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The multidimensional Bessel and Airy uniform approximations developed earlier in this series for the 
semiclassical S matrix are applied to the atom rigid-rotor system. The need is shown for (a) using a 
geoemetrical criterion for determining whether a stationary phase point (s.p.pt) is a maximum, 
minimum, or saddle point; (b) choosing a proper quadrilateral configuration of the s.p. pts. with the 
phases as nearly equal as possible; and (c) choosing a unit cell to favor near-separation of variables. 
(a) and (b) apply both to the Airy and to the Bessel uniform approximations, and (c) to the Bessel. 
The use of a contour plot both to understand and to facilitate the search in new cases is noted. The 
case of real and complex-valued stationary phase points is also considered, and the Bessel 
uniform-in-pairs approximation is applied. Comparison is made with exact quantum results. As in the 
one-dimensional case, the Bessel is an improvment over the Airy for "k = 0" transitions, while for 
other transitions they give similar results. Comparison in accuracy with the results of the integral 
method is also given. As a whole, the agreement can be considered to be reasonable. The 
improvement of the present over various more approximate results is shown. 

I. INTRODUCTION 
In the preceding paper of this series a multidimen-

sional Bessel uniform approximation was developed for 
the semiclassical S matrix. 1 In the present paper this 
approximation is applied and compared with the pre-
viously developed Airy approximation2 and with exact 
results. 3 For concreteness the applications are made 
to the atom-homonuclear rigid rotor problem. The 
typical configurations, and their origin, of the station-
ary phase pOints in the S matrix integral expression are 
discussed in Sec. II, the procedure for applying the uni-
form approximations in Sec. III, and the numerical re-
sults and comparison with exact results in Sec. IV. 

The Hamiltonian used in the present work is a stan-
dard one (e. g., Refs. 4, 5). It is given in Appendix A 
for completeness, together with the coordinates and a 
definition of the other symbols and parameters. For 
Secs. II-IV it suffices to note that t, J, and J are the 
orbital, rotational, and total angular momenta; Z,. j, 
and J are the corresponding quantum numbers. Clas-
sically, Z and j vary continuously along a trajectory in 
the interaction region. Their final values for arbitrary 
trajectories are Zf and jf. J is an integer and remains 
constant. At the stationary phase points of the phase .:l 
in an integral expression for the S matrix for a transi-
tion Ulo j1) - (Z2,j2)' If and jf take on the desired final 
integer values l2 and j2' 

Contour plots in the present paper are expressed in 
terms of certain derived coordinates6,7 fiJ and fir, ca-
nonically' conjugate to j1 and 710 6 the initial values of J 
and respectively, and defined in Appendix A. The 
original coordinates, also conjugate to 11 and 710 are the 
angle variables qj and q" The radial coordinate for the 
colliding pairs is R and its conjugate momentum is PR • 

Derived coordinates canonically conjugate6 to the final 
values of 7 and i are denoted by fi{ and fit. While q" 
qj, and R vary during a colliSion, fi?, fi j , fir, and 
are constants of the motion. 

II. NUMBER AND CONFIGURATION OF STATIONARY 
PHASE POINTS 

In order to apply the multidimensional uniform Bessel 
and Airy approximations developed in the previous 
papers of this series1,2 to the semiclassical expression 
for the S matrix it is necessary to determine the sta-
tionary phase points. These are the values of W r, fiJ) 
characterizing trajectories which, for the present prob-
lem, yield values of Zf and jf satisfying simultaneously 

Zf - Z2 = 0 and jf - j2 = 0 . (2.1) 

If contours of constant Zf are drawn in a (fir, qJ) space, 
and if those of constant jf are also drawn, the station-
ary phase pOints are those for which the contour Zf = Z2 
intersects the one for jf =j2' To obtain some insight 
into the number of stationary points and their configura-
tion, it is useful to consider first these Zf and jf con-
tours for several varied cases. The contour plots (Figs. 
1-3, given later) were obtained from a smooth inter-
polation of a lOX 10 grid of points in the w? qJ) space. 8 

In actual problems the configuration of the stationary 
phase points in the (qr, qJ) space is dependent on various 
factors, including the initial orientation of the orbital 
and rotational angular momentum vectors 11 and ft, re-
spectively. For illustration it is useful to consider first 
the extreme but simple case of motion in a plane. Here 
the initial i and f may be parallel or antiparallel and ' 
so the factor (f2 + f2 - J2/2[J) in Eq. (A4) (Appendix A) 
which is the cosine of the angle between the i and J 
planes, equals + 1 or -1, respectively. One can then 
show that the only angle variable which influences the 
inelasticity is qJ - qJ, when i and j are parallel, or q? 
+ qJ when i and j are antiparallel. In this (fir, f/j) space 
one may draw curves of constant l' . (Since 7f equals 
Jf - if in this planar case, these curves are also curves 
of constant tf. ) 

In the present case the curves of constant jf are seen 
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914 Kreek, Ellis, and Marcus: Semiclassical collision theory 

from the above discussion to be straight lines, inclined 
at a slope of 45° to the axis, and having a positive 
slope when Land 11 are parallel and a negative one when 
they are antiparallel. Because j' thus depends only on 
one coordinate, namely on the coordinate normal to the 
family of parallel straight lines, a stationary phase 
point (or really line here) occurs at the value of this co-
ordinate where l' equals the desired final value j2 for a 
transition ([1,jl) - (l2' j2)' In this planar case, t2 is then 
automatically determined from the algebraic equation 
4 '" .... .... .. , f J j2 + l2 = J1 = J2 = J. The lines of the final j and l inter-
sect along a "line" 0. e., coincide), rather than at a 
point. 

If now It and 11 are neither parallel nor antiparallel, 
but almost so, the lines of constant l' (and those of con-
stant l f) are no longer straight, but almost so. For ex-
ample, in Fig. 1 the contours of (a) constant If and (b) 
constant jf are given. In these two figures (J1, ll>jl) is 
(16,6,10). Since Ijll, I I, and Ijl I are respectively 
equal to 16i, 6i, and lOi semiclassically,9 this case is 
almost (but not quite) a planar one 10i). The 
contours of constant l f can be termed "lines of transla-
tion" in this example rFig. 1(a) 1, since they do not close 
on themselves and form "ellipses." In Fig. 1(b) the 
contour for jf = 12.0 forms an ellipselike curve, and 
can be termed a "line of lib ration, " while the contours 
for jf = 8.0 and 10.0 are lines of translation. A sepa-
ratrix would separate each family of lines of translation 
from each family of concentric "ellipses". 

With increasing departure from coplanarity of 11 and 
It [as in Figs. 2(a) and 2(b) where (Jh ll>jl) is (18,16, 
4) 1, the lines of translation, which tended to parallel 
the straight lines of the coplanar case, have given way 
increasingly to closed curves. When the departure from 
coplanarity is still larger [e. g., when it and 11 are ap-
proximately perpendicular to each other, as is the case 
in Figs. 3(a) and 3(b) where (Jh ll,jl) is (6,4,4)], the 

(a) 

major axes 01 the "ellipses" and the lines of translation 
are no longer inclined nearly 45° to the axis, with 
either positive or negative slopes. Their slopes are 
rather somewhere in between. 

As already noted, the points of stationary phase for 
the transition ([1,jl) - (l2,j2) occur when a contour of 
jf = j2 intersects a contour of l f = l2' When both sets of 
contours are lines of translation (rather than of libra-
tion), there are typically four stationary phase points: 
Because of a periodic roughly sinusoidal dependence of 
jl on the coordinate normal to the lines of translation, 
the contour lines for which jl equals j2 occur in pairs 
as in Fig. 1(b). Similarly, contour lines for which If 
equals l2 occur in pairs as in Fig. 1(a). The first pair 
intersects the second at four real points, if they inter-
sect at all, in the cases examined. 

On the other hand, if the contour jf = j2 is an ellipse-
like closed curve, and if the one If = Z2 is also an "el-
lipse, " then these two "ellipses" intersect, in the cases 
examined, at only two real stationary phase points. 
There are also complex stationary phase points, of 
course, and we have located them in most of the cases 
investigated here. Their effect is given later in 
Table II. 

Sometimes, particularly in a transition in which j2 
and Z? equal jl and ZI, respectively, a contour of constant 
/ = j2 tends to hover around the contour for constant ZI = l2' 
making the stationary phase points difficult to find. This 
behavior, which we have previously called a "clinging 
vine" case, 10 gives rise to a high transition probability 
(e. g., Table I of Ref. 10). It would be disastrous for 
any Airy uniform approximation, but might be acces-
sible to a modified Bessel uniform. We postpone treat-
ing this case by the uniform method. We have, however, 
treated it by the integral method in an earlier paper. 10 

/ 

/ 
____ __ ____ __ 

FIG.!. (a) Contours of constant [I in the space qJ) for the S matrix sl;,J
2
;6,10' Only integer values of [' are indicated, but con-

tours for all possible 1"s can be drawn. Analogous remarks apply to Figs. 1(b)-3(b). (b) contours of constant}' in the space 
qJ) for the S matrix 
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______ ______ 

0 

FIG. 2. (a) Contours of constant If in the space qJ) for the S matrix Sg'i2;16,4; (b) contours of constant jf in the space qJ) 
for the S matrix 12; 16, 4' 

III. PROCEDURE FOR APPLYING PSC, BESSEL, AND 
AI RY FORMALISMS 

In terms of the notation given by Eq. (3. 5) of Ref. 10, 
the S-matrix element for a transition (ll,jl) - (12, j2) is 

SJ. =(21Tt2i"i'GI/2ell>.df!£(jO (3.1) 
/2"2"1"1 -v .." / J, 

where G is the Jacobian for the dynamical transforma-
tion Cq?, (jJ) - (Q{, (jj). It is a signed determinant, i. e, , 
has a phase. 

I (-f -f)/ (-0 -0) I G= 8q/,qJ 8q/,q, (3.2) 

A is given by (3.3) below, and the other symbols were 

(a) 

C) (J4 (} cr 
I 

defined in Sec. I. 

A = (If -12)(j{ - f q/ (t)d1(t) + (jf - j2)(j{ - I q/t)dj(t) 
II J I 

(3.3) 

(PRI is the initial value of PR .) The ql(t), q,(t), l(t), 
j(t), and R(t) in the integrands in (3.3) denote instan-
taneous values of the relevant coo,rdinates and momenta. 
no is a dimensionless quantity defined in Appendix A. 

For the following analysis we write the phase A in 
(3.3) as the sum of two terms, AL and Ap: 

(b) 

C) 
CJ 
o 

0 
q£ 

FIG. 3. (a) of constant if in the space qJ) for the S matrix (b) contours of constant jf in the space qJ) 
for the S matrix SI2,J2;4,4' 
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(3.4) 

Il L = ([I - 12)q{ + UI - j2)qj , (3. 5) 
If jf 

IIp = (if - ll)q{ - f ql (L)dl (t) + (jf - jl)qj - J qj (t)dj(t) 
II j I 

(3.6) 

IIp, and hence expillp , can be shown to be a periodic 
function of q and q J with a period equal to that of the 
unit cell 0. e., 21T; or in the case of a collision of an 
atom and a homonuclear molecule, 1T).lIa ilL is a linear 
function of q { and of qj, but expillL is a periodic func-
tion of and qJ. lib Thus, expill is a periodic function 
of and qJ. 

While ilL is a linear function of ql and q {, it is not a 
linear function of and It can be written as the 
sum of a linear function of q and q J, Il and of a per-
iodic function of those variablesl2 : 

(3.7) 

Il itself is seen to be the sum of a linear and a periodic 
function of q? and q J. 

The location of the stationary phase points in Eq. (3.1) 
was obtained by a curve crawling procedure that will be 
described elsewhere. 13 Because of the symmetry of the 
homonuclear diatomic molecule, the area of search for 
pOints of stationary phase can be restrictedl4 , 4, 10 to a 
1T-interval in the variable (j? and to a 1T-interval in 
For the classical and primitive semiclassical probabili-
ties, the phases obtained from the trajectories can be 
used as calculated [Eqs. (B1)-(B3) of Appendix B 1. 
A. Case of four real stationary phase points 

For both the Airy and Bessel formulations one must 
choose a 1T2 region so that when there are four points of 
stationary phase they conform to the configuration on 
which concepts and resulting formulas are based. The 

A' 8' 

e .pz P3 -
F1.+ P1-+ 

• R • 
0' C' 

• • - -

+ -t 

-Tr I. 
,. 

-Tr o 

FIG. 4. Arrangement of stationary phase points in the space 
(qt qJ) for the 5 matrix 51;12;6,10' Maximum (+), minimum (-), 
saddle pOints (e). The Airy uniform approximation for the 5 
matrix can be used over the unit cell A' B' C' D' • 

qt? 0 
J 

-Tr 
-Tr 

-

• 

-

• 

• 
+ 

8' 

P2• 

PI + 

A' 

1\ y 
p' 3 

P4
'· .p; 

+ PI' 

C' 
W -P3 

z 

·P4 • 
+ 

o 0' 

FIG. 5. Arrangement of stationary phase pOints in the space 
for the 5 matrix Maximnm (+), minimum (-), 

saddle points (e). The Airy uniform approximation for the 5 
matrix can be used over the unit cell A ' B' C' D' • 

four points should be at the corners of a quadrilateral, 
with the maximum and the minimum at opposite corners, 
and with the two saddle points at the other pair of op-
posite corners. The procedure used in performing cal-
culations is outlined below. 

After the position of the stationary points and the value 
of Il and G at each of these points has been determined 
by the curve crawling procedure, the maximum, mini-
mum, and saddle points can each be identified unequiv-
ocably using the following properties of the Hessian of a 
function Il (x, y) [i. e., of Il(q?, q J) in (3. 3) 115 : 

a21l a21l a21l a21l ------->0 -<0 ax 2 ay2 axay 'ax2 

a21l a21l a21l a21l ------>0 ->0 ax2 ay2 axay 'ax2 

a21l 
--2 < 0 (at a maximum); ay 

a2
1l ( t .. ) --2 >0 a a minImUm; ay 

a21l a21l a21l 
-2 -2 - -- < 0 (at a saddle point) . (3.8) ax ay axay 
(The maximum, minimum, etc. cannot be identified by 
their relative values of Il, since the latter includes a 
linear function of and qJ and so has an infinite num-
ber of values. ) 

An example (and there are many) where the four sta-
tionary phase points in the interval and (0 

q J 1T) did not occur in the correct configuration is 
given in Fig. 4. The data in this figure were obtained 
in the calculation of 12;6010 (denoting S f2 ,j2;! l,il) and 
the cited area interval is the upper right quadrant. The 
maximum P; and minimum P3 are not at opposite cor-
ners of a quadrilateral. Moreover, the relative Il val-
ues of the four points were not consistent with the iden-
t'ification of the maximum, etc., based on Eq. (3.8). 

Because of the periodic array of stationary-phase 
points in ((j?, qJ) space it sufficed to select in Fig. 4 
another 1T2 area, merely by shifting the horizontal and 
vertical boundaries, so as to obtain four points in the 
correct configuration. A new 1T2 area A'B'C'D' is de-
fined by this new unit cell, and the relative Il values 
now agree with the identification of maxima, minima, 
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and saddle points provided by the Hessian. The integral 
in Eq. (3.1), evaluated over the new cell, numerically 
equals the integral over the old cell, to each point 
in the fox:mer there corresponds one point in the latter 
with the same value of the integrand. However, results 
based on the uniform approximation formula would not 
be equal, because of the model used for those formulas. 
For the example in Fig. 4, one may now use the Airy 
uniform approximation with the stationary phase pOints 
labeled P lo P 2 , P 3 , and P 4 without any further analysis. 
That formula is given by Eq. (B4) of Appendix B. 

Sometimes, as in Fig. 5, the points in the (0,1T)2 ap-
pear to be in the correct configuration but in the (- 1T, 1T)2 
region there is another set of points, enclosed by the 
square A'B'C'D', which is also in the correct configura-
tion. In this case, one should select the configuration 
for which the four are closest together in value. 
The reason is based on the topology of the surface and 
is given in Appendix C: The P1P2P 3 P4 in a true unit 
cell can be partially bordered by regions in which 
changes rapidly. 

In the particular example of Fig. 5, which is an ex-
ample of the points found for the calculation of the S ma-
trix we have for and 

the values -42.1769, -36.4490, -36.8283, and 
- 42. 8364, respectively. Using Eqs. (3.4)-(3.7) the 
phases at certain other points P l , P2 , P 3 , and P 4 in Fig. 
5 are found to be - 42.1769, - 42. 7322, - 43.1115, and 
- 42. 8364, respectively. The phases at these station-
ary phase points are closer in value than those at the 
original points, and they too are in a proper quadrilat-
eral configuration. One, t1ierefore, chooses the new 
unit cell as A' B'C'D' in Fig. 5, and uses the value of 
the phase and Gj at P l , ••• ,P4 in the Airy approximation. 

The above two main points of the analysis have not 
been brought out before in the literature. 

To apply the Bessel formalism it is necessary to con-
sider one further topological property of the phase 
so as to determine the integers k and K appearing in the 

r-____________ 

0 
-1T • 

-17' 

+ 
• 

0 

B 

c 

1T 

FIG. 6. Arrangement of stationary phase paints in the space 
qJ) for the S matrix Maximum (+), minimum (-), 

saddle paints (e). The Bessel uniform apprOximation for the 
S matrix can be used over the unit cell ABeD. 

Bessel expression, Eq. (B11) of Appendix B. Here, we 
must choose a newly shaped unit cell of 1T2 area, contain-
ing the four stationary phase points not only in the prop-
er quadrilateral configuration, but also so as to make 
possible a near separation of variables. To determine 
k and K one may then make use of Eqs. (3.4)-(3.7) with 
the definition of k and K as the coefficients most closely 
associated with points P 1P2 and P 1P 4 , respectively, in 
the linear term in the SpeCifically, Eq. (3.9) 
below, derived in Appendix C [Eq. (C5)], is used. As 
before, calculation of S whose stationary phase 
points were described in Fig. 4, will be used as an ex-
ample. 

The original unit cell was the interval 0 (j? 1T, 0 
(j J 1T and is labeled WXYZ in Fig. 6. As can be seen 

in Fig. 6, the edges P 1P4 and P 2P3 of the quadrilateral 
P 1P2P 3P 4 are nearly parallel to the diagonal XZ of the 
original unit cell. The edges P1Pa and P 4P 3 are nearly 
parallel to the diagonal WY. To favor the near separa-
tion of variables a newly shaped rectangular unit cell 
(ABCD in Fig. 6) is chosen, so as to parallel the diago-
nals XZ and WY. The longer side of the new rectangle 
ABCD is taken AB, since the distance P 1P2 and P 4P3 ex-
ceeds P2P3 and P 1P 4 • We choose the length of edge AB 
equal to the length of the diagonal WY. To preserve the 
1T2 area of the unit cell the length of AD is therefore 
chosen to be one half the length of the diagonal XZ. 
(Compare also ABCD in Fig. 6 with T2TllT12T7 in Fig. 
8 in Appendix C. ) 

We define point A to be the one which "corresponds" 
to the maximum, point P l , in the "congruent" quadrilat-
eral P 1P2P 3P 4 • A clockwise order for both sets of points 
(P1PaP 3P 4 and ABCD) has been adopted throughout this 
paper, with A "corresponding" to Pl , B to P2 , etc. 

From Eq. (C5) and the several lines following in Ap-
pendix C, we have 

(3.9) 

where are the values of at the points 
A, B, •••. Substituting the definition of from Eq. 
(3.7) into Eq. (3.9) and using the fact that in this con-
struction AB is parallel to WYand equal to it in length 
we obtain 

1Tk = (ll - 12)[ ((j ?)A + 1T] + Ul - ja)[((jJ) A + 1T] 

- (11 -12)(q?)A - Ul - ja)((jJ)A , (3. 10) 

since one can see from Fig. 6 that (ij ?)B equals (ij?) A + 1T 
and that ((j J) B equals (ij J) A + 1T. 

To obtain K we use the fact that AD is parallel to XZ 
and is t the length of XZ. Using Eqs. (3.7) and (3.9) 
we have 

1TK= (ll -la)[(ij?)A +t 1T]+ Ul - j2)[(ijJ)A - t 1Tl 

- (ll - 1a)((j?)A - Ul - , (3. 11) 

since one can see from Fig. 6 that ((j?)D equals ((j?)A 
+t 11 and that ((jJ)D equals ((jJ)A - t 1T. Thus, in this ex-
ample of S 10 where II - la = 2 and jl - ja = - 2 we have 
k= 0, K=2. 

In all cases, the points ABCD of the newly, shaped unit 
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TABLE I. Comparison of quantum with Bessel and Airy uni-
form approximations for rotational-translational transition 
probability: Four real stationary phase pOints in 71"2 area. 

Probabilities a 
J /2' jz; /\> jj Quantumb Bessel 

16 12, 4; 10, 6 0.297 
8, 8; 10, 6 0.296 
4, 12; 6, 10 0.289 
8, 8; 6, 10 0.285 

6 2, 4; 4, 2 0.220 
10, 4; 8, 2 0.297 

14 12, 2; 10, 4 0.275 
8, 6; 10, 4 0.289 

aprobability is I Si'2'h;lj,}ji I 2. 
"Reference 3. 

0.303 
0.300 
0.263 
0.289 

0.233 
0.300 

0.284 
0.295 

Bessel 
parameter 

Airy K,k 

0.461 2,0 
0.462 2,0 
0.378 2,0 
0.442 0,2 

0.285 2,0 
0.482 0,2 

0.382 2,0 
0.429 2,0 

cell (e. g., Figs. 6 and 7) are chosen so that its sides 
lie parallel to lines passing through the periodic array 
of points qJ) = ('0', - 27T, - 7T, 0, 7T, 27T, ••• ), (. 0 0, - 27T, 
- 7T, 0, 7T, 27T, ••• ) and such that when K and k are calcu-
lated with Eq. (3.9) they are integers. 

The Bessel expression, Eq. (B11) of Appendix B, for 
the S matrix with K = 2, k = ° and with the phases and G/ 
from points Ph P 2 , P 3 , and P 4 may now be used. 

To perform the Bessel calculation for the example 
given in Fig. 5 we note that in that figure the edges P 1P2 
and P 4P 3 of the quadrilateral P 1P2 P 3P 4 are nearly par-
allel to the edge WX of the original unit cell, and that 
the edges P 1P4 and P2P 3 are nearly parallel to the di-
agonal WY. A newly shaped unit cell is chosen. It is 
the parallelgram ABeD shown in Fig. 7. From Eq. 
(3.9) and Fig. 6 one sees that for this matrix 
element, where II - l2 = - 2 and jl - j2 = 2, 

7Tk = (C.{)B - = (jl - j2)7T, whence k= 2 , (3.11) 

7TK = (c. - = (Z1 - {jl - j2)7T, whence K = ° . 
(3. 12) 

B. Two real and two complex stationary phase points 

To perform the calculation of the S matrix for two 
real and two complex stationary phase points we apply 

7T Y 

• • .P2' 

+. +P1' 

-0 0 B qj W -P3 D 

• p. P4 • 2 

P1 
+ 

-7T A 0 
q9 

FIG. 7. Arrangement of stationary phase points in the space 
for the S matrix Maximum (+), minimum (-), 

saddle points (e). The Bessel uniform approximation for the 
S matrix can be used over the unit cell ABeD. 

the criterion that the phases at the two real stationary 
phase points be as nearly equal as possible. The line 
connecting the two real points was treated an an "AB" 
line and the value of k was determined by using the ele-
ment of the original unit cell most nearly parallel to the 
connecting line. This value of k was used in Eqs. (B15) 
and (B17) in Appendix B. 

C. Summary 

The steps for performing the calculation of the S ma-
trix are summarized in the flow sheet in this section for 
the case of an atom plus homonuclear diatomic molecule, 
with a dominant P2 (cosy) anisotropic term in the inter-
action potential (Appendix A). An atom and a hetero-
nuclear diatomic molecule, with a dominant P2 (cosy) 
anisotropy, will tend to have two or four stationary 
phase points in a (- 7T, 7T)2 area. The same procedure 
would be followed with the following modifications: 
The (0,7T)2 in the flow sheet is replaced by (- 7T, 7T)2. 
The 7T2 in step 2 is replaced by (27T)2. The (- 7T, 7T)2 is 
replaced by (- 27T, 27T)2. Indeed in the latter, for transi-

TABLE II. Comparison of transition probabilities for the case of two real and two 
complex stationary phase points. 

Bessel 
Real Airy 
plus Real Real 

J l2, h; It, jt Quantuma complex pts. pts. k b pts. 

18 14, 6' , 16, 4 0.124 0.103 0.069 4 0.069 
8, 12; 10, 10 0.169 0.094 0.077 4 0.078 

12, 10; 10, 10 0.087 0.057 0.059 2 0.057 
10, 12; 10, 10 0.066 0.071 0.075 2 0.079 
12, 8· , 10, 10 0.165 c 0.085 4 0.086 

6 10, 8· , 12, 10 0.201 0.195 0.133 4 0.134 
6, 4; 4, 4 0.111 0.090 0.135 2 0.139 

aReference 3. 
"Results were ins ens iti ve to either k = 2 or 4. 
"We have not been able to locate the complex stationary phase points. 

integral cannot be obtained due to Jacobian sign changes. 

Integral 

0.125 
0.143 
0.099 
0.053 
0.163 

0.203 
d 
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Application of PSC and Uniform Approximations: Flow sheet 1. 

Use for PSC 
Eq. (Bl) 

There is no 
other such 
configuration 
in the (_7T,7T)2 

square, 

Use fL Airy 
Eq. (B4) 

I 
Use only 

I 

Real pts. 

Use for PSC 
Eq. (B1) 

STEP 1 
Determine number of real points in 
the (0, 7T) 2 area. 

I 
I 

There are 4 pts. 

STEP 2 

I 
There ar 2 pts. 

See Flow 
Sheet II 

Shift vertical and horizontal boundaries 
so that PI and P4 are diagonally across 
from each other in any 7T2 area. 

1 
STEP 3A 

Choose a newly shaped unit cell 
whose sides tend to parallel the 
two principal axes of the PIP2P)P4 
quadrilateral, and such that both k 
and K are integers. 

I 
Use for Bessel 
Eq.(Bl1) 

There is another 
configuration in 
the (_7T,7T)2 square 

STEP 3B 
Choose the configurati.on for 
which the phases Ll. are most 
nearly equal. 

Use for Airy 
Eq. (B4) 

Follow 
Step 3A. 

Use for Bessel 
Eq. (Bll) 

Flow sheet II. 
There are 2 pts. 

I 

I 
Use for Airy 
Eq. (B18) or 
Bessel Eq. (B19) 
(the 12·pair 
terms only). 

Use fL PSC 
Eq. (B 1) 

I 
Use real (PIP4) 
and complex 
(p)P2 ) pts. 

I 
I 

Find line most nearly parallel 
to PIP2 and which gives an 
integer k. 

I 
Use for Bessel, 
Eqs. (B19) and 
(B20) or for 
analogous Airy 
equation. 
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920 Kreek, Ellis, and Marcus: Semiclassical collision theory 

tions involving larger t::.l' sand t::. j' s than those consid-
ered here, it may be necessary to scan a larger region 
than the (- 1[, 1[)2 one for the homonuclear case or than 
the (- 21[, 21[)2 one for the heteronuclear case. The 
method described in Appendix C of first obtaining a con-
tour plot for t::., after obtaining the stationary phase 
points, can be extremely useful for subsequently per-
forming Steps 2 and 3 in the flow sheets for any new 
case. 

When the interaction potential also contains large 
terms having Pn(cosy) anisotropy with some of the n's 
being larger than 1 or 2 in these atom-linear molecule 
cases, D, Fitz of this laboratory has sometimes ob-
served a larger number of stationary phase points. 

IV. NUMERICAL RESULTS 

The results obtained for various transitions are given 
in Table I, where the Bessel and Airy uniform approxi-
mations are compared with the exact quantum results. 3 

The appropriate values of K and k obtained by the pro-
cedure in Sec. III are also indicated. Equations (B4) 
and (B 11) of Appendix B were then applied. For all of 
the cases listed in Table I there were four real station-
ary phase points. 

When two of the stationary phase points are real and 
the remainder are complex-valued, we use Eq. (BI9) 
in complex form and Eq. (B20). As noted there, these 
equations can be less accurate than those used for Table 
I. The results obtained from these equations are given 
in Table II. If the terms arising from the complex-val-
ued roots are omitted from these equations, one obtains 
the other results given in Table II. Comparison with 
the exact quantum results is also given. 

It is useful to compare the exact quantum results 
given in the third column of Table I with approximate 
results less accurate than the Bessel uniform one: Airy 
uniform- in-pairs, Bessel uniform- in-pairs, classical, 
and primitive semiclassical. The relevant equations 
are given in Appendix B. There are two possible com-
binations of pairs for both uniform-in-pairs methods 
and both sets of results are listed in Table m. 

When the correct configuration of stationary phase 
points is not used, e. g., if the maximum and minimum 
stationary phase points are not chosen diagonally across 
from each other, the results differ from those in Table 
I. For example, if one merely seeks the stationary 
phase points for which O:S ((j?JiJ):s 1[, as in Fig. 4, one 
obtains the results given in Table IV. 

When the correct configuration of points is used for 
the Airy and the Bessel, but when a square unit cell is 
used for the latter instead of the cell favoring a better 
separation of variables, i. e., when the wrong k and K 
are used, one obtains the results given in Table V. In 
none of those results was k or K equal to zero, unlike 
the results in Table I. 

V. DISCUSSION 

Agreement between the Bessel uniform approximation 
and the exact quantum results is excellent for transitions 
associated with four real stationary phase points in the 
1[2 area (Table I). As already noted, the Airy uniform 
is a special case of the Bessel t6 but, as expected, is in-
ferior to it in this case, in which k or K is zero (Table 
I). A similar behavior was found in Ref. 16 for the case 
of y= 1, and is well understood: In that case the phase 
t::. varied only slowly and one could not, as one does in 
the Airy formalism, replace the limits (-1T, 1T) [or (0, 1T) 1 
by (- c<', + 00), Similarly, in the present two dimensional 
case, as in Fig. 8 in Appendix C, a plateau-like region 
for t::. occurs in one direction when k or K equals zero, 
and once again the Airy formalism breaks down. 

In Table IV it is seen that the uniform- in-pairs ap-
proximation is not as good as the uniform formulas of 
Table I. The Bessel results indicate that the best choice 
of pairs is consistently the one which makes uniform the 
pair for which k (or K) is zero. The reason for this be-
havior is clear, since in developing the pairs' equations 
given in Appendix B [Eqs. (BI7) and (BI9) 1 we assumed 
that one t was large. The t for the pair associated with 
K or k equal to zero was of the order of O. 16, while the 
other pair had a t of the order of 2.5 in all cases studied. 
Thus, the former pair should give the better result in 

TABLE III. Comparison of quantum transition probabilities with approximations less accurate than the Bessel: 
Four Real Stationary Phase POints in 71"2 area. a 

Bessel in pairs 
Uniform for Uniform 
k = 0 or K=O for the Airy in pairs Primitive 

J L2, h; LI, it Quantum Pair other pair A B Classical semiclassical 

16 12, 4; 10, 6 0.297 0.442 0.545 0.583 0.692 0.390 0.893 
8, 8· . 10, 6 0.296 0.417 0.678 0.616 0.734 0.449 0.755 
4, 12; 6, 10 0.289 0.394 0.679 0.559 0.631 0.486 0.942 
8, 8; 6, 10 0.285 0.402 0.721 0.633' 0.693 0.486 0.942 

6 2, 4; 4, 2 0.220 0.365 0.346 0.354 0.444 0.233 0.554 
10, 4; 8, 2 0.297 0.444 0.778 0.771 0.797 0.605 1.189 

14 12, 2; 10, 4 0.275 0.386 0.518 0.516 0.528 0.849 1.893 
8, 6· . 10, 4 0.298 0.397 G.633 0.576 0.468 0.381 0.890 

systems in this table are the same as in Table I. 
bpair A corresponds to the (k=O or K=O) pair in Bessel-in-pairs column. Pair B corresponds to the 
other pairing. 
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Table III, as it does, when it is treated as the pair which 
was made uniform. 

The need for testing for a correct configuration of the 
stationary phase points, using the criterion established 
by the Hessian in Sec. III, is evident from Table IV, 
where the value for the uniform approximations obtained 
with the wrong configuration is seen to be quite different 
from the value obtained with the correct configuration, 
given in Table 1. The only previous result with which to 
compare the results of Table I is an intuitive Airy-type 
formula. 4 In most of the instances in that work there 
were only two real-valued pOints, and the complex points 
were omitted. There were two cases where there were 
four points, and one is the same as the result in Table 
IV based on the wrong configuration. 17 

In previous papers of this series on multidimensional 
uniform approximations1 ,2 the Airy and Bessel uniform 
formulas were derived1'2ol8ol9 rather than intuitively in-
terpolated, and so the assumptions and the concept of a 
correct configuration of points have become apparent. 

It is useful to compare the Bessel and Airy uniform 
approximations for which only the square unit cell rather 
than a theoretically-based shaped one was used to deter-
mine k and K. The results, given in Table V for the 
same systems as those in Table I, are clearly worse 
than the Bessel results in Table I. (The quantum re-
sults are given in Table L) The agreement of the Airy 
and Bessel uniform approximations in Table V with each 
other reflects the fact that for those systems both k and 
K are nonzero. The tendency of a Bessel uniform ap-
proximation to approach an Airy approximation provided 
the order of the Bessel function, k or K, is not too 
small is evident from the relation of Bessel functions to 
Airy functions. 19 

Some systems having only two real stationary phase 
points in a 1T2 area, given in Table n, are seen to have 
their approximate uniform values differ by a factor of 
about 2 or less from the exact quantum results when the 
complex-valued points are neglected. The agreement 
is improved, in some cases substantially, when the com-
plex points are added and the complex pair formula used. 
However, overall the integral result remains superior 
for the particular data in Table n. 

The transition probabilities for the systems with two 
real points (Table II) are substantially lower than those 

T ABLE IV. Comparison of quantum transition probabilities 
with "Airy uniform" using incorrect configuration of stationary 
phase points. a 

J l2' h; ll' i1 Quantum "Airy" 

16 12, 4; 10, 6 0.297 0.265 
8, 8· . 10, 6 0.296 0.705 
4, 12; 6, 10 0.289 0.529 
8, 8· , 10, 6 0.285 0.265 

6 2, 4; 4, 2 0.220 0.248 
10, 4; 8, 2 0.297 0.364 

14 12, 2· . 10, 4 0.275 0.142 

"The systems in this table are the same as in Table I. 

TABLE V. Comparison of Bessel and Airy transition probabili-
ties using correct configuration beu with incorrect shape for 
unit cell for Bessel. Comparison of the ''Bessel'' and "Airy" 
approximation calculated from new but incorrect square unit 
cells. a 

Probability 
J l2' h; l10 jl Airy "Bessel"a 

16 12, 4; 10, 6 0.451 0.436 
8, 8; 10, 6 0.462 0.446 
4, 12; 6, 10 0.378 0.365 
8, 8· . 6, 10 0.442 0.426 

6 2, 4; 4, 2 0.285 0.276 
10, 4; 8, 2 0.482 0.463 

14 12, 2; 10, 4 0.382 0.370 
8, 6· . 10, 4 0.429 0.415 

systems in this table are the same as in Table 1. 
t>rhe values of I K I 'and I k I used in this (erroneous) Bessel ap-
prOximation were each 2. 

for four real pOints (Table I), and one obtains the ex-
pected result16 that the Airy and Bessel uniform approx-
imations yield similar answers in this instance. The 
integral results from an earlier paperlO for this case 
are also noted in Table II, and they are in very good 
agreement with the quantum results. 

VI. CONCLUSIONS 
In summary, the results in Table I show that good 

agreement of exact and semiclassical results is obtained 
for the case of high transition probabilities (four station-
ary phase points in the present instance). The reason 
for the improvement of the Bessel over the Airy for any 
case where a k or K is zero is evident from an examina-
tion of Fig. 8. The need for choosing a correct con-
figuration and a correctly shaped unit cell is also clear. 

The agreement for the case where two of the points 
are complex (Table II) is reasonable though not quite as 
good, probably because of the extra approximation of 
using a uniform-in-pairs formula. 

APPENDIX A: THE ATOM-RIGID ROTOR 
COORDINATES AND HAMILTONIAN 

The classical Hamiltonian for the atom rigid-rotor 
system is the well known generalized coordinate sys-
tem used in previous studies. 4,9,20 In the present work 
we will use a Lennard-Jones interaction potential of the 
form used in several recent "exact" quantum dynamical 
studies. 3 The total Hamiltonian in the center of mass 
system is 

H= :! + aP2(cosy)1. 

(AI) 
Pr is the momentum of relative motion of the atom and 
center of mass of the rotor and r is the conjugate co-
ordinate. a 1 and a2 are the angular momentum of the 
orbital and rotational motions, respectively. I is the 
moment of inertia of the rotor, E and rm are the well-
depth and the pOSition of the minimum of the interaction 
potential. a is an asymmetry parameter of the potential. 
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I' is the angle between the axis of the rotor and the line 
joining the center of mass of the rotor and the atom: 

cosy = - cosql cosq2 + + - QlV2Q11 Ql21 Sinql sinq2 , 

(A2) 
where Ql3 is the total angular momentum of the system 
and the coordinates ql and q2 are conjugate to Ql1 and 
QI 20 

2' 

It is convenient to employ the Hamiltonian (A1) in re-
duced units. The reduced Hamiltonian HI is 

p2 f2 "'2 
H'=H/E=-f+ 2R 2 + +(R-12 _2K6 )[1+aP2(cosy)1, 

(A3) 
where PR , R, q" qj' f, J, I', and J are the dimension-
less quantities Pr/{!iE, r/rm' ql, q2' Qll/(rm{!iE), Ql2/ 
(rm{!iE), I/i.w; and Ql3/(rmViiE), respectively. The ex-
pression for cosy becomes 

cosy = - cosq, cosqj + [(f2 + J 2 - J2) /2m sinq, sinqj' (M) 

In these reduced units the instantaneous values of the 
angular momenta are related to the values of the "quan-
tum numbers" by the semiclassical relation, 

(A5) 

where no is n/(rm .[Ji€). In the present study the follow-
ing set of parameters was used: t = 0.4, a = O. 25, and 
[n/(rm{!iE)]2 =0.002; in all cases the total energy of the 
system was E = 1. 

Initial conditions for the trajectory calculations are 
determined by specifying the total energy E of the sys-
tem, the initial values of the quantum numbers 1, j, and 
J, and the angles q, and qj for some given initial large 
value of R. Following previous notation, the initial val-
ues of l, j, and J are the integers ll> jl, and J1 and the 
initial values of q, and qj are and qJ. The initial val-
ues of f, J, J, R, and PR are denoted by f1> J;., J1 , R 1, 

and PR1 • We used the new variables q? and qJ defined 
on the interval - rr to rr. These values are related to 
q and q J byl0.21 

(A6) 

where in (A6) and (AS) the tan- 1 's lie in (- trr, 0) and (0, 
trr) intervals, respectively. The trr's are omitted 
throughout the text and the figures. (They do not affect 
ISm" 12.) Also, 

-0 0 0 /[ . ..,2 (A2/ 2] q, = qj - vjJlRtPRt IRI + 1 R 1) , (A7) 

where 

VJ=Jl/t • 

Continuing to follow previous notation, the final values 
of the momentum and coordinates for any trajectory are 
AI AI I I I I -I -I 1 , J , J, q" q" R , P R , q" and q" where 

q{=q{ -tan-t(PR2R2/l2)+trr, 

v{ = il/(R')2 , 

q = - t1 + [(l/)2/(R/)2]) , 

(AS) 

(A9) 

APPENDIX B: NONUNIFORM AND UNIFORM 
EXPRESSIONS FOR THE S-MATRIX 
1. Primitive semiclassical and classical-like results 

The primitive semiclassical result for the S matrix, 
Sps c, and for the transition probability, Ppsc, calcu-
lated from the sixteen stationary phase points in the 
(2rr)2 domain, are obtained from 

4 

SPSC =4L Piei!i, Ppsc= Ispsc 1
2

, 
i=1 

where Pi is a signed determinantI8 ,19.22: 

_ J-...18(l!,j/) ,-1/2 
Pi - 2rr 8(q7, qJ) i ' 

(B1) 

(B2) 

and i = 1-4 denote the four stationary phase points in a 
rr2 domain; Ii is the value of.l in Eq. (3.3) at the sta-
tionary phase point Pi. 

When G is positive at a stationary phase point Pi, as 
in the case of the results given in Table I, the sign of 
18(ll,/)/8(7j7, qJ) I at that Pi in Eq. (B2) is the same as 
that of 18(Z!,j/)/8(q"qj)l, since 18(ZI,/)/a(q{, q{)IG 
equals 18(lf,/)/8(q7, qJ) i. When the phase.l is a max-
imum, one can show that q{) I is - 2rri, 
while for a saddle point it is - rri, and for a minimum 
it is O. Thus, the phases of Pi in Eq. (B2) for these 
respective cases are rri, t rri, and 0, for this case of 
positive G. 

A more classical-like result for the transition prob-
ability Pc is obtained from Eq. (B1) by neglecting inter-
ference terms and is 

4 

Pc = 16L (B3) 
io! 

when all four stationary phase points are real; if any of 
the four points are complex-valued, the corresponding 
Pi'S are ignored in Eq. (B3). 

2. Airy uniform approximation 

We have developed two uniform approximations for 
evaluating the semiclassical S matrix. They are the 
Airy and Bessel uniform approximations. 1.2 The Airy 
approximation yields SAlry for the S matrix: 
SAlry = 2i[ G -;112 ai+( _ 1)12)Cii +( _ 1)14)(1)141)12)1 I 4e iA1+ h 12 

+ G 12Cii -( _ 1)12)Ci i+ (_ 1)23)(1)121)23) 1 I 4e i A2 

+ G;1I2 a i-(1)23)Cii"(-1)43)(1)231)43)1/4e iA3-i V /2 

+ G A41 , (B4) 

where Gf is the value of G in Eq. (3.2) at the point Pi, 
A2 is given by 

A2 = t Ul +13) , (B5) 

and the remaining A f ' s are obtained by cyclic permuta-
tions of the indices 

4 3/2 f f 31)23 = 3 - 2 , 
Furthermore, 

4 3/2 f j. 31)43 = 3 - 4 • 

Cii±(-1)) =Ai(-1))±  i1)- 1/2Ai/(-1)) , 

(B6) 

(B7) 
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Ai(-1)) = (21Tt l LOO expi( iu3 -1)u)du , (B8) 

and prime (') denotes derivation of Ai(- 1)) with respect 
to - 1). 

3. Bessel uniform approximation 

As discussed in the preceding paper, 1,23 along a u-
curve we have 

qJ) = l(u, v) = Kit - sinNu+A (B9) 

and along a v-curve we have 

(B10) 

where the A and in Eq. (B9) differ in value from those 
in Eq. (B10). Nand M denote the periodicities, i. e., 
Co contains a periodic function of u and v with a period 
of 21T/N and 21T/M, respectively. 

Sses.el is the Bessel uniform approximation for the S 
matrix24 : 

Ssesse! = t N 1\,d (G sinul sinz,I)! 12 i Al + (G 12 sinu2 sinV2)1 12 i( i A2 

+ (G 31 ?:23 sinu3 sinV3)1 12 JJi(b23)JJ I A3 + (G 41 1;"141;"43 sinu4 sinv4)1 12 e I A4] , 

where A2 is given by (B5), the other Ai'S are given by cyclic permutation of the indices, and 

(Blla) 

Uj = NUl , Pi = Mt'i , R=K/N, k=k/M. 

The Ui and VI in (B1l) are related to the value of the 
phase at the stationary phase points: 

R(U4 - tanu4) = t (f4 - 11); U1 = - U4l 

R(u3 = t (f3 - = - U3 R * 0 

1;"14=K/cOSU4, 1;"2s=K/cosus 

- =: (f2 - 11); = -
- tanv3) =" (fs - 14); V4 = - V3 k* 0 

?:12 = k/COSV2, = k/COSV3 • 

(B12a) 

(B12b) 

The first two equations in (BI2a) are solved for the 
u/s. The third equation is then solved for the 1;"1J's. 
Similar remarks apply to the three equations in (B12b). 
We also have 

(B12c) 

(B12d) 

In the cases R * 0, k = 0 or R = 0, k * 0, the appropriate 
combination in Eqs. (B 12) is used. 

(Bllb) 

The function 61 in Eq. (B 11) is given in terms of Bes-
sel functions of integer order: 

gJi?(?:ij) = Jill i (I 1;"iJ I)± iJ{Jl"1 (I 1;"iJ 1)[ 1 sinUj I] , if ij = 14 or 23 
(B13) 

gJ{(1;"/J) = (I 1;"/J I) ± iJ;iil (I 1;"IJ 1)[ 1 sinvJ I], if ij = 12 or 43. 

The symmetry properties of Bessel functions of real 
argument were used in obtaining the rhs of these equa-
tions. 24 

4. Uniform-in-pairs approximation 

Another possible expression for the S matrix can be 
written if the stationary phase points are considered to 
occur in pairs which are "well- separated" . By well;. 
separated we mean that the relevant 1)'s and 1;"'s are 
large. If the (12) and (43) pair are well-separated the 
values of 1)14 and 1)23 are large and Eq. (B4) for the Airy 
approximation gives 

SAlry = ffii +(-1)12)11 + ffii"(-1)12)12 + ffii"(- 1)4s)13 + ffii+(-1)43)14• 
(B14) 

The ffii's are given by Eq. (19c) of Ref. 2. If the Bessel 
uniform approximations 1;"14 and 1;"23 become large, then 
Eq. (Bll) gives 

SS ... e1 = (2/1T) 1 12 t NM {exp[i(fl + 12) - ti1T][( G i11;"12 sinVl)1 12 gJi (?:12) + (G;;l 1;"12 sinv2)1 1 2 ] 

+ (2/1T)1 1 2exp[i(f3 + 14) + t i1T][ (G 311;"43 s inv3)112 gJi(1;"43) + (G 411;"43 sinv4)I 1 2 gJi(1;"43)]} • (B15) 

If the (14) and (23) pairs are well-separated, 1)12 and 1)43 will be large in the Airy case while 1;"12 and 1;"43 will be large 
in the Bessel case. The Airy and Bessel approximation for this case are the following: 

SAiry = ffii+(-1)14)I1 + ffii+(-1)23)12+ ffii-(-1)23)I2+ ffii -(1)14)14 , (BI6) 

Sae ••• 1 = (2/1T)1/2 tNM{exp[i(f1 + 14) -ti1T ][(G ?1;"14 sinuI)I/2 gJk(1;"14) + (G ;;11;"23 sinu2)1/2 gJi(23)] 

+ (2/1T)l/2exp[i(f2 + 13) + h1T ][(G ;1l:23 sinu3)1/2 gJi(l:23) + (G ;1l:14 sinu4)1/2 ,gj(l:14)]} • (B17) 

5. Two real and two complex points: uniform-in-pairs 
approximation 

Finally, if two of the stationary phases are real and 
two are complex, let P3 and P 4 denote the complex-val-

ued points. Let PI be the maximum and P2 the mini-
mum in the real-valued pair. One may write an expres-
sion for the S matrix in the Bessel approximation of the 
same form as Eq. (B15); but now, 13, 14, G3, G4, V3, 
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and V4 are complex quantities. From the treatment of 
this problem given in the previous paper, 1,2S V3 and V4 

are determined from 

(Bl8a) 

where v" = Im(v), and Re(V) = O. is given by 

= (Bl8b) 

The k for the real-valued pair is determined from Eq. 
(B15). In the complex-valued pair its Bessel uniform 
approximation (the terms) would approach an Airy 
one and so its k would be immaterial, as long as k,* O. 
When using Eq. (B15) the k for the real pair was simply 
used. One can also simply replace the Bessel formula 
for the complex pair by the corresponding Airy one. 

APPENDIX C: DETAILED EXAMINATION OF A 
PHASE CONTOUR PLOT 

Insight into the procedure in the flow sheet and into 
conditions where the Bessel formalism yields a differ-
ent (more correct) result than the Airy one is obtained 
from the examination of a plot of contours of constant 
phase of 6-((j7, (j1). Such a plot is given in Fig. 8 for 
the case of a determination of This is the 
same example used for Figs. 4 and 6. The contours 
were obtained by a program which interpolates smoothly 
the values of the phase 6-((j?, (jJ) on a lOx 10 grid of 
points. 8 The contours in Fig. 8 are equispaced with an 
interval of 0.2094. The lOX 10 grid proved to be too 
coarse to allow the program to properly interpolate in 
the region of saddle points. Consequently we have hand-
sketched the contours in these regions. 

Where the contours in Fig. 8 are densely spaced, 6-
is rapidly changing, whereas where they are widely 
spaced 6- is only slowly varying. One sees, therefore, 

FIG. 8. Contours of constant phase A in the space qJ) for 
the S matrix Maximum (+), minimum (-l, saddle 
point (e), curves of local transverse maxima (---l, curves of 
local transverse minima (---). 

that there are largely diagonally inclined plateau regions 
where 6- is only slowly varying. For this reason, and 
indeed as in a corresponding one-dimensional case, 16 

the Airy formalism is not very accurate for such a sys-
tem. 

To see how a newly shaped curvilinear unit cell can 
be selected for use in a Bessel formalism and to make 
concrete the 1l- and v-curves referred to in the pre-
ceding papers1•2 and in Appendix B it is useful to draw 
the curves of steepest descent and ascent from the max-
imum. minimum and saddle-points. as is done schemat-
ically in Fig. 8. 

These curves prove to be the most important u- and 
I)-curves in the preceding papers, 1.2 namely those pass-
ing through the stationary phase points: The u-curve 
passing through the maximum P 1 and a saddle-point P 4 
is the locus of a set of points which are local maxima 
on curves transverse to P 1P4 and so is a path of steepest 
descent from P 1• We call it a Q-curve. Similar re-
marks apply to the v-curve passing through P 1 and Pz 
and we call it an 5-curve. The S- and Q-curves are 
dashed lines in Fig. 8. The u-curve passing through 
the ,minimum P3 and saddle point Pa is a path of steepest 
ascent from P 3 , being the locus of a set of points which 
are local minima along the curves transverse to P 3PZ ' 

We call it a Q'-curve. Similar remarks apply to the 
I)-curves passing through P 3 and P 4 , and we call it an 
5' -curve and Q' -curves in Fig. 8 are solid curves pass-
int through the P·s. In the periodic array in Fig. B, 
the primed P;s are the same as the P;s but displaced by 
the appropriate periods. 

An interesting feature of the contour plot in Fig. 8 is 
the abrupt termination of the Q' -curve T6 at the 
points T1 and T 6. Along this solid Q' curve, which is a 
locus of the minima of curves transverse to P3P Z, the 
derivative in the direction transverse to the curve equals 
zero and so is also equal to zero at the points T1 and T6. 
Beyond T1 and T6 it would continue as a locus of local 
maxima instead of local minima. Similarly, the Q-
curve T4P 1P 4T 9 terminates at T4 and T 9. Beyond those 
points it would continue as a locus of local minima in-
stead of local maxima. 

The loci of all such termination points, e. g. , 
T1TaT3T4Ts and T6T7T8T9TI0 in Fig. 8, from two natural 
boundaries to the true unit cell on which to base a deri-
vation of the uniform approximation. 

To corretcly apply the curvilinear mapping of t,.(q10, 
qjO) onto a functionj(u,v) in Eq. (B9) and (B10), one 
should first select a suitable unit cell of area rrz, with. 
the property that the Q and Q' curves terminate on the 
boundary of the unit cell. A suitable unit cell is in Fig. 
8 and is enclosed by the four curves TITzT3T4Ts, T 1T 6• 
T6T7T8T9TlO' and TsTlO' Each point in the new unit cell 
corresponds to a point in the old square unit cell, with 
corresponding points having the same value of G and 
the same value of exp it,.. and so the integral in Eq. (3. l) 
evaluated over the new cell equals the integral evaluated 
over the old. 

In Fig. 8 two of the four stationary phase points (s. p. 
points) lie on the boundary of the Tl Ts TIO T6 unit cell. 
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In order that all four s. p. points lie inside a unit cell, 
it suffices, in principle, to find the u-curve passing 
through (Tz , T7) and the one passing through (Tn, TIZ)' 

The new unit cell T2T n T12T7 new enclosed the four s. p. 
points PI, P 2 , P3 , and P 4 • This construction of a new 
unit cell leaves the value of the S matrix unchanged, 
since each point in the newly constructed unit cell is 
equivalent to a point in the old unit cell 0 -s (f,o -s 11, 

o -s (fjO -s 11. For the purpose of the following discussion 
we shall consider the pOints T1, Ts, T lO , and T6 to re-
fer in general to the corners of anyone of the unit cells 
which can be constructed so as to enclose the s. p. points 

Since the curve Tl T6 is a u-curve we may use Eq. 
(B9) for j(u, v) and use the relation between the value 
of u at Tl and 76, 

(CI) 

to determine the value of K to be used in the mapping. 
We find from (B9) that 

(C2) 

The same value of K would be obtained from any other 
similar pair of transition points in this array (i. e. , 
the pairs T4 Tg and Ts T lO ). 

To determine the value of k, we can use the fact that 
Tl and Ts lie on the same v-curve and are related by 

v(Ts) = v( T 1) + 11. 

The value of k obtained using Eq. (BIO) is 

11k = [A((f,o,(fjO)]TS - [A((fjO,(fl)]TI' 

(C3) 

(C4) 

To avoid the necessity of knowing the phase at pOints 
other than the stationary phase points in order to apply 
the Bessel uniform approximation, we can construct 
an approximate unit cell in the form of a parallelogram 
through the corners of the unit cell TI Ts TIO T6 • Then 
the linear terms of the phase in (u, v) space given by Eq. 
(C2) and (C4) may be equated to the linear terms of the 
phase given by Eq. (3. 6).26 

Thus, 

11k = - 11k = - (C5) 

In Sec. II we discussed how an approximate parallelo-
gram may be chosen by observing the pattern of the 
stationary phase points in (q?, qJ) space. In Sec. Ill. A 
we associate A, B, C, and D with Tb Ts, TIO' and T 6 , 

respectively, and hence obtain Eq. (3.9) from Eq. (C5) 

The numerical values of K and k obtained in Sec. III. A 
for the rather similarly shaped unit cell in Fig. 6 would 
be equal to those obtained by the rigorous methods de-
secribed by Eqs. (C2) and (C4). However; if the con-
tours of the calculated phase become distorted to the 
point where one can no longer find (in Step 3B of the flow 
sheet) straight lines which more or less parallel the u-
and v-curves and which give integer values of k and K, 
it would be necessary to find the points Th Ts, T6 , and 
TIO and to use Eqs. (C2) and (C4) to obtain the values 
of K and k. In the syst"Elms studied thus far it was nec-
essary only to use the approximate methods given in 
Step 3B. This circumstance has, of course, removed 

the need for determining the phases at the termination 
pOints, or for constructing the contour plots for each 
transition studied. 
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