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The multidimensional Bessel and Airy uniform approximations developed earlier in this series for the
semiclassical S matrix are applied to the atom rigid-rotor system. The need is shown for (a) using a
geoemetrical criterion for determining whether a stationary phase point (s.p.pt) is a maximum,
minimum, or saddle point; (b) choosing a proper quadrilateral configuration of the s.p. pts. with the
phases as nearly equal as possible; and (c) choosing a unit cell to favor near-separation of variables.
(a) and (b) apply both to the Airy and to the Bessel uniform approximations, and (c) to the Bessel.
The use of a contour plot both to understand and to facilitate the search in new cases is noted. The
case of real and complex-valued stationary phase points is also considered, and the Bessel
uniform-in-pairs approximation is applied. Comparison is made with exact quantum results. As in the
one-dimensional case, the Bessel is an improvment over the Airy for “k = 0” transitions, while for
other transitions they give similar results. Comparison in accuracy with the results of the integral
method is also given. As a whole, the agreement can be considered to be reasonable. The
improvement of the present over various more approximate results is shown.

. INTRODUCTION

In the preceding paper of this series a multidimen-
sional Besgsel uniform approximation was developed for
the semiclassical S matrix.! In the present paper this
approximation is applied and compared with the pre-
viously developed Airy approximation? and with exact
results.® For concreteness the applications are made
to the atom-homonuclear rigid rotor problem, The
typical configurations, and their origin, of the station-
ary phase points in the S matrix integral expression are
discussed in Sec, II, the procedure for applying the uni-
form approximations in Sec. III, and the numerical re-
sults and comparison with exact results in Sec, IV,

The Hamiltonian used in the present work is a stan-
dard one (e.g., Refs, 4, 5), It is given in Appendix A
for completeness, together with the coordinates and a
definition of the other symbols and parameters, For
Secs. II-1V it suffices to note that I, 7, and J are the
orbital, rotational, and total angular momenta; I, j,
and J are the corresponding quantum numbers, Clas-
sically, ! and j vary continuously along a trajectory in
the interaction region, Their final values for arbitrary
trajeciories are If and j*, Jis an integer and remains
constant, At the stationary phase points of the phase A
in an integral expression for the S matrix for a transi-
tion (7}, 7,) = (L, 7,), I and j* take on the desired final
integer values I, and j,,

Contour plots in the present paper are expressed in
terms of certain derwed coordmates“'7 q and ¢}, ca-
nonically conjugate to ]1 and ll, the initial values of 7
and l respectively, and defined in Appendix A, The
original coordinates, also conjugate to fl and fl, are the
angle variables g; and ¢,, The radial coordinate for the
colliding pairs is R and its conjugate momentum is Pg.
Derived coordmates canonically con]ugate to the final
values of { and ] are denoted by ¢/ 1 and q Wh11e s
g;, and R vary during a collision, ¢?, qj, g}, and q;
are constants of the motion,
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Il. NUMBER AND CONFIGURATION OF STATIONARY
PHASE POINTS

In order to apply the multidimensional uniform Bessel
and Airy approximations developed in the previous
papers of this series!? to the semiclassical expression
for the S matrix it is necessary to determine the sta-
tionary phase points, These are the values of (¢, ¢))
characterizing trajectories which, for the present prob-
lem, yield values of I and j* satisfying simultaneously

¥ —1,=0 and j'-j,=0. (2.1)

If contours of constant I” are drawn in a (77,9 space,
and if those of constant ;7 are also drawn, the station-
ary phase points are those for which the contour I = l,
intersects the one for jf=j2. To obtain some insight
into the number of stationary points and their configura-
tion, it is useful to consider first these I’ and j con-
tours for several varied cases, The contour plots (Figs.
1-3, given later) were obtained from a smooth inter-
polatlon of a 10x 10 grid of points in the (g}. q)) space.®

In actual problems the configuration of the stationary
phase points in the (21_? s 4. _o) space is dependent on various
factors, including the initial orientation of the orbital
and rotatlonal angular momentum vectors 11 and ]1, re-
spectively. For illustration it is useful to consider first
the extreme but s1mple case of motion in a plane, Here,
the initial 1 and j may be parallel or antiparallel, and
so the factor ({2+2 - J2/27f) in Eq. (A4) (Appendix A)
which is the cosine of the angle between the 1 and j
planes, equals +1 or — 1, respectively. One can then
show that the only angle var1ab1e whlch influences the
1ne1ast101ty is q1 - q,, when 1 and j are parallel, or q,

+ q, when 1 and j are antiparallel, In this (q,, qj) space
one may draw curves of constant ] . (Since I’ equals
Jf—f in this planar case, these curves are also curves
of constant [7,)

In the present case the curves of constant ff are seen
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from the above discussion to be straight lines, inclined
at a slope o{ 45° to the ?q'f axis, and having a positive
slope when j, and 1, are parallel and a negative one when
they are antiparallel, Because }* thus depends only on
one coordinate, namely on the coordinate normal to the
family of parallel straight lines, a stationary phase
point (or really line here) occurs at the value of this co-
ordinate where j* equals the desired final value fz for a
transition (I;,7,) ~ (I, j,). In this planar case, [, is then
automatically determined from the algebraic equation
Fy+ L=J,=d,=J7. The lines of the final j¥ and I’ inter-
sect along a “line” (i.e,, coincide), rather than at a
point.

If now 31 and il are neither parallel nor antiparallel,
but almost so, the lines of constant ;¥ (and those of con-
stant 1) are no longer straight, but almost so. For ex-
ample, in Fig. 1 the contours of (a) constant I* and (b)
constant jf are given, In these two figures (J,, [, 4,) is
(16,6,10), Since |7,1, |I,1, and |7, | are respectively
equal to 163, 6%, and 103 semiclassically, ? this case is
almost (but not quite) a planar one {163#6%+ 103). The
contours of constant 7 can be termed “lines of transla-
tion” in this example [Fig. 1(a)], since they do not close
on themselves and form “ellipses.” In Fig. 1(b) the
contour for j7=12, 0 forms an ellipselike curve, and
can be termed a “line of libration,” while the contours
for 77 =8.0 and 10. 0 are lines of translation, A sepa-
ratrix would separate each family of lines of translation
from each family of concentric “ellipses”.

With increasing departure from coplanarity of Tl and
j, [as in Figs. 2(a) and 2(b) where (J,,1,,7,) is (18, 16,
4)], the lines of translation, which tended to parallel
the straight lines of the coplanar case, have given way
increasingly to closed curves. When the departure from
coplanarity is still larger fe. g., when 51 and 1, are ap-
proximately perpendicular to each other, as is the case
in Figs, 3(a) and 3(b) where (J,,1,,7,) is (6,4, 4)], the
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major axes ot the “ellipses” and the lines of translation
are no longer inclined nearly 45° to the g° axis, with
either positive or negative slopes. Their slopes are
rather somewhere in between,

As already noted, the points of stationary phase for
the transition (I, j,) ~ (L, j,} occur when a contour of
jf =j, intersects a contour of I*=17,, When both sets of
contours are lines of translation (rather than of libra-
tion), there are typically four stationary phase points:
Because of a periodic roughly sinusoidal dependence of
j* on the coordinate normal to the lines of translation,
the contour lines for which ;¥ equals J, occur in pairs
as in Fig, 1(b). Similarly, contour lines for which 7*
equals I, occur in pairs as in Fig, 1(a). The first pair
intersects the second at four real points, if they inter-
sect at all, in the cases examined,

On the other hand, if the contour j*=j, is an ellipse-
like closed curve, and if the one I”=1, is also an “el-
lipse, ” then these two “ellipses” intersect, in the cases
examined, at only two real stationary phase points.
There are also complex stationary phase points, of
course, and we have located them in most of the cases
investigated here. Their effect is given later in
Table II,

Sometimes, particularly in a transition in which j,
and [, equal j, and [,, respectively, a contour of constant
# =3, tends tohover around the contour for constant ¥ =1,,
making the stationary phase points difficult to find. This
behavior, which we have previously called a “clinging
vine” case, !* gives rise to a high transition probability
(e.g., Table I of Ref. 10). It would be disastrous for
any Airy uniform approximation, but might be acces-
sible to a modified Bessel uniform, We postpone treat-
ing this case by the uniform method. We have, however,
treated it by the integral method in an earlier paper. !°

(b)

FIG. 1. (a) Contours of constant ¥ in the space (7}, g) for the S matrix SjJ ; .q 1. Only integer values of 1fare indicated, but con-
tours for all possible ¥’s can be drawn. Analogous remarks apply to Figs. 1(b)—3(b). (b} Contours of constant j7 in the space

@, 69) for the S matrix S}g'jz;ﬁ,w.
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FIG. 2. (a) Contours of constant If in the space (g7, q!) for the S matrix 813,12;16,4; (b) contours of constant j in the space (5‘,’, 53)
for the S matrix Sﬁg,h;mﬁl.

1ll. PROCEDURE FOR APPLYING PSC, BESSEL, AND defined in Sec, I

AIRY FORMALISMS if i

A= - 1)) - f a0al0) + G - )l - [ a,0ai(0

In terms of the notation given by Eq. (3. 5) of Ref. 10, iy
the S-matrix element for a transition (I, 7,) = (1,, 7,) is L
: Tt _ ;f R(t)dPR(t)+2 m(ly+1,+1) . (3.3)
SlJzn’z;ll:Il: (Zﬂ)-zf f Gl/z e ia da’dq? , (3. 1) 0 ®

T (PR is the initial value of Pp.) The g,(8), ¢,(8), (8,
](t) and R(?) in the integrands in (3, 3) denote instan-
taneous values of the relevant coordinates and momenta,
7%, is a dimensionless quantity defined in Appendix A,

where G is the Jacobian for the dynamical transforma-
tion (g9, 99 ~ (g7, q}). It is a signed determinant, i,e.,
has a phase.

G= Ia(‘—l{’ 5;)/3(39,5?)’ * (3.2) For the following analysis we write the phase A in
A is given by (3. 3) below, and the other symbols were (8.3) as the sum of two terms, A, and Ap:
T s t
\\J \J (a) fg‘ (b)
\ l 5 C
- ,
W\//;
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FIG. 3. (a) Contours of constant I in the space (77, 63) for the S matrix S§212;4'4; (b) contours of constant jf in the space (g7, ?1'2)

for the S matrix S§2,j2;4,4.
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A=A, 44, , (3.4)
AL:(11_12)5{+(]‘1_].2)5§ y (3' 5)
B if _ i

Ap=F ~1)7} - | @Wal(®O+ (G ~i)gi~ | a0
ll j1
Pf
- P RWAP, () + Erlly 4 1y 1) (3. 6)
ﬁo “Pp

1

Ay, and hence expiAp, can be shown to be a periodic
function of ¢? and ¢? with a period equal to that of the
unit cell {i.e., 27; or in the case of a collision of an
atom and a homonuclear molecule, 7).'** A, is a linear
function of g{ and of g, but expiA; is a periodic func-
tion of g; and ¢).'"® Thus, expia is a periodic function
of g7 and ¢!.

While A, is a linear function of g, and g/, it is not a
linear function of g; and g%, It can be written as the
sum of a linear function of ¢} and g%, A}, and of a per-
iodic function of those variables'?:

A[', :(lx‘lz)a?+(j1'j2)5? . (3.7

A itself is seen to be the sum of a linear and a periodic
function of ¢; and ¢?.

The location of the stationary phase points in Eq, (3.1)
was obtained by a curve crawling procedure that will be
described elsewhere,® Because of the symmetry of the
homonuclear diatomic molecule, the area of search for
points of stationary phase can be restricted**!° to a
7-interval in the variable ¢! and to a 7-interval in ¢J.
For the classical and primitive semiclassical probabili-
ties, the phases obtained from the trajectories can be
used as calculated [Egs. (B1)-(B3) of Appendix B].

A. Case of four real stationary phase points

For both the Airy and Bessel formulations one must
choose a 72 region so that when there are four points of
stationary phase they conform to the configuration on
which concepts and resulting formulas are based, The
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FIG. 4. Arrangement of stationary phase points in the space
43, q}) for the S matrix 32’612;6'10. Maximum (+), minimum (~),
saddle points (e). The Airy uniform approximation for the S
matrix can be used over the unit cell A’B’C'D’,
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FIG. 5. Arrangement of stationary phase points in the space
@3, 7y for the S matrix Si¥.¢ ;. Maximum (+), minimum (-),
saddle points (e), The Airy uniform approximation for the §
matrix can be used over thie unit cell A’B’C’D’.

four points should be at the corners of a quadrilateral,
with the maximum and the minimum at opposite corners,
and with the two saddle points at the other pair of op-
posite corners. The procedure used in performing cal-
culations is outlined below.

After the position of the stationary points and the value
of A and G at each of these points has been determined
by the curve crawling procedure, the maximum, mini-
mum, and saddle points can each be identified unequiv-
ocably using the following properties of the Hessian of a
function A(x, v) [i.e., of A(g},¢? in (3.3)]*:

%A 924 9%A %A 3%A .
—_——— > — L _— < ,
5% 537~ 5xdy 0, Py 0, 217 0 (at a maximum);
82A 8%A  8%a 82A 9%A

s e e ——— —_— > —_— > at a minimum);
5% 9 ey 0, 5>0, e 0( i );

8%A 8%A  8%A
ax? 0% ~ Bxay
(The maximum, minimum, etc, cannot be identified by
their relative values of A, since the latter includes a
linear function of g¢ and g? and so has an infinite num-
ber of values,) )

<0 (at a saddle point) , (3.8)

An example (and there are many) where the four sta-
tionary phase points in the interval (0=<g¢?=7) and (0
ﬁ?}})ﬁ 7) did not occur in the correct configuration is
given in Fig, 4., The data in this figure were obtained
in the calculation of S5, (denoting S7,,;.1,,;,) and
the cited area interval is the upper right quadrant. The
maximum P; and minimum P, are not at opposite cor-
ners of a quadrilateral, Moreover, the relative A val-
ues of the four points were not consistent with the iden-
tification of the maximum, etc., based on Eq. (3.8).

Because of the periodic array of stationary-phase
points in (¢?,¢7) space it sufficed to select in Fig. 4
another 72 area, merely by shifting the horizontal and
vertical boundaries, so as to obtain four points in the
correct configuration, A new 72 area A'B’C'D’ is de-
fined by this new unit cell, and the relative A& values
now agree with the identification of maxima, minima,
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and saddle points provided by the Hessian, The integral
in Eq. (3.1), evaluated over the new cell, numerically
equals the integral over the old cell, since to each point
in the former there corresponds one point in the latter
with the same value of the integrand. However, results
based on the uniform approximation formula would not
be equal, because of the model used for those formulas.
For the example in Fig. 4, one may now use the Airy
uniform approximation with the stationary phase points
labeled P,, P,, P,, and P, without any further analysis.
That formula is given by Eq. (B4) of Appendix B,

Sometimes, as in Fig. 5, the points in the (0, 7)% ap-
pear to be in the correct configuration but in the (- 7, 7)?
region there is another set of points, enclosed by the
square A'B’C'D’, which is also in the correct configura-
tion, In this case, one should select the configuration
for which the four A’s are closest together in value,

The reason is based on the topology of the A surface and
is given in Appendix C: The P,P,P;P, in a true unit
cell can be partially bordered by regions in which A
changes rapidly.

In the particular example of Fig, 5, which is an ex-
ample of the points found for the calculation of the S ma-
trix $3%.6,10, We have for A(P]), A(P}), A(P;), and
A(P;) the values - 42, 1769, — 36,4490, — 36,8283, and
- 42,8364, respectively. Using Eqs. (3.4)-(3.7) the
phases at certain other points P,, P,, P;, and P, in Fig.
5 are found to be - 42, 1769, —42,7322, -43,1115, and
— 42,8364, respectively, The phases at these station-
ary phase points are closer in value than those at the
original points, and they too are in a proper quadrilat-
eral configuration. One, therefore, chooses the new
unit cell as A’B’C’'D’ in Fig. 5, and uses the value of
the phase and G; at Py, ..., P, in the Airy approximation,

The above two main points of the analysis have not
been brought out before in the literature,

To apply the Bessel formalism it is necessary to con-
sider one further topological property of the phase A,
so as to determine the integers 2 and K appearing in the

a9
FIG, 6. Arrangement of stationary phase points in the space
(g}, 3% for the S matrix Si42,6,10 Maximum (+), minimum (),
saddle points (e), The Bessel uniform approximation for the
S matrix can be used over the unit cell ABCD.

Bessel expression, Eq. (B11) of Appendix B, Here, we
must choose a newly shaped unit cell of 72 area, contain-
ing the four stationary phase points not only in the prop-
er quadrilateral configuration, but also so as to make
possible a near separation of variables, To determine
k and K one may then make use of Eqs, (3.4)—(3.7) with
the definition of 2 and K as the coefficients most closely
associated with points P, P, and P, P,, respectively, in
the linear term in the phase A, Specifically, Eq. (3.9)
below, derived in Appendix C [Eq. (C5)], is used, As
before, calculation of S}%,,.,,0, Whose stationary phase
points were described in Fig. 4, will be used as an ex-
ample,

The original unit cell was the interval OSc_]?S m, O
=g¢)=r and is labeled WXYZ in Fig. 6. As can be seen
in Fig. 6, the edges P, P, and P,P; of the quadrilateral
P,P,P;P, are nearly parallel to the diagonal XZ of the
original unit cell, The edges P,P, and P,P; are nearly
parallel to the diagonal WY, To favor the near separa-
tion of variables a newly shaped rectangular unit cell
(ABCD in Fig, 6) is chosen, so as to parallel the diago-
nals XZ and WY, The longer side of the new rectangle
ABCD is taken AB, since the distance P, P, and P,P; ex-
ceeds P,P; and P,P,. We choose the length of edge AB
equal to the length of the diagonal WY, To preserve the
72 area of the unit cell the length of AD is therefore
chosen to be one half the length of the diagonal XZ.
(Compare also ABCD in Fig, 6 with T,T,,T,,T, in Fig,

8 in Appendix C,)

We define point A to be the one which “corresponds”
to the maximum, point P,, in the “congruent” quadrilat-
eral P,P,P,P,. A clockwise order for both sets of points
(P,P,P;P, and ABCD) has been adopted throughout this
paper, with A “corresponding” to P;, B to P,, etc,

From Eq. (C5) and the several lines following in Ap-
pendix C, we have

k= (AL)B - (A},)A , TWK= (A},)D - (A},)A s (3- 9)
where (A7),, (A})z+++ are the values of A; at the points
A, B, .... Substituting the definition of 4; from Eq.
(3.7) into Eq. (3.9) and using the fact that in this con-

struction AB is parallel to WY and equal to it in length
we obtain

mk = (4 - L) (g a+ 7]+ (G =g 4 + 7]

‘(ll—lg)(q_?)A—(jl—jz)(E?)A ) (3. 10)

since one can see from Fig, 6 that (g)); equals (g)), +7
and that (¢J)p equals (g9, +7.

To obtain K we use the fact that AD is parallel to XZ
and is 3 the length of XZ, Using Egs. (3.7) and (3. 9)
we have

7K = (l1 - lg)[((}?),q‘*' % ‘n']+ (]1 _Jz)[(a?)A - % TT]
L URAICHICE O AICAA AN

since one can see from Fig. 6 that (g7), equals (g?),

+3 7 and that (g)), equals (g), — 7. Thus, in this ex-
ample of §18,., o where [, — I,= 2 and j, - j,= — 2 we have
k=0, K=2,

(3.11)

In all cases, the points ABCD of the newly shaped unit
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TABLE I. Comparison of quantum with Bessel and Airy uni-
form approximations for rotational—translational transition
probability: Four real stationary phase points in 7* area.

Bessel
Probabilities? parameter
J Iy, jo3 Ly 41 Quantum®  Bessel Airy K,k
16 12, 4; 10, 6 0,297 0.303 0.461 ,0
8, 8; 10, 6 0.296 0.300  0.462 2,0
4, 12; 6, 10 0,289 0.263 0.378 2,0
8, 8; 6,10 0.285 0.289 0,442 0,2
6 2, 4; 4, 2 0,220 0.233 0.285 2,0
10, 4; 8, 2 0,297 0,300 0,482 0,2
14 12, 2; 10, 4 0.275 0,284 0.382 2,0
8, 6; 10, 4 0.289 0,295 0.429 2,0

a Taeo J 2
Probability 18 15y, 14,5 | *
PReference 3.

cell {e.g., Figs. 6 and 7) are chosen so that its sides
lie parallel to lines passing through the periodic array
of points (¢3,gY)=(--., =27, ~7,0, 7,27, +++), (+c0, =27,
-m,0,m, 27, .-.) and such that when K and % are calcu-
lated with Eq. (3.9) they are integers.

The Bessel expression, Eq, (B11) of Appendix B, for
the S matrix with K=2, £=0 and with the phases and G;
from points P,, P,, P;, and P, may now be used.

To perform the Bessel calculation for the example
given in Fig. 5 we note that in that figure the edges P, P,
and PP, of the quadrilateral P,P,P,P, are nearly par-
allel to the edge WX of the original unit cell, and that
the edges PP, and P,P; are nearly parallel to the di-
agonal WY, A newly shaped unit cell is chosen. It is
the parallelgram ABCD shown in Fig. 7. From Eq.
(3.9) and Fig. 6 one sees that for this §3%;;¢,,, matrix
element, where [, -1,=-2and j, - j,= 2,

mk =(A7)s - (A1) = (j;—F,)7, whence k=2, (3.11)

1K=(a7),— @}, =, - L)r+ (j,—j,)n, whence K=0.
(3.12)

B. Two real and two complex stationary phase points

To perform the calculation of the § matrix for two
real and two complex stationary phase points we apply

T ¢ y
Py
° [ ] P4‘ .PEI
4 +Py
a o+ B 47
- W -
aj r, /D
o P,® Py .
R +
-7 +
-T A o] ks
ag
FIG. 7. Arrangement of stationary phase points in the space

(7, 7)) for the S matrix Si%,q ;. Maximum (+), minimum (—),
saddle points (®), The Bessel uniform approximation for the
S matrix can be used over the unit cell ABCD,

the criterion that the phases at the two real stationary
phase points be as nearly equal as possible. The line
connecting the two real points was treated an an “AB”
line and the value of 2 was determined by using the ele-
ment of the original unit cell most nearly parallel to the
connecting line, This value of % was used in Eqs. (B15)
and (B17) in Appendix B,

C. Summary

The steps for performing the calculation of the S ma-
trix are summarized in the flow sheet in this section for
the case of an atom plus homonuclear diatomic molecule,
with a dominant P, (cosy) anisotropic term in the inter-
action potential (Appendix A). An atom and a hetero-
nucleay diatomic molecule, with a dominant P, (cosy)
anisotropy, will tend to have two or four stationary
phase points in a (- 7, m)2 area, The same procedure
would be followed with the following modifications:

The (0, 7)% in the flow sheet is replaced by (-, 7)%.
The 7% in Step 2 is replaced by (2m)2. The (- 7, 7) is
replaced by (- 27, 27)2. Indeed in the latter, for transi-

TABLE II. Comparison of transition probabilities for the case of two real and two

complex stationary phase points.

Bessel
Real Airy
plus _ Real Real
J Lyy Jos U Jq Quantum? complex pts. pts. &P pts. Integral
18 14, 6; 16, 4 0,124 0,103 0.069 4 0,069 0.125
8, 12; 10, 10 0.169 0.094 0.077 4 0.078 0,143
12, 10; 10, 10  0.087 0.057 0,059 2 0.057 0.099
10, 12; 10, 10 0.066 0,071 0.075 2 0.079  0.053
12, 8; 10, 10 0.165 ‘ c 0.085 4 0.086 0,163
6 10, 8; 12, 10 0.201 0,195 0.133 4 0.134 0.203
6, 4; 4, 4 0,111 0.090 0.135 2 0,139 d

3Reference 3.
YResults were insensitive to either £=2 or 4,

°We have not been able to locate the complex stationary phase points,

9The integral cannot be obtained due to Jacobian sign changes.
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Flow sheet I.

STEP 1

the (0,m? area.

Determine number of real points in

There are 4 pts.

Use for PSC
Eq. (B1)

There are 2 pts.

STEP 2
Shift vertical and horizontal boundaries
so that P and P, are diagonally across
from each other in any w2 area.

See Flow
Sheet |1

There is no
other such
configuration
in the (—7(,71')2

There is another
configuration in
the (- m,m? square

919

square
STEP 3B
l Choose the configuration for
Use for Airy which the phases A are most
Eqg. (B4 nearly equal.
a. (B4) STEP 3A
Choose a newly shaped unit cel!
whose sides tend to parallel the
two principal axes of the P PyP3Py
quadrilateral, and such that both & )
and K are integers. Use for Airy
Eq. (B4)
Foltow
Step 3A.
Use for Bessel
Eq. (B11
o ) Use for Bessel
Eq. {B11)
Flow sheet II,
There are 2 pts.
Use only Use real (PP,)
Real pts and complex
) (P3P,) pts.
Use for PSC Use for Airy Use for PSC ]
Eqg. (B1) Eq. {B18) or Eq. (B1) Find line most nearly parallel
Bessel Eq. (B19) to P\P, and which gives an
(the 12-pair integer k.
terms only}.

Use for Bessel,
Eqgs. (B19) and
{B20) or for
analogous Airy
equation.
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tions involving larger Al’s and Aj’s than those consid-
ered here, it may be necessary to scan a larger region
than the (- 7, 7)* one for the homonuclear case or than
the (~ 27, 27)? one for the heteronuclear case, The
method described in Appendix C of first obtaining a con-
tour plot for A, after obtaining the stationary phase
points, can be extremely useful for subsequently per-
forming Steps 2 and 3 in the flow sheets for any new
case,

When the interaction potential also contains large
terms having P,(cosy) anisotropy with some of the #’s
being larger than 1 or 2 in these atom—linear molecule
cases, D, Fitz of this laboratory has sometimes ob-
served a larger number of stationary phase points,

IV. NUMERICAL RESULTS

The results obtained for various transitions are given
in Table I, where the Bessel and Airy uniform approxi-
mations are compared with the exact quantum results, 3
The appropriate values of K and % obtained by the pro-
cedure in Sec, III are also indicated, Equations (B4)
and (B11) of Appendix B were then applied. For all of
the cases listed in Table I there were four real station-
ary phase points,

When two of the stationary phase points are real and
the remainder are complex-valued, we use Eq, (B19)
in complex form and Eq, (B20). As noted there, these
equations can be less accurate than those used for Table
I. The results obtained from these equations are given
in Table II, If the terms arising from the complex-val-
ued roots are omitted from these equations, one obtains
the other results given in Table II. Comparison with
the exact quantum results is also given,

It is useful to compare the exact quantum results
given in the third column of Table I with approximate
résults less accurate than the Bessel uniform one: Airy
uniform-in-pairs, Bessel uniform-in-pairs, classical,
and primitive semiclassical, The relevant equations
are given in Appendix B. There are two possible com-
binations of pairs for both uniform-in-pairs methods
and both sets of results are listed in Table III,

TABLE 0L
Four Real Stationary Phase Points in m° area.®

Kreek, Ellis, and Marcus: Semiclassical collision theory

When the correct configuration of stationary phase
points is not used, e,g., if the maximum and minimum
stationary phase points are not chosen diagonally across
from each other, the results differ from those in Table
I. For example, if one merely seeks the stationary
phase points for which 0= (g}, ¢))=n, as in Fig. 4, one
obtains the results given in Table IV,

When the correct configuration of points is used for
the Airy and the Bessel, but when a square unit cell is
used for the latter instead of the cell favoring a better
separation of variables, i.e., when the wrong % and K
are used, one obtains the results given in Table V, In
none of those results was 2 or K equal to zero, unlike
the results in Table I,

V. DISCUSSION

Agreement between the Bessel uniform approximation
and the exact quantum results is excellent for transitions
associated with four real stationary phase points in the
7% area (Table I). As already noted, the Airy uniform
is a special case of the Bessel'® but, as expected, is in-
ferior to it in this case, in which % or K is zero (Table
I). A similar behavior was found in Ref, 16 for the case
of r=1, and is well understood: In that case the phase
A varied only slowly and one could not, as one does in
the Airy formalism, replace the limits (= 7, 1) [or (0, 7)|
by (- «,+ %), Similarly, in the present two dimensional
case, as in Fig, 8 in Appendix C, a plateau-like region
for A occurs in one direction when 2 or K equals zero,
and once again the Airy formalism breaks down,

In Table IV it is seen that the uniform-in-pairs ap-
proximation is not as good as the uniform formulas of
Table I, The Bessel results indicate that the best choice
of pairs is consistently the one which makes uniform the
pair for which k (or K) is zero. The reason for this be-
havior is clear, since in developing the pairs’ equations
given in Appendix B [Eqs. (B17) and (B19)] we assumed
that one ¢ was large, The £ for the pair associated with
K or k equal to zero was of the order of 0. 16, while the
other pair had a ¢ of the order of 2,5 in all cases studied.
Thus, the former pair should give the better result in

Comparison of quantum transition probabilities with approximations less accurate than the Bessel:

Bessel in pairs

Uniform for Uniform
k=0o0or K=0 for the Airy in pairs Primitive
J Ly, g3 U, 4y Quantum  Pair other pair A B Classical semiclassical
16 12, 4; 10, 6 0.297 0,442 0,546 0.583 0.692 0.390 0.893
8, 8; 10, 6 0.296 0.417 0.678 0.616 0.734 0,449 0.755
4, 12; 6, 10 0.289 0.394 0.679 0.559 0.631 0,486 0.942
8, 8; 6,10 0.285 0,402 0.721 0.633 0.693 0,486 0.942
6 2, 4; 4, 2 0.220 0.365 0.346 0,354 0,444 0.233 0.5654
10, 4; 8, 2 0.297 0,444 0.778 0.771 0,797 0,605 1.189
14 12, 2; 10, 4 0.275 0,386 0.518 0.516 0.528 0,849 1.893
8, 6; 10, 4 0,298 0.397 G.633 0.576 0,468 0,381 0.89¢

*The systems in this table are the same as in Table I.
bPair A corresponds to the (=0 or K=0) pair in Bessel-in-pairs column, Pair B corresponds to the
other pairing.
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Table III, as it does, when it is treated as the pair which
was made uniform,

The need for testing for a correct configuration of the
stationary phase points, using the criterion established
by the Hessian in Sec, I, is evident from Table IV,
where the value for the uniform approximations obtained
with the wrong configuration is seen to be quite different
from the value obtained with the correct configuration,
given in Table I. The only previous result with which to
compare the results of Table I is an intuitive Airy-type
formula.* In most of the instances in that work there
were only two real-valued points, and the complex points
were omitted, There were two cases where there were
four points, and one is the same as the result in Table
IV based on the wrong configuration,

In previous papers of this series on multidimensional
uniform approximations!'? the Airy and Bessel uniform
formulas were derived!'?''®!? rather than intuitively in-
terpolated, and so the assumptions and the concept of a
correct configuration of points have become apparent.

It is useful to compare the Bessel and Airy uniform
approximations for which only the square unit cell rather
than a theoretically-based shaped one was used to deter-
mine k& and K. The results, given in Table V for the
same systems as those in Table I, are clearly worse
than the Bessel results in Table I, (The quantum re-
sults are given in Table I.) The agreement of the Airy
and Bessel uniform approximations in Table V with each
other reflects the fact that for those systems both %2 and
K are nonzero. The tendency of a Bessel uniform ap-
proximation to approach an Airy approximation provided
the order of the Bessel function, . or K, is not too
small is evident from the relation of Bessel functions to
Airy functions, *°

Some systems having only two real stationary phase
points in a 72 area, given in Table I, are seen to have
their approximate uniform values differ by a factor of
about 2 or less from the exact quantum results when the
complex-valued points are neglected, The agreement
is improved, in some cases substantially, when the com-
plex points are added and the complex pair formula used,
However, overall the integral result remains superior
for the particular data in Table II,

The transition probabilities for the systems with two
real points (Table II) are substantially lower than those

TABLE 1V, Comparison of quantum transition probabilities
with “Airy uniform?” using incorrect configuration of stationary
phase points.?

g Ly doi Ui, jy Quantum “Airy”
16 12, 4; 10, 6 0.297 0.265
8, 8; 10, 6 0,296 0.705

4, 12; 6, 10 0,289 0.529

8, 8; 10, 6 0.285 0.265

6 2, 4; 4, 2 0.220 0,248
10, 4; 8, 2 0,297 0,364

14 12, 2; 10, 4 0.275 0,142

*The systems in this table are the same as in Table 1.

TABLE V. Comparison of Bessel and Airy transition probabili-
ties using correct configuration beu with incorrect shape for
unit cell for Bessel, Comparison of the “Bessel” and “Airy”
approximation calculated from new but incorrect square unit -
cells.?

Probability

J Ly, o3 Uy Gy Airy “Bessel’™
16 12, 4; 10, 6 0.451 0.436

8, 8; 10, 6 0.462 0.446

4, 12; 6, 10 0.378 0.365

8, 8, 6,10 0,442 0.426
6 2, 4; 4, 2 0,285 0.276

10, 4; 8, 2 0,482 0.463
14 12, 2; 10, 4 0.382 0.370

8, 6; 10, 4 0.429 0,415

4The systems in this table are the same as in Table I,
PThe values of | K| and || used in this (erroneous) Bessel ap-
proximation were each 2,

for four real points (Table I), and one obtains the ex-
pected result'® that the Airy and Bessel uniform approx-
imations yield similar answers in this instance, The
integral results from an earlier paper!? for this case
are also noted in Table II, and they are in very good
agreement with the quantum results,

V1. CONCLUSIONS

In summary, the results in Table I show that good
agreement of exact and semiclassical results is obtained
for the case of high transition probabilities (four station-
ary phase points in the present instance), The reason
for the improvement of the Bessel over the Airy for any
case where a k or K is zero is evident from an examina-
tion of Fig. 8. The need for choosing a correct con-
figuration and a correctly shaped unit cell is also clear,

The agreement for the case where two of the points
are complex (Table II) is reasonable though not quite as
good, probably because of the extra approximation of
using a uniform-in-pairs formula,

APPENDIX A: THE ATOM-RIGID ROTOR
COORDINATES AND HAMILTONIAN

The classical Hamiltonian for the atom rigid-rotor
system is the well known generalized coordinate sys-
tem used in previous studies. *°2° In the present work
we will use a Lennard-Jones interaction potential of the
form used in several recent “exact” quantum dynamical
studies.® The total Hamiltonian in the center of mass
system is

2
_PE o3} cvg

Yom 12 Vom 6
"t It +€[(7) - 2(—;—) ][1+ aP,(cosy)] .
(A1)

P, is the momentum of relative motion of the atom and
center of mass of the rotor and # is the conjugate co-
ordinate. «, and a, are the angular momentum of the
orbital and rotational motions, respectively, I is the
moment of inertia of the rotor, € and 7, are the well-
depth and the position of the minimum of the interaction
potential. g is an asymmetry parameter of the potential,
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v is the angle between the axis of the rotor and the line
joining the center of mass of the rotor and the atom:

€osy = —~ €08q, C08q, + [} + o — a2/2a,a,]sing, sing, ,

(A2)
where o, is the total angular momentum of the system

and the coordinates ¢, and g, are conjugate to @, and
20
o,

It is convenient to employ the Hamiltonian (A1) in re-
duced units, The reduced Hamiltonian H! is

2 72 2
H =H/e= % + -ZlRﬁ + ;—I, +(R™2 - 2R®)[1+ aP,(cosy) ],

_ (A3)
where Py, R, q;, q;, [, j, I', and J are the dimension-
less quantities P, Nu€, v/7,, q, ¢, ,/(v,Vu€), a,/
(v, Vi€), I/ur? and o,/(r,Vue), respectively. The ex-
pression for cosy becomes

~

cosy = ~ cosq, cosq, +[([2+72 - J?) /2[f sing, sing, . (A4)

In these reduced units the instantaneous values of the
angular momenta are related to the values of the “quan-
tum numbers” by the semiclassical relation,

I=+dn,, F=(G+Dn,, J=J+Dk, (A5)

where %, is 7/(7,Vp€). In the present study the follow-
ing set of parameters was used: ['=0.4, a=0.25, and
[%/(v,/u€)P = 0.002; in all cases the total energy of the
system was E=1,

Initial conditions for the trajectory calculations are
determined by specifying the total energy E of the sys-
tem, the initial values of the quantum numbers 7, j, and
J, and the angles g, and g, for some given initial large
value of R. Following previous notation, the initial val-
ues of I, j, and J are the integers 1, jl, and J; and the
initial values of ¢, and g; are q, and q, The m1t1a1 val-
ues ofl ], J R, and P, are denoted by ll, ]1, Jl, Ry,
and Pg,. We used the new variables g? and qj defined
on the interval — 7 to n. These values are related to
¢° and q? pytor21

ZI-? = (I? = tan“(Ple/il) - %W, (A8)

where in (A6) and (A8) the tan™!’s lie in (~$m, 0) and (0,
$7) intervals, respectively. The i7’s are omitted
throughout the text and the figures. (They do not affect
1Sna12.) Also,

0= - VJuR,Pe, /[P + (YR, *7
where
V?:fl/ll .

Continuing to follow previous notation, the final values
of the momentum and coordmates for any trajectory are
lf .7 b Jf, ql, qj; Rf PR: ql; and q;, Where

q}=q]- tan-l(Panz/ia) +37,
V=17 /(B (48

7} =q] - ViR PL /{(PLE+ [(%/ (RI1T},

- A
vi=7 /1 (49)

APPENDIX B: NONUNIFORM AND UNIFORM
EXPRESSIONS FOR THE S-MATRIX

1. Primitive semiclassical and classical-like results
The primitive semiclassical result for the S matrix,
Spgc, and for the transition probability, Ppge, calcu-

lated from the sixteen stationary phase points in the
{(2m)? domain, are obtained from

4
Spse :42 pie'fi | Ppg= ISPSC |2 , (B1)
i=1

where p; is a signed determinant!® 1%:22;

3(lf f)
(‘Ih Qj) i

-1/2
(B2)

P = 211

and /= 1-4 denote the four stationary phase points in a
7% domain; f; is the value of A in Eq. (3. 3) at the sta-
tionary phase point P;,

When G is positive at a stationary phase point P;, as
in the case of the results given in Table I, the sign of
ra(zf,jf)/a(q?,ag’)l at that P, in Eq, (B2) is the same as
that of 18(17,j%)/8(q,,q,)!, since 18(*,j%)/8(g, 301G
equals 18(17,%)/6(g?, @) |. When the phase A is a max-
imum, one can show that 18(1%, j%)/a(¢%, ¢ | is - 27i,
while for a saddle point it is — ¢, and for a minimum
it is 0. Thus, the phases of p; in Eq, (B2) for these
respective cases are 7, 374, and 0, for this case of
positive G.

A more classical-like result for the transition prob-
ability p, is obtained from Eq. (B1) by neglecting inter-
ference terms and is

4
p.=162 p? (B3)
i=1

when all four stationary phase points are real; if any of
the four points are complex-valued, the corresponding
p;’s are ignored in Eq. (B3).

2. Airy uniform approximation

We have developed two uniform approximations for
evaluating the semiclassical S matrix, They are the
Airy and Bessel uniform approximations, 1’2 The Airy
approximation yields S, ., for the S matrix:

SM"_ 22[ 1lzal+( n1z)az ( 7714)(77147712)1/461‘41”.”2
+ G312 (= 1) Q1" (= Myg) (M) 2 42
n G;l/zai-(nza)ai-(_ 7143)(-,7237743)1laeiAs-ivr/2
+ G321 (= Myy) Q1% (= My (M) et 4s] . (B4)
where G, is the value of G in Eq, (3.2) at the point P;,
A, is given by
A=3(fi+fy), (B5)

and the remaining A;’s are obtained by cyclic permuta-
tions of the indices

3/2 3/2
sTU2=fi~fi, $WI%=fi-1f1,

(B6)
g.ﬁ*fs —fos anilzzfs—ﬁ .
Furthermore,
@it(~n) = Ai(- Mz i 248 (- 1) (B7)
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Ai(-n) = (21r)'lfwexpz‘(%u3 - nu)du , (B8)

and prime (') denotes derivation of Ai(— 1) with respect
to - 1.
3. Bessel uniform approximation

As discussed in the preceding paper, '® along a u-
curve we have

a(gl, gD =7(u, v} = Ku~ EsinNu+ A (B9)
|

and along a p-curve we have
a(g), qd)=f(u,v)=kv- EsinMv+ A, (B10)

where the A and ¢ in Eq, (B9) differ in value from those
in Eq. (B10). N and M denote the periodicities, i.e,,

A contains a periodic function of # and » with a period
of 2n/N and 21/M, respectively,

Shess1 1S the Bessel uniform approximation for the §
matrix®*:

Shessel = sNM(G 118148, sing, Sinil)”zrﬂz%(§14)32(€m)e (G ;1523§12 sinuy sin52)1/23;-((§23)3§(§12)e“2

+ (G ;1§23§43 Sinaa Sin;)_3)llzg;?(cZ3)<g;§(g43)e iA3+ (G;1§14§43 Sina4 Sinﬁl)l /25}{@14)8,}({43)6“4] 5

(Blla)

where A, is given by (B5), the other 4;’s are given by cyclic permutation of the indices, and

w=Nw; , 1;=Mvy;, K=K/N, k=k/M.

The u; and z; in (B11) are related to the value of the
phase at the stationary phase points:

R(uy - tanuy) = 3 (fe=fD) 5 w=- Uty

Kl —tanuy) = 3 (fy—fo) 3 #p=—13 K20 (B12a)
L =K/cosu, , Cy=K/cosu,
B(o,~tanvy) =2 (f=fi) 5 =~y
E(;g—tan53):%(f3"f4); E4=—53 E+0 (Blzb)

Lp=R/coSDy , C43=FE/cos; ,
The first two equations in {B12a) are solved for the

#;’s. The third equation is then solved for the §;;’s.
Similar remarks apply to the three equations in (B12b),
We also have

W=Uy= = T/2, ugm-uy, ‘7;3:‘1721

L L (K=0)

§12=§(fz _fx) ’ §43=E(f3 'f4) 5

;1=;4=—ﬂ/2, 52:—51, 53:—54

§14:%(f4‘f1) ’ §zs=%(f3—fz) .

In the cases K+#0, 2=0 or K=0, 2+0, the appropriate
combination in Eqs, (B12) is used.

(B12c)

}(E: 0) (B12d)

(Bi1b)

The function § in Eq., (B11) is given in terms of Bes-
sel functions of integer order:

956 ) = (&, D e i lm (&, Dl sing |1 if 4j=14 or 23
(B13)
I5(t,y) =g (&, D2 a5 (1 &, DI | singy |1, if 4j=12 or 43,

The symmetry properties of Bessel functions of real
argument were used in obtaining the rhs of these equa-
tions. 2

4. Uniform-in-pairs approximation

Another possible expression for the § matrix can be
written if the stationary phase points are considered to
occur in pairs which are “well-separated”, By well-
separated we mean that the relevant #’s and ¢’s are
large, If the (12) and (43) pair are well-separated the
values of 7, and 7,, are large and Eq. (B4) for the Airy
approximation gives

Satry = B (= Ny + B8~ (= M) + B2 ™ (= Ny + Bi* (= My3)1,.

(B14)
The ®i’s are given by Eq, (19¢) of Ref, 2. If the Bessel
uniform approximations ¢, and £,; become large, thén
Eq. (B11) gives

Spesser = (2/M2 s NM{expli(f,+f,) — 1im]((G1'¢,, 5inv,) /295(2,,) + (G 5y, sinD,) /295 (L,,)]
+(2/m) 2expli(fy + fy) + §971[(G 318 43 8invy) ' 295 (L,5) + (G 145 8invy) ' 295 (L45) 1} . (B15)

If the (14) and (23) pairs are well-separated, 7, and 7,; will be large in the Airy case while &,, and ¢, will be large
in the Bessel case, The Airy and Bessel approximation for this case are the following:

Satry = B8 (= M) + B (= Nyg)ly+ B (= Nyg)ly+ B (M), , (B16)
Snesser = (2/mM172 s NM{expli(f, + fu) = 1in (G 11y, sinw)) /2 g4(L,) + (G 3 L, siny)/ 2 g5 (23)]
+(2/m) 2expli(fy + f3) + T em)[(G 3 &55 Sinueg)' /2 95 (Ls) + (G 3614 Sinuy) 12 g5 (51 )] . (B17)

5. Two real and two complex points: uniform-in-pairs
approximation .

Finally, if two of the stationary phases are real and
two are complex, let P; and P, denote the complex-val-

i

ued points, Let P; be the maximum and P, the mini-
mum in the real-valued pair., One may write an expres-
sion for the § matrix in the Bessel approximation of the
same form as Eq. (B15); but now, f;, f), G, Gy, vs,
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and v, are complex quantities, From the treatment of
this problem given in the previous paper, !'®® y; and v,
are determined from

k(g ~tanhvy ) =3 (f3~f)) , 4 =—03 , (B18a)
where »'' =Im(v), and Re()=0. &, is given by
45 = B/sinhyy’ | (B18b)

The % for the real-valued pair is determined from Eq,
(B15). In the complex-valued pair its Bessel uniform
approximation (the &,; terms) would approach an Airy
one and so its & would be immaterial, as long as 2#0,
When using Eq, (B15) the % for the real pair was simply
used, One can also simply replace the Bessel formula
for the complex pair by the corresponding Airy one,

APPENDIX C: DETAILED EXAMINATION OF A
PHASE CONTOUR PLOT

Insight into the procedure in the flow sheet and into
conditions where the Bessel formalism yields a differ-
ent {more correct) result than the Airy one is obtained
from the examination of a plot of contours of constant
phase of A(g],¢)). Such a plot is given in Fig. 8 for
the case of a determination of S3%,,., ,,. This is the
same example used for Figs, 4 and 6, The contours
were obtained by a program which interpolates smoothly
the values of the phase A(g?, g9 on a 10x 10 grid of
points.® The contours in Fig, 8 are equispaced with an
interval of 0,2094., The 10x 10 grid proved to be too
coarse to allow the program to properly interpolate in
the region of saddle points, Consequently we have hand-
sketched the contours in these regions.

Where the contours in Fig. 8 are densely spaced, A
is rapidly changing, whereas where they are widely
spaced A is only slowly varying, One sees, therefore,

FIG. 8. Contours of constant phase A in the space (q‘,’, q,") for
the S matrix S§(;6,10. Maximum (+), minimum (-), saddle
point (e), curves of local transverse maxima (~--), curves of
local transverse minima ( ).

that there are largely diagonally inclined plateau regions
where A is only slowly varying, For this reason, and
indeed as in a corresponding one-dimensional case, '®
the Airy formalism is not very accurate for such a sys-
tem,

To see how a newly shaped curvilinear unit cell can
be selected for use in a Bessel formalism and to make
concrete the - and v-curves referred to in the pre-
ceding papers'? and in Appendix B it is useful to draw
the curves of steepest descent and ascent from the max-
imum, minimum and saddle-points, as is done schemat-
ically in Fig. 8.

These curves prove to be the most important #- and
v-curves in the preceding papers,!'? namely those pass-
ing through the stationary phase points: The u-curve
passing through the maximum P; and a saddle-point P,
is the locus of a set of points which are local maxima
on curves transverse to P, P, and so is a path of steepest
descent from P;, We call it a @-curve, Similar re-
marks apply to the v-curve passing through P; and P,
and we call it an S-curve. The S- and @-curves are
dashed lines in Fig., 8. The u-curve passing through
the minimum P; and saddle point P, is a path of steepest
ascent from P;, being the locus of a set of points which
are local minima along the curves transverse to P;P;.
We call it a @ -curve. Similar remarks apply to the
v-curves passing through P, and P,, and we call it an
§'-curve and ' -curves in Fig. 8 are solid curves pass-
int through the P's. In the periodic array in Fig, 8,
the primed P|s are the same as the P/s but displaced by
the appropriate periods.

An interesting feature of the contour plot in Fig, 8 is
the abrupt termination of the @'-curve T,P;P;T, at the
points 7, and T, Along this solid @ curve, which is a
locus of the minima of curves transverse to PyP,, the
derivative in the direction transverse to the curve equals
zero and so is also equal to zero at the points T, and Tj.
Beyond T, and Ty it would continue as a locus of local
maxima instead of local minima, Similarly, the @-
curve T, PP, Ty terminates at T, and 7. Beyond those
points it would continue as a locus of local minima in-
stead of local maxima.

The loci of all such termination points, e.g.,
T T3T3TyTs and TgT7TsTyTyy in Fig. 8, from two natural
boundaries to the true unit cell on which to base a deri-
vation of the uniform approximation.

To corretcly apply the curvilinear mapping of A(g?,
@) onto a function f(x,v) in Eq. (B9) and (B10), one
should first select a suitable unit cell of area 72, with
the property that the @ and @ curves terminate on the
boundary of the unit cell, A suitable unit cell is in Fig.
8 and is enclosed by the four curves T4 T,T3TTs, T1Ts,
TsT7TsTy Ty, and T5Tyy. Each point in the new unit cell
corresponds to a point in the old square unit cell, with
corresponding points having the same value of G and
the same value of expiA, and so the integral in Eq. (3.1)
evaluated over the new cell equals the integral evaluated
over the old.

In Fig. 8 two of the four stationary phase points (s. p.
points) lie on the boundary of the T, 757, T, unit cell.
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In order that all four s, p. points lie inside a unit cell,
it suffices, in principle, to find the u~curve passing
through (T3, T;) and the one passing through (7y,, Ty,).
The new unit cell 7,7T,,7(,7¢ new enclosed the four s, p.
points P,, P,, P;, and P,. This construction of a new
unit cell leaves the value of the S matrix unchanged,
since each point in the newly constructed unit cell is
equivalent to a point in the old unit cell 0< g2=< 7,

0= E}’ = 7. For the purpose of the following discussion
we shall consider the points T,, Ts, Ty, and T, to re-
fer in general to the corners of any one of the unit cells
which can be constructed so as to enclose the s.p. points

Since the curve T, T, is a #-curve we may use Eq.
(B9) for f(u,v) and use the relation between the value
of w at Ty and 7,

w(Tg) =u(Ty) + 7, (c1)

to determine the value of K to be used in the mapping.
We find from (B9) that

K = [A(Elo! Ejo)]Tc - [A(EIO’ ajo)]Tl- (Cz)

The same value of K would be obtained from any other
similar pair of transition points in this array (i.e.,
the pairs 7,7, and T5Ty,).

To determine the value of 2, we can use the fact that
7T, and T; lie on the same v-curve and are related by

v(Ts) =v(Ty) +7. (C3)
The value of 2 obtained using Eq. (B10) is
Tk = [A(alo’ alo)]Ts = [ A(alov ‘_ijo)]Tl‘ (C4)

To avoid the necessity of knowing the phase at points
other than the stationary phase points in order to apply
the Bessel uniform approximation, we can construct
an approximate unit cell in the form of a parallelogram
through the corners of the unit cell 7,7;7,,Ts. Then
the linear terms of the phase in (x,v) space given by Eq.
(C2) and (C4) may be equated to the linear terms of the
phase given by Eq. (3.86).2°

Thus,
"kz(A,L)Te_(A'L)TU Wk=(A;;)T5- (A,I.)Tl (C5)

In Sec. II we discussed how an approximate parallelo-
gram may be chosen by observing the pattern of the
stationary phase points in (g7, ¢}) space. In Sec. IIl. A
we associate A, B, C, and D with Ty, T, Ty, and T,
respectively, and hence obtain Eq, (3.9) from Eq. (C5)

The numerical values of K and % obtained in Sec. III. A
for the rather similarly shaped unit cell in Fig, 6 would
be equal to those obtained by the rigorous methods de-
secribed by Eqs. (C2) and (C4). However, if the con-
tours of the calculated phase become distorted to the
point where one can no longer find (in Step 3B of the flow
sheet) straight lines which more or less parallel the u-
and v-curves and which give integer values of k£ and K,
it would be necessary to find the points T,, 75, T,, and
Ty, and to use Egs. (C2) and (C4) to obtain the values
of K and k. In the systems studied thus far it was nec-
essary only to use the approximate methods given in
Step 3B. This circumstance has, of course, removed

the need for determining the phases at the termination
points, or for constructing the contour plots for each
transition studied.
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given in Sec. IV of Ref. 1. ~dJdyg (1E 1), respectively, when { is real.

#Based on the definitions of ug-, ug, g and in Sec. II of Bwe use Eqs. (2.27) and (2.81) of Ref. 1, together with the
Ref. 1 it may be shown that when K is negative, ¢ is negative. results in Sec. IV there. Later, for the case of complex
Thus, K and { may be written as — | K| and — £ in the points, the results in Sec. III there are used.
equation defining the Bessel function and its derivative [Eqgs. Yncidentally, A increases from Ty of T and Af also increases
(2.15) of Ref. 1]. A change of variable w to —w in this def- However, in the region between P, and P, the periodic term
inition shows that Jg(£) and J%(¢) equal to J g (1 1) and dominates and A decreases from P, to P;.

J. Chem. Phys., Vol. 62, No. 3, 1 February 1975



