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The broad compound state resonance found in quantum mechamml calculations of the collinéar H + Hj reaction
is shown to correspond semiclassically to multiple collisions of the atoms within the collision complﬂx The qu..ntlta-
tlve agreement between Q\i and SC results is qune reasonable.

1. Introduction

~ The semiclassical theory of inelastic and réactive
collisions developed by Miller [1, 2} and Marcus
[3, 4] has been applied to a variety of problems in-
volving vibrational—translational and rotational—
translational energy transfer, with encouraging re-
sults [1—6]. Application has also been made to the.

A+ BC — AB + C reactive collision problem [7—10].

The collinear reactive H + H, problem in particular
has been studied in considerable detail, both semi-
classmally [8,9] and quantum mechanically

11, 12]. _

The quantum reactlve ca_lculatlons have been
used as they have in the inelastic nonreactive calcu-
lations, to test the semiclassical theory. The quan--
“tum and sem1classwal results agreed well in the

‘tunneling region, i.e., at translational energies be-
low the classical threshold [9]. However, at higher
energies the semiclassical method appeared to re-" .
produce only the average’ behawor of the transition

probability [8]. Specifically, a strong oscillation in *

the exact quantum mechanical reaction probability

versus total energy plot, assacmted with a Feshbach

compound-state resonance, was not reproduced hy

-the several rumerical applications whxch have been.

made of the theory [8]. -

In t.hls commumcatlon we show that this quan- -
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tum mechamcal resonance effect is describ ed qu1te

~-adequately if one includes the classical trajectories in

which the atoms of the collision complex undergo

- multiple collisions with each other. The previous

calculations neglected the latter. 'The interference by
these additional trajectories produces the ascillation

~in the quantum transition probability. A complete

description of the results and method will be pub-

' hshed later.

2. Desenptlon of the colhsmn system and classical
results

The Classical hamiltonian for this system in the

center of mass systemn of coordinates is [7]

H=@Ypu+ @Y am+ v@L Y =E, Q)

where R} d_e_nbtes_ the distance between A and the
_center of mass of BC in a reaction A +BC+AB +C,

where A, B, and C are hydrogen atoms; rl denotes

. - the BC distance. P! and p! are canonically conjugate
" toRlandrl, respectively. Sirnfia'.rly;RII denotes the
.distance between C and the center of mass of AB,

. r1 denotes the AB distance, etc. Without danger of

confusion, the region where A is far from BC will be
called asymptotic region I, and the region where C is

~far' from AB is called I.Inpr ..sent case 4 is 2my /3,
“m is myy/2 and myy is mass of hydrocen atom.

*'A Wall~Porter potential [13] was used for ¥.1In

g each asymptotlc region I and il it has the property of
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reducmﬂ to a \iorse potemlal for ;he wbrat;onal coor-. :

"d.,na*e Hamilton’s equations were obtained directly .

. from eq. (1) and were integrated numerically from :
“some initial time t;. The initial values of the coo*d;- o

 nates and momentawe;e"' R-I ='arge, P
{2([E - GO A =L and pf =

n, n is'the ¢lassical ana]ogue of the quantum number,

: and rlis the lower’ turriing point of the Morse oscﬂ- _
~ lator-at R The integration was terrmnated at some
final time £; such that the final values were Rf= .

large, PY = {2ulE — eI /2,77 = rL, and p =

-0, where 7 isTor II accordmg as the trajectory ends o

- inrtegionI'or I; r< is the lower turning point of the
‘Morse oscillator. For notat10na1 simplicity the v will

‘be omitted innY and in a conjugate »/anable wg, but -

* will be retained in RZ and P{.

" The variables used to specnfy the initial eoordmates
and momenta are the tctal energy £, the initial state
of the oscillator ; (which equals an mteger) and

W deﬁned by [1—4] :

__i-wl,—#V(”i)Ri’/NPil& . @

~where wj is the initial angie of the oscillator, ob-

- tainable from eq. (5) of ref. [7] (g is our 27w) for a

“Morse oscillator, and v is the frequency of the oscil-
lator [7]. :

' The phase ¥ was mtegrated along with Hamilton’ s
equatlons and is glvnn by { 1—4]

¢ 'f IP‘(:)RI@)+p‘(r)r‘(‘)1a:+p RI PIRY .

B R : : (3).

Apart from ‘certain multlples of m/2 the phase A ‘
pearmg in the integral representation of the S ma-
_ tnx [4] equals a quantity we sha].l denote by @:

tﬁ w Zn(nf—m)wf,‘_' ' _- ,(4)_

T In actual practlce all numencal mtegﬁtlons were begun at )

-afixed R outside the interacticn region and at various
- values of rl corresponding to 2n initial uniform distribu-_
B tion of the vibrahonal ~phase. Analytical integration was
- then used to reach r< and the variable Rlin each case. The
" reason for ‘beginning with rL is described inref. [4]. The . .
---same remarks apply io the final values of the trajectories,
~which were in practice terminated at a fixed R and inte-

: 'graled analytically until a, lower wbmnnnd tu.rmnv pomt '

r< was ra:ched (c.f ref. [&])
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0, wher’e S :
“€(n} is the energy of the Moise oscillator [7] in state | -
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Fig. 1. Final vibrational quantum number for £ = 22.0
kcal/mole and nj = 0. Reactive trajectory results ate shown -,
- with solid line (—); nonreactive results with dotted dash
(—.—.—).-Horizc}nfal dashed line (—~=—-) is graphic solution
" to eq. (5) form'=0,1. For rn = 0 there are two real roots on
the reactive and nonreactive branches.

where m is the desired final integer i'ibrational quan-
‘tum number for a transition n; ~m, and whers w we

s the same-as (7) with i and I replaced by f and 7.

" 3. Classical results

A typical distr-ib‘ution of final vibrational quantum
nurnber (#¢) for ; = 0 in the range 16 to 29 kcal/mole

isshown in fig. 1. The dashed line 1nd1cates the solu:
: tlon of

,,f_m o, - R __'(5)
form = Oandl Eq (5) is the statlonaryphase con-

dmon of the mtegral representation of the S matrix,
ie., it is the solution of d®/dw; =0 [2,4].In fig: 1

" there are seen to be two such roots (stationary phase

points) on the reactive bra.nch and two on t.he non- .
reactive branch :
Between the reactive branch and the nonreactive

" branchisa reg;on in which the atoms execute mul-"
- tiple collisions. Between these twao reactive—nonreac-

tive branches we have found that there is another _
reactwe-—nonreaetwe branch each branch contammg ;
two s:ationary phase points. Between each. of these

- is sti].] another branch and'soon.” -
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These drfferent bmnches were grouped aocordmg
to the number ‘of additional collisions that the atoms
executed in the interaction region. That is, those tra-
jectories that pass directly over the col in the poten-
tial energy surface were designated as being-of order
zero. Those that execute an additional collision are of
first order, etc. Thére are 2 zero order, 4 first order,
and 8 second order utatlonary pha.ve pomts as well
as higher order points. _

It was also found in the present work. that be-
‘tween the two stationary phase points on each branch
in this system there exists a #; where dwg/dw; = 0.
The inverse of the jacobian i is related to the pre-expo-.
nential factor of the primitive serniclassical wavefunc-
trGu The latter is infinite at the W rvl where udeECGbi'&ﬂ
sign change occurs, although it is well-defined away’
from such a region. Unlike the case considered here-
tofore in the derivation of a uniform approximation
for the S matrix from the inte 2gra.l representation
[5, 14], the value of d2<I>/dwf is negative now for
both stationary phase points, a fact used in the next
section.

4. A uniforrn approximation

As was observed in the pre_vious section, this sys-
temn has a very large (possibly infinite) number of -
stationary phase points, and between each pairisa’
jacobian sign change. This situation makes difficult
the rigorous derivation of a uniform approxrmatlon
and we obtain it on an intuitive basis. '

A stationary phase evaluation of the integral ex-
pression for the S matrix yields for the present case

Spim = 23 {p;“ exp[i(A — )]
bmnches : o _

o+ pi” expli(A5 — imll, | : (6)
where the sum is over all branches each branch con-
taining two stationary phase points. The —m/4 in both

terms (instead of the more usual —-7r/4 and +1'r/4) isa

tesult of the fact that dz@/dwfz is.negative for both'
stationary phase points: A€ arose from the phase of

the wavefunction [3; 4] and includes the phase of the

pre-exponentra] factor, whﬂe Pl and p7 denote the
classmal probabﬂmes
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pj = ldngfdwl7t (7=1,2),

™)
whereN:s the number of times the trajectory touches
a eaus‘trc, i.e., the number of times that *“‘adjacent tra-
jectories cross”, between £ = £; and £ = ¢; [4,15]. Anal-
ysis of the wavefunction near the point w; where the
jacobian sign change occurs shows that A° should ap-
proach AS + %rr as this point is approached from
either srde along each branck.

The calculation of N may be conveniently carried
out in the following manner. The van Vleck deter-
minant [16]; whose square root is the pre-exponential
factor of the semiclassical wavefunction [3,4], is

o n latae _..-\..,.- 4~

b~ 3
SIiOWN i1l 4 15167 PapelL v Ct.guﬂ..k

wi/orY. awyart

- ®
d¢/oR!

ar‘/arl

D becomes infinite on a caustic. The inverse of D
can be shown to be

1 (aR‘/awi)t’ (@rlfam),
e . . ©)

D and D71 vary aloag a trajectory. One can show

that NV is the number of times ™! changes sign
throughout the trajectory between ¢; and £;%.
.. Eq. (7) gives the absolute value for the phase A°.
This AC is also independent of any extra periods that
the oscillator may go through after passing through
the interaction region.

We wish to employ a uniform approximation
whose asymptotic form is eq. {€). Two expressmns
which have this asymptotrc form are™

Snim = Z) 4 [(p}'? £ p3/*)EM P AN(-0)
bra.nches

"z)é’“’zz’u( O (102)

= Ref. [15] descrfoes a phase integral justification.

- #These forms weic prompted by Uiose wsed in refs, [14]

~and [2], respectively, which were developed for a simpler
_'a;se, one for wiiich (10a) had a2 more rigorous derivation
than (10b). Now, however, neither is rigorcus.
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.- nlm - E XA [(p”'z +p2/2)§1/2 A.\( g)
[m‘lChES".' . N ' :
+1(p”2 xlz)iiuz Bi.(l'i')] AR (IOb) B

) _where Al and Bi denote Aliry functlons and the pnme
: denotes denvanve (17]:4 and §' are given by

A %(A“+A) ¢ = {a(Au AR
'.-A“ 'Al—%r A“-A2 A

. wher= A}l shou;d approach A3 as a approaches the -

- point of jacobian sign change, at any given energy.
. .To decide which of the two AS’s determined from
egs: (4y and (7) is Af, one notes that subtraction in
~eq. (11) of —7/2 from the wrong A€ yields a AY
whlch does not have this property of contmuty

. ':5.'Nﬁ!fneﬁcal_ealcu]atibns and results -

‘The zeroth, fitst and second order stationary phase

. trajectories (14 reactive and 14 nonreactive) were
- found formy=0andm=0ata partleu]ar energy.
" Higher orders were neglected, since typically the clas-
" sical probabili ties became smaller as the order in-
~ creaséd, by somewhat less than an order of magni-
* tude each time, with some overlappmg of the succes-
_sive orders. The trajectories had initial and firial con-
- ditions as discussed in section 2, and the phase ¢ was
calculated using eqgs. (3) and: (4) All trajectories were
- realivalued. The c]assmal p[Obﬂ.blIltlE:S pineq.{7)
~ ware calculated from ng versuy i¥; data, using a qua-
. dratie d.lfferentmnon formula Wlth ¢ w; chosen suf- -
ﬁcnently small that p remamed constant if 3 w; was
- halved. The NV in eq. (7) was calculated using. three
-adjacent trajectories (one on either side of the statio--
. nary phase trajectory) with 5W; equal to the value

‘uSed in the differentiation. N1< equal to the number

""of sign chandes of the t.hu; calcu]ated detemunant in
ex:(8).

The det:uled calculatlon of AC using eqs (4) and

\(7) and thern using eq. @ l) and continuity of A% to.

" determine A} and ‘4%, was necessary ‘only for a single - -

“enérgy. For any other energy it then sufficed to use
ihe followmg expre..smn ’or (p [7] v

:5j$;ﬁ;?;
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g .
L_0=f_'[PIRI +p rl]dt+f2(r n\+P RI '

y

’.—f2(rf=7f) PfRf, B .- %

where f5(r, n) is the generatmg func’uon for the Morse
-oscillator [7],and then add or subtract multiples of
.. msoas tomake A} and A3 continuous functions of
. the energy. This method was checked by comparing
" the resulting value with an independent'detailed cal-

culation which we made of Al and A} at another

‘energy. The yesults agreed. -

. The phases A% and class1cal probabxlmes D were
found for.the zeroth, ﬁrst, and second order trajec-

_tories at 13 equi-spaced energies in the range 16 to
" 29 kcal/mole. The transxtxon probability is sunply :
. gwen by

Py =1Spnlo o (12)

nim.

- Figs. 2 and 3 show the reacnve probabﬂmes asa func '
" tion of total energy, for the two uniform approxima-

tions. The exact quantum mechanical values of -
Truhlar and Kuppermann [12] are also given, as is

the semiclassical result for the zeroth order trajecto-

ry. Only the latter was used in carlier applications of
semxclasswal theory to this problem [8 9].

o .

TOTAL ENE RGY [KC AL/MOLE)

Fig. 2 COmDarlSOI’l of exzct quanrum reacnve tm.nsntlon S
pmbabxhuesfg% of Truhlm' and Kuppermann [12] -, -
those calculated using eq. (10a) where the sum' includes zero,
fitst and second order bmnches (o=0—0), and those caleu-

hted varying unly t.he zero order branch ( -~ )
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(10&)

6. Conclusion

In the present paper attention has been focused on

the broad resonance occuriing in quantum mechanical -

calculations for the collinear H + Hy reaction<. It has
“been shown that introduction of the ,tra]e(,tones
which arise from multiple collisions within a collision

1 We do not consider here, for example, the behavior at
lower energies, namely outside this resonance region but
above the tunneling region. In that region the quantum

“transition probability is close to unity but any simple semi-
classical value yields a result greater than unity, even when
a-Bessel uniform approximation [S] is used. The structure
of the semiclassical wavefunction in that region is too com- .

- plicated — there are too many regions of jacobian sign chan-
ge, for example — to permit any-simple uniform approxi-
mation. In this case, an expedient which we have adopted
in other analogous problems might be employed, namely
setting the semiclassical probability equal to unity when-
ever the calculated umform approumatmn value exoeecb
umty
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complex (i.e., which arise from short-lived collision
-complexes), interfere with the direct collision trajec-
“tories and yleld a semiclassical mterpte*atlon of the

ICSO!‘I&I‘ICG
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