (m?
=m,A* =A) are imposed.

When AB and C are a polyatomic molecule and an
atom, respectively, two rotations of AB have become
two bending vibrations of ABC*, in the reverse step of
(1.2). When these bending vibrations are classical
each contributes unity to m?. Each rotation contributes
4 tom. Thus, m*-m in this case equals unity.

When AB and C are both polyatomic molecules four
rotations of AB and of C have become bending vibrations,
yielding a classical contribution of 2 to m*-m. Of the
two remaining rotations one may become a vibration or
restricted rotation in the transition states contributing
perhaps £ to m¥—m. The sixth rotation remains as a
rotation. Thus, in this case m! - m has a value of 2-
2.5.

The value of 4,(E,) is calculated from (6.13) and (7.3).
If one neglects any dependence of I* and U' on I, as one
typically does in the case of a tight transition state but
not in the case of a loose one, Egs. (6.13) and (7. 3)
yield,?* noting that k=1,

A(E) == 4 (l;ﬁ,z ),.. -m(%m—)z

1= [1 = U/, 2]

Tontemig) " Um> lon) (7.4a)
At l2h—2 m -m (lm/lom)z
A ( 21t ) (W))’(lm<lm). (7. 4b)

Although (7. 4) was explicitly derived for a tight transi-
tion state it also reduces to A(E,), given by (5.6), for
a loose one.”

Example 2

For a second example we shall suppose that there is
much cancellation of @} and @ in (6.9), apart from those
contributions which are bending vibrations in ABC? and
rotations in AB+C. Let the number of these rotations
be m, . The rotations can be treated as classical. We
let their contribution to Q(s) be @,(s), and write

Q. (s)=A4,/s™'?, (7.5)

since each rotation contributes Vs to s™ /2, The con-
tribution of the bending vibrations to Q:(s) is denoted by
Q:(s). Equation (6. 9) now becomes, with k=1,

1 c+iw

w'(Ep— B§)= Snid ). glmr/2-1
x @}s) exp[s(E, - B})] ds (7.6)
i.e.,
1 w7 (7.7)

A WN(E’ B),

Eq. (7.7) applying to the case that m, is an even integer.
When AB is a linear molecule and C is an atom m, is 2.
When AB and C are both polyatomic molecules and when

the four of the six rotations become bending vibrations
while the other two remain as rotations, m, is 4. Nt
can be evaluated by a direct counting technique as well
as by more approximate methods.®?® When m, is an odd
integer (7.6) can be evaluated by a variety of methods.
For example, s1/2@Xs) can be treated as a product of
partition functions, the s/2 being, apart from a pro-
portionality constant, the partition function of a plane
rotor. The corresponding “number of states” function
will be denoted by N,*(E, - B}). The latter could be
evaluated by direct counting or by approximate methods.
Equation (7. 6) then applies, with N* replaced by N'* and
with m, /2 replaced by m, +3, an even integer.

For the model in this example, A,(E,) is obtained
from (6.13) and (7.7). For the case where m, /2 is an
integer we have, for a tight transition state,

1 dNIMT'l(JZz _£2) £=0
AE,) = r m > L) (7.8a)
Ay Ar"eﬁm d(- £2)(M, 1) .,
1 dN£M7“1(£’2n _ £2) £=
= ALL,  d- £2)WD i (I,<1,), (7.8Db)

where the right-hand side indicates a difference of the
values derivative at the upper and lower limits, and
where

L2=121%/21' , M,=m,/2.
£, is given by (7.9) with I replaced by [, .

(7.9)

Vill. TRANSLATIONAL ENERGY DISTRIBUTION OF
REACTION PRODUCTS

We shall consider the cases of Seecs. VB, VC, VIB,
and VIC in that order. Inall cases Eq. (4.1) is used
to relate 0,50z 1O Oynsignee -

{i} Case of Sec. VB (loose transition state,{>> j)

Equation (5. 5) is introduced into (4. 1), noting that
A(E,) does not depend on j or %, for a given E,. The
sum 2, (2j +1) over the energy range E - E, - dE, < E,,

— E, is the number of vibrational-rotational states,
p(E- E,)dE,, given by (4.15) for the ath set of products.
Equations (4.1) and (5. 5) then yield

p(E - EP)A(EP) ’ (8. 1)

%
LaNia

where A(E,) is given by (5.6).
l,m depends only on E, .

OBy iigmE =

l,, depends only on E, ;

Equations (8.1) is equivalent to that derived by Safron
et al.'9?" Thus, the latter equation yields the same re-
sult as phase space theory for the (highly useful) simpli-
fying assumptions of I>>j and [;>>j,. The latter assump-
tions were explicitly made in Ref. 10.

(ii) Case of Sec. VC (loose transition state j>>%)

In Eq. (5.7), A'(E,) depends only on E,, for a given
E, since [, in (5. 8) depends only on E,. Summing (5.7)
over j and n in the energy range (E - E, - dE,< E;,< E
- E, ) yields the sum 3,,(2j +1), which can again be writ-
ten as p(E~ E,)dE,. Equation (5.7) then yields
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a ’
OEp;jonoE :Xfr_ﬁ:p(E —Ep)A (Ep) ’ (8 2)

where A’(E,) is given by (5. 8).

(iii) Case of Sec. VIB (tight transition state,£>> j)

In Eq. (6.12), A,(E,) depends only on E,. On summing
(6.12) over j and n in the energy range E~ E, - dE, < E;,
<E -~ E,, one obtains J,;,(2j+1), i.e., the p(E - E,)dE,
in (4.15). Equations (4.1) and (6.12) yield

g
Or,igmgE =Z—]$—g p(E - E,)A(E,) (8.3)

where A,(E,) is given by (6.13).

(iv} Case of Sec. VIC (tight transition state j>>£)

When the j dependence of @}(s)/Q;(s) in (6.24) is weak,
for the reason discussed in Sec. VI, the dependence of
A{(E,) on j there is weak also. The summation of
(6.23) over j and » in the energy interval E — E, - dE,
< E;, < E - E, yields 2,,(2j +1), which is again the p(E
- E,)dE, in (4.15). Equations (4.1) and (6. 23) then
yield

a, 7
Ok, i gngt T,,Tsﬂ P(E - E,)A(E,) , (8.4)

where A,(E,) is given by (6. 24).

IX. ROTATIONAL AND VIBRATIONAL ENERGY
DISTRIBUTION OF REACTION PRODUCTS

It is useful to first describe more fully in Eq. (9.1)
below the quantum number n appearing in Secs. III-
VII. (Similar remarks apply to n,.) The collision pair
in the reverse of step (1. 2) is specified by the quantum
numbers 7, », ! (and by the momentum p). The quan-
tum numbers for a pair of molecules 1 and 2 in an un-
coupled basis would be j,, m; by, oy my,, ke, L, m,
and v, where v denotes the vibrational quantum numbers
for all vibrational degrees of freedom of both molecules,
j1 and j, denote the rotational angular momentum quan-
tum numbers of the molecules, m;, and m;,, the z com-
ponents, and &, and &, are the extra rotational quantum
numbers needed to specify the eigenvalues if the mole-
cules are nonlinear. For example, g is absent when
molecule 1 is linear, and j, and m, are absent?® if
molecule 1 is an atom. In a coupled basis, the quantum
numbers are j, I, k, m,, and j;, &k, j», ks, v, the
same number of them as before, of course. m, has al-
ready been included by the 2« +1 factor present in Eq.
(3.9) for Py(k). Thus, the quantum number » denotes

nE{jl’kl’jz:ka’v}’ 9.1)
of which some of these may be absent if one of the prod-
uct molecules is an atom or a linear molecule,

Thus, if the distribution of only certain of the quan-
tum numbers of molecule 1, n, say, is measured, the
relevant cross section describing the distribution is

fl“'.’z
OmissomoB = Z E Oinssgnys » ®.2)
(mbmgy =H122)

where the notation is intended to indicate that the sum-
mation over n is made at fixed », .

Regardless of whether 1 or 2 are linear or nonlinear,
or whether 2 is an atom, the only dependence of O s gng®
on j lies in the 2j +1 factor in the case of cases of Secs.
VB and VIB. In VC the only other dependence on j is
in the existence of a cutoff for j>1,, [Eq. (5.8)]. In
Sec. VIC there is a similar cutoff in (6.24), and an ad-
ditional weak j dependence.

We consider cases of Secs. VB and VIB first. Here,
the sum over j in (9.2), using (5.5) or (6.12), involves
a sum of 25 +1 from j=|j; ~j,1 to j, +j,. This sum
equals (2, +1)(2j,+1). In the subsequent sum in (9. 2)
over n at fixed n, we note that A(E,) in Eq. (5.5) and
A4(E,) in Eq. (6.12) for 6,,,; .,z do not depend on » for a
given E,. The sum of 2j;+1 over j, and the other con-
tributors to n is next written as the sum (integral) of
contributions from various dE, intervals. The contribu-
tion to this » sum from the E, s in the range indicated
in (9. 3), at the given n,, is denoted by p*"’(E - E,) dE, .
That is,

2 @2y +1)@, +1) =" (E - E,, - E,)dE, ,
(n#ny) (E - Ep _ dEP < Ejns E- Ep) ’ (9. 3)

where E, is the energy of the degrees of freedom con-
tributing to the specified n, and E - E, - E, is the ener-
gy distributed among the remaining rotations and vibra-
tions of AB and C.

Equations (9.2), (9.3), and (5.5) or (6.12) yield

E~E
-0 "™ (np _
et TN, Jyrg P E B = BICUE,)

(9.4)

where
C(E,) = A(E,) (Sec. VB) (9.5)
=A,(E,) (Sec. VIB), (9. 6)

and A(E,) and A,(E,) are given by (5. 6) and (6.13), re-
spectively.

When j, >j,, so that the condition j>1,, or <1, in
(5.8) and (6.24) becomes j,> [, or <1, and so does
not depend on j,, and when j, is one of the n,’s, (9.4)
applies to the other cases (in the case of Sec. VIC if the
cited weak j dependence is neglected), but now

C(E,)=A'(E,) (Sec. VC) (9.7
=A,(E,) (Sec. VIC), (9.8)

where A’ and A, are given by (5.8) and (6.24), respec-
tively, with j replaced by j,.

To illustrate (9.3) and (9.4), we note that if molecule
1 is a diatomic molecule and molecule 2 is an atom, and
if n, denotes j, and v,, the vibrational quantum number
of molecule 1, p™XE - E, - E, ) equals (2j, +1) 8(E - E,,
-E, -E,) and Eq. (9.4) with j; =§ reduces to (5.5),
(5.75, (6.12), or (6.23), depending on the case being
studied.

If, instead, in this last example n, denotes only j,,

J. Chem. Phys., Vol. 62, No. 4, 15 February 1975



1382 R. A. Marcus: Theory of molecular beam reactions

p'"(E ~ E, - E,, ) equals (2j, +1) times the density of vi-
brational states of molecule 1, g"i(E ~E, -E, ). Or
again, if molecule 1 is a linear molecule and if molecule
2 is linear or nonlinear, and if n, denotes the rotational—
vibrational state (j,v,) of molecule 1, p"(E - E, ~ E, )
equals (2j, +1) times the degeneracy, if any, associated
with »;, and times the density of rotational-vibrational
states of molecule 2. H, in this last example, », de-
notes only j,, p"’(E - E, - E, ) is the convolution of the
vibrational state density of molecule 1 and the rotation-
al-vibrational state density of molecule 2,

X. CONCLUDING DISCUSSION

Expressions for the various state-selected and energy
distributions of products are given in Secs, V-IX. The
distributions are seen to depend on the relevant degen-
eracies or densities of the active modes!” of the reac-
tion products AB +C and on the reaction probabilities
for the reverse step in (1.2), AB+C -ABC*, This re-
sult is expected, because of the assumption regarding
the role of active modes in ABC* and because of micro-
scopic reversibility, Assumption (iv) makes a particu-
lar assumption about these reaction probabilities, and,
in conjunction with assumption (iii) yields an expression
for them,

There is a considerable indirect body of data on the
behavior of state-selected reaction probabilities for the
case of direct reactions. However, little is known yet
about those probabilities for reactions which may pro-
ceed via transient species, and there could be substan-
tial differences.?

The expressions for loose and tight transition states
have in common the presence of degeneracy or state
density factors for the active modes, e.g., for the case
of I>>j, they have in Eqs. (8.1) and (8.3) p(E - E,) with
p{E - E,) defined in (4.15). They differ in the reaction
probabilities for the reverse step of (1.2), and so A(E,)
in the former [Eq. (8.1)] is replaced by A,(E,) in the
latter [Eq. (8.3)]. Comparison of A(E,) with A,(E,)
shows that at higher E,’s (where I, >, in exothermic
reactions) A,(E,) results in a predicted shift in E, dis-
tribution toward higher E,’s, compared with A(E,) [cf.
(5.6a) with (6.13a)]. The origin of this predicted shift
is discussed in Sec. I.

We have already noted that translational energy dis-
tribution of products of the loose transition state for the
case of [ >j was treated earlier!® and that the present
result [Eqs. (8.1) and (5.8)] agrees with that in Ref. 10.
The case of a tight transition state was also discussed
in Ref. 10 for the case of I >j, using a different model
for the exit channel behavior. They assumed that the
translational energy E, in the products of (1.2) was the
same as that in ABC’, plus an amount Bf. In the pres-
ent paper we assume that some conversion of bending
vibrational to translational energy can occur, resulting
in the tight transition state case (Sec. VIB) in E, being
larger than the sum of the translational energy in ABC!
plus B}.

It is useful to compare the two results by considering
an approximate model such as that involved in Sec. VII,

Example 1. However, we shall take all coordinates to
be classical now, for purposes of the illustration, Each
vibration in ABC! (apart from the adiabatic ones'?) con-
tributes 1 to the m? in the classical expression (7.1).
Each active rotation in ABC! contributes 3. Thus, the
value of m! is

mt=st+iy s (10.1)

where 7 is the number of “nonadiabatic” rotations in
ABC?! and s! is the number of active vibrations in
ABC'.203

The expression in Ref. 10 for the relative translation-
al energy distribution is®

Os,;somz =cOnst. (E=E,)/21 1 =21 (10.2a)
=const. (I,/l,,P(E - E,)'/z’sl'1 s Ly < lom
(10. 2b)

The dependence of /,, on E, when a potential — ¢/7" is
used for U is given in Ref. 10.

For a loose transition state the density of states of
the products p(E - E,) in (8.1) is the same as that for
these coordinates in ABC', namely, const. (E - E,)"/2*¢%1,
Thus, Eq. (8.1) in this case is the same as Eq. (10.2),
which was taken from Ref. 10.

For a tight transition state Eq. (8.3) gives

Ogp;sompr = CODSE. A, (E)E - E)™! | (10.3)
where
7;/1=7’,,/2+sp (10.4)

The p subscript refers to products, 7, being the number
of active rotations of the products and s, the number of
their active vibrations. [For a loose transition state
v,=v and s, =s. ] In (10.3) A,(E,) is given by (7.4). At
high enough translational energies where [, «{,, the
latter equation for A,(E,) yields

A,(E,) =const. BM™™ (1 7 ). (10.5)
For the model used in Ref. 10, % is roughly proportion-
al to E,. For this case one would then write

Oryssome = CoOnSt. B ™(E = EY™, (1, > 1,,) , (10.6)

which compares with (10.2a), i.e., with
Og, 1 sqmez ECONSL, (E—EY™ ™, (1, >1,,,) . (10.7)

For a tight transition state, m? is larger than m by
an amount equal to one-half the number of bending vi-
brations which have become rotations.** Thus, both
because the factor Ef"™™ in (10.6) increases with E,
and because the factor (E — E,J"! decreases less rapidly
with increasing E, than does (E — E,)"™"!, the E, distri-
bution predicted by (10.86) is shifted toward higher E,’s,
in the case of a tight transition state, than that predicted
by the Eq. (10.7) based on Ref. 10. The physical ex~
planation was given earlier in Sec, I.
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curved region. The early downhill yields highly vibrationally
excited reaction products, while the late downhill one causes
translationally excited products. However, in the case of a
three atom A+ BC —~ AB +C reaction, this curved region is
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