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A multidimensional Bessel uniform approximation for the semiclassical S matrix is derived for the

case of four real stationary phase points. A formula is also developed for the particular case when
four stationary phase points may be considered to be well separated in pairs. The latter equation is
then used in the treatment of two real and two complex stationary phase points.

I. INTRODUCTION

The following integral arises in the semiclassical
treatment'™® of inelastic collisions:
T T
I- (Zﬂ)"f f &) exp[if®)]dxy. . .dx, . (1.1)
-t oy
Here, x(x,...,x,) denotes the certain “reduced” phases

(related to coordinates in the “action-angle” variables)
of the colliding species.

When the integral in Eq. (1.1) is evaluated by a sim-
ple stationary phase method one obtains the primitive
semiclassical (PSC) expression for the value of 7. When
the integral is evaluated by mapping the exponent f(x)
onto a cubic function, !° and the integration limits of
(- 7, m) are replaced by (-, ), an Airy uniform ap-
proximation of I is obtained. Quantum mechanically it
is more accurate than the PSC value. However, when
f{x) varies very slowly with x, large portions of the x
domain contribute to the integral, and approximations
such as replacing the interval (- 7, 7) by (-, =) break
down, and with it, the Airy uniform approximation.!!

For this reason Stine and one of us introduced a more
accurate mapping which preserves the desired periodic-
ity properties of the (- 7, 7) intervall’: f(x) was mapped
onto a sinusoidal plus linear function, yielding a Bessel
uniform approximation. Unlike the Airy the Bessel uni-
form approximation does not break down when f(x) is
slowly varying,!! and so is more general and includes
the Airy as a special case. To be sure, it, too, is ex-
pected to have its limitations for sufficiently unusual f(x)
and g(x) in Eq. (1.1).

An Airy uniform approximation to Eq. (1.1) has been
given for 7 equal to one, !*2® two, 1™2°% and more than
two, ™* while the Bessel function uniform approximation
has been given for » equal to one.'! In the present paper,
a Bessel uniform approximation is developed for » =2,
Initially, the protbtype, a two-dimensional integral (1. 2)
is treated. The argument is then generalized to higher
dimensions:

1g T
I=(21r)'2f f g(x,y) explifix,y)]dxdy . 1.2)
-T -7

Perhaps it would be useful to note first that the inte-
gral (1.1) can be reduced in some applications to a one-
dimensional integral (then circumventing the present
derivation), but in other cases, it cannot: The integral
I yields the probability amplitude for a transition from
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some initial quantum state of a colliding pair of mole-
cules, defined by quantum numbers (n,,...,n,), to some
final state (m,,...,m,). If one is interested only in the
transition of n;, say, i.e., in n;—~m,, one can first av-
erage the transition probability over the ensemble dis-
tribution of (n,,...,#n,) appropriate to the experiment.
If, further, many final quantum states (m,,...,m,) are
accessible for each of the m,’s, one can integrate over
(my, ..., m,) using “partial averaging.”?" A one-dimen-
sional integral remains and is treated by available
(stationary phase, integral or uniform) methods. When
instead, only a few final quantum states for some of the
Wy, ..., M, degrees of freedom are accessible, or when
one is measuring a particular simultaneous transition
Ry, eve,ng)=lmy,...,my), with 1 <s <7, a two or more
dimensional integral over dx;...dx, remains and the
present formulation of 2 multidimensional Bessel uni-
form approximation or Bessel uniform-in-pairs approx-
imation can be applied.

1. BESSEL UNIFORM APPROXIMATION

In developing a Bessel uniform approximation to the
integral given in Eq. (1.2), we shall use a procedure
analogous to that developed in a previous paper in this
series.'® First, a one-to-one mapping (x,y) - (,v) is
performed, to convert flx,y) to the form of Egs. (2.1)
and (2.2). The function flx, y) in Eq. (1.2) is mapped
onto a family of curves in the « direction by®

Flx, v)=Ku - ¢ sinu+A=Fflu,v) . 2.1)

This family of curves are referred to as u-curves, and
a few members of the family are shown schematically
in Fig. 1.”7 In Eq. (2.1) K is an integer, dictated by the
physical problem, and is the same for all members of
the family of # curves. ¢ and A are constant along any
member of the family, but may differ from member to
membev. These “constants” thus can depend on both «
and v.

Similarly, curves designated as v curves in Fig. 1
are chosen such that

fl,y)=kv ~ g sinv+A=flu,v) , 2.2)
where % is an integer constant dependent on the physical
problem and ¢ and A are constants on a particular v

curve, and dependent on both # and v. The A and { in
Eq. (2.2) differ from the ones in Eq. (2.1).

The ¢ and 4 in Eqs. (2.1) and (2. 2) are related to the
properties of the extrema of f on the # and v curves as
follows: These extrema are defined as the points at
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FIG. 1. A schematic representation of # curves and v curves.
The stationary phase points P; and P; are the maximum and
minimum respectively, and P, and P, are saddle points. The
curves S and S! are respectively the locus of maximum and
minimum on % curves. The curves @ and (,')1 are respectively
the locus of maximum and minimum on » curves.

which df /du (df /dv) vanish along a u curve (v curve),
On any # curve these points are determined from Eq,
(2.1) by

K-t cosu=0 (2. 3a)
and on any v curve by
k-tcosv=0. (2. 3b)

Of the infinite number of roots of Eqs. (2.3a) and (2. 3b)
we shall select those, denoted by ug, ug, and vg, Vg,
which lie in the interval (- 7, 7)., They have the property
that

(2.4)

We can further classify these roots by the behavior of
d%/du® and d?f /dv? on their respective curves, From
Egs. (2.3a) and (2. 3b)

d2f/du? = ¢ sinu

us=—us:; UQ=—lec

and

d%f/dv? =t sinv . (2.5)

We shall distinguish ug from ug., and vq from vy, by the
conditions:
gsinug <0, ¢sinug >0

(2.86)

gs8invg <0, (¢sinvg >0.

This identification specifies that g and v, are maxima,
and ug, and vg. are minima.® If either of the derivatives

in Eq. (2.5) equals zero then the roots have coalesced
to form an inflection point. Figure 1 shows schemati-
cally the curve, labeled by S of all points ug. Similarly
those labeled by S’, @', and @, from the loci of the
points ug., vqr and vg, respectively. The points Py, P,,
P,, and P, at the pairwise intersections of these four
curves correspond to the four points of stationary phase
of flx,y). Using the definition in Eqs. (2.5) and (2. 6), it
is seen that P, and P, are, respectively, a maximum
and minimum, and that P, and P, are saddle points.

At any pair of points ug and #g. which satisfy Eq.
(2. 3a) the value of ¢ and A can be obtained by substitu-
tion into Eq. (2.1). Then

Aggr=3 (fsr +fs) (2.7a)
Kluge —tanug.) =% (fgr ~fs) . (2.7b)

Because fg. ~ fg is negative by definition, then when
K <0 the solution ug, of (2. 7o) must lie, one can show,
in the (- %7, 0) interval. When K> 0, it lies in the (0,3 m)
interval. That is,
-3T<ug <0 (K<0), O<ug<inm (K>0). (2.8)
With this restriction the ¢ are now determined from
gssl =K/COSus, (K*O) . (2- ga)

When K=0, Agg is given by Eq. (2.7a), and instead of
Egs. (2.7b) and (2.8), we have

Lss0=5 (fsr=fs); ugr==37 (K=0).

In terms of # and v Eq. (1.2) becomes

(2. 9b)

¥ T
I=(4772)'1f f (gd) g5 explilKu - £ ggo sinu+Agge)Jdudv ,
ey o ay

(2.10)
where J{x, y;u, v) is the Jacobian of the transformation
from x,y to u,v. The function gJ is different for each
member SS’ of the family of # curves. Consequently it
is subscripted SS’. We assume that on any u curve SS’
(gJ) g5+ may be written as

(2.11)

Each u curve has its characteristic value of  and of ¢,
and these values for a given # curve are determined
from the value of gJ at ug and ug., (gJ)s and (gd)g.,
respectively, From Eq. (2.11) one finds

r=3[(gDg + (g5 ;

t=(2sinug ) [(gN) g - (g)s] .

Substituting Eqs. (2.11) and (2.12) into Eq. (2. 10)
yields

(gd)gge =7 +tsinu .

(2.12)

I=(81r2)'1f'f [(gd)ge+(gJ)g lexplilKu — £ ggr sinu+Aggr Jdudv + (872

T
s

xf f (sinug:) ™ [(gJ )gr — (gJ)s | sinu exp[i(Ku ~ L sinu+Aggs) 1dudv .

The integral over u is related to Bessel functions of in-
tegral order.® To simplify the notation we define a func-
tion § in terms of a Bessel function and its derivative:

g}?(g&s') =J1((Zss'):F 1'J;((§ss') (Sinusr)-l 3 (2. 14)

(2.13)

[

where
Jelgge) = (Zn)'lf explilKu — £ ¢ sinu) Jdu ,

Jxr(gss') =dJK(§ss')/d§ss'
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T
= (Zﬂi)-lj sinu exp[i(Ku ~ £ g0 sinu) Jdu .
" (2.15)

The integration over « in Eq. (2.13) may not be per-
formed, with the result

I=(4m! f explidgs) [(gN) 5 9 5(E s s)

-

+(gN)g9iltss) v . (2.16)

The integration over v in Eq. (2.16) could be per-
formed in a similar manner if one could separate vari-
ables, for then {gg. would be independent of v. Instead,
since typically gss. is dependent on v, it is convenient
to assume that ¢ ¢g. is sufficiently large that 9*(£4g.) al-
most has its asymptotic form )

8¢(tss) =[2/ 1L g0 sinug, 11/2

X explF i(Kug: — £ 55 sinug. +37) J(large Zgg0)
(2.17)

We then introduce a new function x;(z ¢¢.) via Eq.
(2.18). For sufficiently large £g5: % (£ ¢/) approaches
unity, and for somewhat smaller ¢ g4 it is only weakly
dependent on v:

x;(Css') = (7T§SS' Sinus'/z)llz 3;(§ss')
(2.18)

X expl+ i(Kug, — L ggr Sinug, +57)

The integral in Eq. (2.16) now becomes

r=@n [ (@/ntgs sinug 2 {[(gg KyEs)
N

Semiclassical collision theory

X explilfs. + 3 1)1+ (gsky (Esse) expli(fs -+ m}do .
(2.19)
We next assume that the pre-exponential factor of the
terms in Eq. (2.19) have a sufficiently slowly varying
phase, as a function of v, that they may be mapped onto
a function of the form R+ T sin v along the v curve com-
posed of ug. points. Along the curve S’ in Fig. 1 this
mapping would be

(2/mt g sinug) ¥(g)g K (Lgge) = Rgs + T'ge Sin0

(2.20)
A similar expression may be written along the curve S,
but with (gJ)g., X3 (&ss:), Rs. and Tg. replaced by (gJ)g,
¥x(Lss+), Rs and Ts. The value of R and 7 along each
of these two curves will of course be different. In de-
termining the two values of R and T to be used in the
evaluation of the integral in Eq. (2.19), we must take
care to specify the v dependence of the terms containing
g, A, and gJ. To do this, it is convenient to use the in-
dex numbers of the stationary phase points in Fig. 1. As
an example we use the determination of Rg. and T..
Along the curve S', at the point P, (Fig. 1) v equals vy,
« equals uy, and g, equals £,5. Thus, Eq. (2.20) yields

Rge+ Tso 8invg = (2/7 £ 55 sinug)t % g)g30: (£ 55)
(2.21a)

Similarly, along S’ at the point P, v equals v,, which in
tarn equals - v,, u equals u, and {g¢ equals £,,. Thus,

Rg: = Tgr sinvg = (2/ng y, sinuy) ' ¥(gd) %5 (L1,) -
(2. 21b)
Rg. and Ty, are evaluated from these equations. Sub-
stituting these results into Eq. (2. 20), one finds that on
curve S’

(2/mE g sinug )V 2(gd) s Ky (L ssr) = 5[(2/ T Loy Sinug)'/ 2(gd) gy (o) + (2/TE 14 Sinu) 3 ) K3 (€ 1))
+ (sinv) (28inwy) 1 [(2/ 7L Sinug) ( gd)gXKy (€ 5) — (2/7 Ly, Sinuy)t 2 (gd) o Kx(£10) 1.

Similarly on the curve S one obtains

(2. 22a)

(Z/WZSS: Sinué')uz(gt])sx;((gss') =% [(2/7T§23 Sinus)uz(gJ)z(KE(gzs) + (2/7"§14 Sinu4)1/2(gJ)13€;<(§14)]

+ (81nv) (25in0,) ™ [(2/7 £ 5 Sinug)t 2 g)y K (Cag) = (2/7 Lq4 sinu)Y 2 gd) %5 (2,0)] -

(2. 22b)

We may write fg. and fg in Eq. (2.19) in terms of flu, v) given in Eq. (2.2). The substitution of Egs. (2.22a) and
(2.22b) into Eq. (2.19), integration along the v curves S’ and S, and use of the definition of g3(&;;) identical with that
given forJ; (¢,;) in Eq. (2.14) results in an expression for the integral,

I= % (2/77)1/2 {[GXP(iA.;s +?11' iﬂ)] [(;23 Sinus)-l/z(gJ)sx;((Zga) g;(gw) + (§14 Sinu4)-1/2(gJ)4x1;(§14) 32&43)] i

+ [exp(éA,, - i im ][ (e Smus)-l/z(gJ)le;(Zzs)g;a (£12) + (€44 sinu4)'” ?(gd); %5 (£ 14) 3;(€ 12)]} .

As in Egs. (26)-(31) of Ref. 1(h) it can be shown that

gJ=GlV2ipt/2 (2.24)
where
X0 X = (fu T
e =< x0 yo) F=<_/_uu __uv> . 2. 95
Y,o YyU ’ w fvv ( )

(2.23)

I

Here, X and Y denote f, and f,. x° and y° are the values
of x and y which characterize the initial phase in the
system. From Eq. (2.6) one finds-that

F=tgg:tog sinusinv (2. 26)

at any stationary phase point. Equation (2. 23) may now

be rewritten as'®
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T= (i/2m) [ K€K, (£49) G312 3 005 (£1) K3 (L 43) G312 74 4 53 (L) K7 (€150 G5 2072+ K(e1 )0 (£ G121 ] L (2.27)

Letting the stationary phase contribution from station-
ary phase point P; be denoted by I,, we have!®

I1,=(i/2mG7 2 explif,) , (2.28)
Eq. (2.27) can now be rearranged to yield
1= 1 55 (5103 (£15) + K5 (£29)K5 (E4)
+ IKg (£29)K 5 (L49) + LK (L1 K5 (L4g) (2.29)

The results of Eq. (2.29) can also be converted to a
more symmetrical form, expressed in terms of new
quantities Z,,, ... defined via the equations

Ke(Zys) =%z (Ey) , ete. (definition of ¢,,) (2. 30)
We then have
I= 2 1Ky (€, )% 0,) - (2. 31)
]

j; and j, are the nearest neighbors of j.
tion of »-dimensions is

The generaliza-

1=; 1% (€55 X (E,,) (2. 32)
where K;...K, are the integers appearing in the original
expression for I[K, =K, K,=F in (2.31)]. The prescrip-
tion for using Eq. (2. 32) is as follows: whenever some
fi— f; is positive, that is, disagrees with Eq. (2. 6), the
corresponding K} (¢;;) term is replaced by X (¢,;).

The Bessel result in Ref. 1(i) was shown to include
the Airy result of Ref. 1(c) of this series as a limiting
case. Similarly, the Bessel result in Eq. (2. 32) can
be shown to include the Airy result, Eq. (39), of Ref.
1(h) as a limiting case.!!

Returning to the case » =2, inspection of Eq. (2.29)
[keeping Eq. (2.19) in mind] shows that as all ¢’s be-
come large the integral goes over to the sum of station-
ary phase contributions,

4
=21 .
i=1

In some physical problems we expect that only a partic-
ular pair of £’s will become large. Then from Fig, 1 if
the curves S’ and S are far apart we expect from Eq.
(2.9), £y, and £, to become large. If this occurs, Eq.
(2. 29) becomes

I=L%5(E40) + 13y (1) + 1K (L49) + 1iK5 (L yg)

(2.33)

(2.34)

We shall call this result the Bessel uniform-in-pairs
approximation. A similar situation arises if instead the
curves Q" and of @ are far apart. Then £, and ¢, would

become large and the resulting equation would be of the
same form as Eq. (2. 34).

{Il. UNIFORM APPROXIMATION FOR REAL PLUS
COMPLEX STATIONARY PHASE POINTS

Although the completely uniform approximation, Eq.
(2. 29), was developed for the case of four real station-

. stationary phase points.

r

ary phase points, a similar treatment can be used for
some instances involving four complex valued stationary
phase points. However, this completely uniform result
cannot be used for the case of two real and two complex
The problem lies in the fact
that the assumed model as stated in Egs. (2.1) and (2. 2)
does not allow the construction of # curves or v curves
along which one extremum is at real values of (x, v) while
a second is at a complex value of (u, v). Instead, we
treat this situation in the following more restricted way.

We shall consider the case where the complex and real
points are well separated and apply the Bessel uniform-
in-pairs Eq. (2.34) in complex form. Complex roots of
Eqgs. (2.3a) and (2. 3b) occur if { <k. One solution of

(2. 3a) would be the purely imaginary value vq, =i0,.
However, vq.=2nm+i0,. where n is any positive or nega-

tive integer is also a solution. As ¢ approaches 2 from
above (i.e., from the region ¢ >k), ¥y tends to zero.
Thus, of the roots for v in the region £ <k, only the
one with » =0 applies, by analytical continuation from
the domain of real roots vg.. A similar conclusion ap-
plies to v,. That is, the real part of the complex roots

is to be set equal to zero,
Re(vg) =Relvg.) =0 . (38.1)

The equations for A,y and vg., corresponding to Egs.
{2.8)-(2.8), are found to be

Agor =3 (for+fo) 3.2)
kgl ~tanhod)) =% (fo - fo) , (3.3)
where
vgr=Im(vg) ;
£ is given by
¢ =k/coshvy/ . (3.4)

In this case of complex roots fy equals to complex con-
jugate of f,, f&, and causes the rhs of Eq. (3.2) to be
imaginary. Writing Eq. (3. 3) in a different form

ik cosh™(k/t) = i(k? - ¢V 2=% (fo - fo) (3.5)

we can see that the rhs of Eq. (3.5) has as its range the
positive imaginary axis. Therefore,

Im(fg.) >0 and Im(fg) <0 . (3.6)

IV. SYMMETRY-INCREASED NUMBER OF
STATIONARY PHASE POINTS

If, because of symmetry, there are more than four
stationary phase points in the (27)* area of integration in
Eq. (1.1), the above formalism can be extended to cover
this case. As a simple example we consider first the
one-dimensional integral

1= f " ) explif(x) ] dx . @.1)

When the following periodicity conditions hold
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flx+20/N)=f(x)+27M , 4.2)
glx+2m/N)=g(x) , (4.3)

where N and M are integers, Eq. (3.1) becomes

v/
I=N f " gtx) explifn) [ dx . 4. 4)
-/ N

If one next maps f(x) onto a function of a new variable,
%, in a 27/N interval,

flx)=7@) =K - ¢ sin(Vi) + A, _N’I <x<11v, ‘ﬁﬂ<’7<fv1z
(4.5)

and makes the additional change of variable u =Nu, one
obtains

. _
I=Nf glu) J exp i%u-—gsimwA) du ; (4.6)
-7

where F(u) equals g(x) and where J is the Jacobian of the
transformation from x to . The uniform approximation
method is then applied to Eq. (4.6). Thus, to use the
Bessel uniform approximation method for this case, the
K in Egs. (2.1)-(2.29) is replaced, one sees from Eq.
(4.6), by K/N. This latter number is still an integer in
the problems considered in the next paper, because se-
lection rules cause K to be a multiple of N. Similar re-
marks apply to the multidimensional integral in Eqgs.
(1.1) and (1. 2).
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