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The broad compound,state resonance found in quantum mechanical calculations of the collinear H f X2 raction 
is shown to correspond semiclassically to multiple collisions of the atoms within the collision complex. The quxntita- 
tive ageement between QM and SC results is quite reclsonable. 

1. Introduction turn mechanical resonance effect is described quite 

The semiclassical theory of inelastic and reactive 
adequately if one includes the classical trajectories in 
which the atoms of the collision complex undergo 

collisions deveIoped by Miller [l ,2] and Marcus multiple collisions with each other. The previous 
[3,4]. has been applied to a variety of problems in- calculations neglected the latter. The interference by 
volv%ig vibrational-translational and rotational- these additional trajectories produces the oscillation 
translational energy’transfer, with encouraging re- in the quantum transition probability. A complete 
suits [l-6]. Application has also been made to the description of the results and method will be pub- 
A + BC + Al3 t C reactive collision problem [7-lo]. Wed later. 
The colhnear reactive H + H2 problem in particular 
has been studied in considerable detail, both semi- 
classically [S, 91 and quantum mechanically 2. Description of the collision systp,m and cIassica1 
[ll, 12j:. results 

The quantum reactive calculations have been 
used, as they have in the inelastic nonreactive calcu- 
lations, to test the semiclassical theory. The quan- 

The classical hamiltonian for this system in the 
center of mass system of coordinates is [7.] 

turn and semiclassical results agreed well in the 
tunneling region, i.e., at translational energies be- ~!f=‘(p$~/2~ + (~‘)~/2n; + V(R’, r*) =E , (1) 

low the classical threshold [9]. However, at higher 
energies the semiclassical method appeared to re- 
produce only the average behavior of the transition 
probability [8]. Specifically, a strong oscillation in 
the exact.quantum mechanical reaction probability 
versus total energy plot, associated with a Feshbach 
compound-state resonance, was not repro&iced by 
the several numerical applications which have been 
made of the theory [83, 

where RI denotes the distance between A and the 
center of mass of BC in a reaction A f BC + AB + C, 
where A, B, and C are hydiogen‘atoms; rL denotes 
the BC distance. P’ and py are canonically conjugate 
to R’ and ,I, respectively. Simhly,R1! denotes the 

.distance between C and the center of mass of AB, 
rn denotes the AB distance, etc. Without danger of 
confusion, the region where’ A’is far From BC will be 
called asymptotic region I, and’the region where C is 

In this communication we show that this quan- far.from AB is called II. In &se+ casep’is 21nH!3, 
m is mH/2 and “H is mass of.hydrogen atom. 

.* SupPorted in part by a gant from the NatiorA Science ‘. A Wall-Porter potentid [13] was used for 17. In 
-. Foundation. ‘, each asymptotic region.1 and II it has the property of 
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reduci?g t.o g Moise potential f&r the vibrational COOI- 
d$ate. H&$lton’s,yuations were obtained directly, 
from eq. (1) and were integrated ntierically from 
&me initial time ti_ The initial values of the coordi-’ .- 
nates ai@ momenta were t- R! =&&J; ,= . 
--{-2~[E-s(~!)])“2,ril=z~,andp!‘=.~’ where ” 
~(71) isthe ene&: of the Morse oscilla;or [;I & state 
h, rz is the classical analo&e of the quantum nmber, 
tid r$‘is the lower ti.r.riing point of the Morse oscil- 
&or at Rf . The integration was terminated at some 
final the r; such that the final values -w&e RJ = 
large,PfY=(2C1[E-E(nl)]}1’2,;~=r:,andpf7= .. 

-0,where,7_is I or II according as the trajec?ory ends ‘, 
in-regi0n.I or II; r: is the lower turning point of the 
M&e oscillator. For notational simplicity’the 7 will 
,be omitted in nfr and in a conjugate variable ZF, but 
will be r&tied in RT and PF. 

1 
ID 

Fig. I.,. Fimlkbrational quantum number for E = 22.0 
kcal/,mole and ni = 0. Reactive trajectory results are shown 
yith .joljd line (-); nonreactive’res@ts with dotted dash 
(-.-_-)_ Horizontal &shed Line (---) is graphic solution 
to eq. (5) form = 0,l. Form = 0 there are two real roots on 
tie mactive and nonreactive branches. 

The variables used to Qecify the initial coordinates 
and momenta zre the total energy E, the initial state 
of the oxill&& ni (which equals an integer), &d 
,Fi define! by [I A] . . 

hi = Wi - ~v(ni)Ri]I2nPiI’, (2) 

.wheie Wi is the initial angie of the oscillator, ob- 
..tainable from eq. (5) of ref. [7] (4 is our 2nw) for a 
Morse osc$ator,‘a.nd Y is the frequency of the oscil- 
latoi [7]. 

The phase cp was‘integrated along with Hamilton’s 
equations and is given by [l-4] 

?f’ ..’ 
p? d ‘[P’(#(r) fp’(t);‘(;)] dr+-P;R/ -P;R; . 

‘i (3) 
Apart from.cert& muitiples of $/2 the phase 4 

appearing in the integral representation of the S ma- 
tri- [4].equals a quantity we shall denote by @p: 

f.In actual practice ali rLintriul jntegrations were begun a! 
a fixed &I_ outsiae thC interact&x region a.xd at various 

where m is the desired fiial integer vibrational quan- 
tum numbe? for a transition “i + m, and where iZf 
is the same as (2) with i and I replaced by f and 7. 

3. CLwic21 results 

.A typical distribution of final vibrational quantum 
number (nf) for ni = 0 in the range I6 to 29 kcal/mole 
is shown in fig,. 1. The dashed line indicates the solu- 
tion of - . . 

ry-m=O’, . . (9 

for n; = 0 and 1.. Eq ($1 is the stationary phase con- 
dition of the integral representation of the S matrix, 
i.e., il: is the sol&on of d@/dii$ = 0 12; 41. In fig. 1 
there are seen to be two such roots (stationary phase 
potits) on the reactive branch and two on the non- 
reactive branch. 

Between the reactive branch and &e nonreactive 
branch is.a region in w&h the atoms execute mul- 
tiple collisions. Between these two reactive-nonreac- 
tive branches we have found that .tiere is afioeher 
-reactjve-nonreactivebrarich, ea,ch branch conttiing 
two slationaryphase points. Between each.of these 

vdues of ;:, corresponding to an initial unifozh dihibu- 
‘, tiorr of the viiratior+l phase. AuQtical integration *v~vas 

. . then used to reach r< and the vuizble RI in each case. The 
_-SOIT f~r.bcgiimingwithr~isdescribedinref. [4].+hc 

same remarks apply $0 tAefinalv&s of the trajectories, 
which were &p&ice terminated.at a SixedIZ and inte- 

-grated a~~!jticaUy until a.lq&r vibrationzl’t&~ point’ 
r.$ w2s rmcheql (d. ref. [J]). ‘. -. 

,:.- 
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These dgferent branches were grouped according 
to the number of additional collisions that the atoms 
executed in the interaction region. That is, t.hose.tra- 
jectories that pass directly over the co1 in the potek 
tial energy surface were designated as being of orde! 
zero. Those that execute an additional colt&n are of 
first order, etc. There are 2 zero order, 4 first order, 
and 8 second order stationary phax points, as well 
as higher order points; 

It was also found in the present w ork  that be- 
tween the two stationary phase points on each branch 
in this system there exists a R; where dii;f/dJTi = 0. 
‘Ihe inverse of the jacobian is related to the pre-expo- 
nential factor of the primitive semiclassical wavefunc- 
tion. The latter is infinite at the Uli where this jacobian 
sign change occurs, although it is well-defmed away 
from such a region. Unlike the case considered herc- 
tofore in the derivation of a uniform apprdximation 
for the S matrix from the inte ral representation 

$ [S, 141, the value of d2+/diCf is negative now for 
both stationary phase points, a fact used in the next 
section. 

4. A uniform approximation 

As was observed in the previous section, this sys- 
tem has a very large (possibly infinite) number of 
stationary phase points, and between each pair is a. 
jacobian sign change. This situation makes difficult 
the rigorous derivatiqn of a unifbrrn approximation, 
and we obtain it on an intuitive bssis. 

A stationary phase evaluation of the integral ex- 
pression for the S matrix yields for the present case‘ 

S,,i, = c 
bnncks 

1~:” exp [i(Ai - dxj] 

+.py’ exp [i(As - in)] } , (6) 

where the sum is tivcr all branches, each branch’con- ’ 
taining two stationary phase points. Tne -sr/4 in both 
terms (instead of the more usual -n/4 and +n/+is a 
rq$!lt of tie fact that d2?D/di$is negative for both 
stati?nary phz~se points. AaC a:~~e from the phase of 
the wavefunction [3,4] and includes the phase o# the’ 
preexponential ftictor, while pi and.pZ denote the 
classical probabiliti&: 

(7) 
whereN is the number of times the trajectory touches 
a caustic, i.e., the number of times that “adjacent tra- 
jectories cro&‘, between.f = ti and t = TV [4,’ 151. Anal- 
ysis of the wavefunction near the boint pi where the 
jacobian. sign change occurs shows that A; should ap- 
proach A: + in as this point is approached from 
either side along each branch. 

The calculation of N may be conveniently carried 
qut in the following manner. The van Vleck deter- 
minant [16], whose square root is the preexponential 
factor of the semiclassical wavefcnction [3,4], is 
shown in a later paper to equal 

D becomes infmite on a caustic. The inverse ofD 
can be.showl; to be 

(i3R’/aiQr (ar’/aiCi), 
D-I = 

P’lP P’h . 

‘3) 

(9) 

D and D’-l vary along a trajectory. One can show 
that N is the number of times DeL changes sign 
throughout the trajectory between ti and rff. 

Eq. (7) gives the obsofute value For the phase AC. 
This AC is also independent of any extra periods that 
the oscillator may go through 2fter passing through 
the interaction region. 

We wish to employ 2 uniform approximation 
whose asymptotic Form is eq. (6). Two expressions 
which have this asymptotic form are* 

Snirn. = c 
branche5 

eiA [(pi” f pi’*)(‘1’2 Ai 

- j@i’2 ,- p;‘2)y A+-.f)] , (104 

$‘Rcf. [15] de=xrZoes aphze integraljustiiution. 
* Thex forms were prompted by ihose used in rFf.x [ 141 

and [2]; respectively, whish were developecI for a simpler 
case, one for which (I&I) .had 2 more rigorous dcrivJtion 
than (lob). Noti, however, neither is rigorous. 
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.snim= ‘C.kiA[( py* + pyjy Ai . . UP= ” [P’~’ +p';']dt +f,(r,‘,n,) +P,rRir 
bkinches _. s 

. fl : 

t i(p;ji - ~7~)s“” Bi(--{)] , : (lab) .’ _ -f2($ Q).-pq 1 (li) 

where .&i and Bi denote &ry functions hnd the prune where fz(r, n).js the generating function for the Morse 
denotes derivative [ 171 ;-A and f are given by oscillator [7]: and then add or subtract multiples of 

A =b(A; +‘A$ , 5 = {:(A; - Ay)}“3 rr so as to.make A! and A; cqntinuo’us functions of 
the energy. This method was checked by comparing 

and the resulting value with an independent.detailed cal- 

A;:=,Ai-41i, A;=A5. (11) 
culation which we made of A! and A: at another 
energy. The results agreed. 

-where A? ,shou;d approach A; as a iVi approaches the The phases Au and classical probabilities p-were 
point of jacobian sign change, at any given energy. found f&the zeroth, fir?!; and second order trajec- 
To decide which of the two AC’s determined from tories at 1.3 equi-spaced .energies in the range 16 to 
qs. (4)‘and (7) is At, one notes that subtraction in 29 kcal/mole. The transition probability is simply 
eq. (1 I) of-&/2 from the wrong AC yields a Au given by 
which does not have this property of continuity. -’ 

P ,‘jm = ISnjnl I2 .’ Cl21 

Figs. 2 and 3 sho\)r the reactive probabilities as a f&c- 
‘5:Nemerical calculations and results tion of total energy, for the two uniform approxima- 

tions. The er:act,quantum mechanical values of 
The zeroth, ftist and second order stationary phase Truhlar and Xuppermann 1123 are also given, as is 

traject,ories (14 reactive and 14 nonreactive) were the semiclas+xl result for the zeroth order trajecio- 
found for rri 7 0 and .!n = 0 at a particular energy. ry. Only the latter was used in earlier applications of 
Higher orders were neglected, since typically the clas- semiclassical theory to this problem [8,9]. 

.. sical probabilities became smaller as the order in- 
creased, by somewhat less than an order of magni- 0 

y tude each time,,with some overlapping of the succes- 
sive orders. The trajectories had initial and firidl cdn- 
hitions as discussed in section 2, and the phase + was 
calculated’using eqs. (3) and (4). Ml trajectories were 

‘: rea&valued.‘The classical probabihties p in eq. (7) 
wxe calculated from rrf versus i$ dhta, using a qua- 
dratic differentiation formula with 5 pi chosen suf- 
ficiently small that p remained constant if ,6 iGr was 
halved. The N in eq. (7) was calculated using three 
adjacent, trajectories (one on either side of the statio- 
nary phase trajectory) with 6i$equal to the vahre 

. 
used in the differentiation. N is equal to the number 
of sign change’s of.the thus calculated determi&t in 

&8). _’ 
The aeta@ calculation of AC using eqs. (4) and.. 

TO+Ai ENERGY (KCALliOLE) 

(7), and then Using eq. (1 J) and continuity of Au bo Fig. 2. Comptirison of exxt quantum reactive transition 

determine, A? and Ai, was necessary only for 4 single 
probabilities& of Tchlar and Kupperrnan? [l?] (l), 
those calcula$l:d using eq. (lOa) where the sum includes zero,’ 

energy. For any &her energy it thbn.sufficed to use : 3rd 2nd sccorld oraer branches (o-o-?), &nd those calcu- 
.:the f&owing eGression for cp [7] ’ bted vaiiing only the zero order branch (.-.-.I. ,’ 

: : ‘. 
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L 
complex (i.e.., which arise from short-lived~collision 

1.0 
!A. .’ 

‘1. 

.- \ 
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complexes), interfere with the direct collision trajec- 
tolies and yield a semiclassical interpretation of the 
resonance. 

cls- 
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