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A multidimensional Bessel uniform approximation for the semiclassical S matrix is derived for the 
case of four real stationary phase points. A formula is also developed for the particular case when 
four stationary phase points may be considered to be well separated in pairs. The latter equation is 
then used in the treatment of two real and two complex stationary phase points. 

I. INTRODUCTION 

The following integral arises in the semiclassical 
treatmentl - 5 of inelastic collisions: 

I = (21Ttr I: ... L' g (x) exp[if(x)] dx1• •• dX r • (1. 1) 

Here, x(x1 ••• , x T ) denotes the certain "reduced" phases 
(related to coordinates in the "action-angle" variables) 
of the colliding species. 

When the integral in Eq. (1.1) is evaluated by a sim-
ple stationary phase method one obtains the primitive 
semiclassical (PSC) expression for the value of I. When 
the integral is evaluated by mapping the exponent f(x) 
onto a cubic function, 10 and the integration limits of 
(- 1T, 1T) are replaced by (- 00, 00), an Airy uniform ap-
proximation of I is obtained. Quantum mechanically it 
is more accurate than the PSC value. However, when 
j(x) varies very slowly with x, large portions of the x 
domain contribute to the integral, and approximations 
such as replacing the interval (- 1T, 1T) by (- 00,00) break 
down, and with it, the Airy uniform approximation. 11 

For this reason Stine and one of us introduced a more 
accurate mapping which preserves the desired periodic-
ity properties of the (- 1T, 1T) interval1l : f(x) was mapped 
onto a sinusoidal plus linear function, yielding a Bessel 
uniform approximation. Unlike the Airy the Bessel uni-
form approximation does not break down whenf(x) is 
slowly varying,lI and so is more general and includes 
the Airy as a special case. To be sure, it, too, is ex-
pected to have its limitations for sufficiently unusual j(x) 
and g(x) in Eq. (1.1). 

An Airy uniform approximation to Eq. (1.1) has been 
given for r equal to one, 10.2b two, lh.20.S and more than 
two, lh.S while the Bessel function uniform approximation 
has been given for r equal to one. 11 In the present paper, 
a Bessel uniform approximation is developed for r;::,: 2. 
Initially, the prototype, a two-dimensional integral (1. 2) 
is treated. The argument is then generalized to higher 
dimensions: 

1= (21T)"2 f: I: g(x,y) exp[if(x,y)]dxdy . (1. 2) 

Perhaps it would be useful to note first that the inte-
gral (1. 1) can be reduced in some applications to a one-
dimensional integral (then circumventing the present 
derivation), but in other cases, it cannot: The integral 
I yields the probability amplitude for a transition from 

some initial quantum state of a colliding pair of mole-
cules, defined by quantum numbers (nil' . " nr ), to some 
final state (mil' .• ,m,.). If one is interested only in the 
transition of ni , say, i. e., in n i - mil one can first av-
erage the transition probability over the ensemble dis-
tribution of (n2, ••• ,nr ) appropriate to the experiment. 
If, further, many final quantum states (m2 , ••• , mr) are 
a.ccessible for each of the m;'s, one can integrate over 
(m2, •• " mr) using "partial averaging." 2h A one-dimen-
sional integral remains and is treated by available 
(stationary phase, integral or uniform) methods. When 
instead, only a few final quantum states for some of the 
m 2, ••• , my degrees of freedom are accessible, or when 
one is measuring a particular simultaneous transition 
(ni , ••• , ns)- (m i , .•. , m s), with 1 <s a two or more 
dimensional integral over dx1 • •• dx s remains and the 
present formulation of a multidimensional Bessel uni-
form approximation or Bessel uniform-in-pairs approx-
imation can be applied. 

II. BESSEL UNIFORM APPROXIMATION 
In developing a Bessel uniform approximation to the 

integral given in Eq. (1. 2), we shall use a procedure 
analogous to that developed in a previous paper in this 
series. ih First, a one-to-one mapping (x, y) - (u, v) is 
performed, to convert j(x, y) to the form of Eqs. (2.1) 
and (2.2). The functionj(x, y) in Eq. (1. 2) is mapped 
onto a family of curves in the u direction by6 

j(x,y)=Ku-,sinu+A=f(u,v). (2.1) 
This family of curves are referred to as u-curves, and 
a few members of the family are shown schematically 
in Fig. 1. 7 In Eq. (2.1) K is an integer, dictated by the 
physical problem, and is the same for all members of 
the family of u curves. ,and A are constant along any 
member of the family, but may dijfer from member to 
member. These "constants" thus can depend on both u 
and v. 

Similarly, curves designated as v curves in Fig. 1 
are chosen such that 

f(x,y)=kv-,sinv+A=j'(u,v) , (2.2) 

where k is an integer constant dependent on the physical 
problem and , and A are constants on a particular v 
curve, and dependent on both u and v. The A and, in 
Eq. (2.2) differ from the ones in Eq. (2.1). 

The, and A in Eqs. (2.1) and (2.2) are related to the 
properties of the extrema of f on the u and v curves as 
follows: These extrema are defined as the points at 
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FIG.!. A schematic representation of u curves and v curves. 
The stationary phase points Pl and P3 are the maximum and 
minimum respectively, and P 2 and P4 are saddle points. The 
curves 8 and 81 are respectively the locus of maximum and 
minimum on u curves. The curves Q and Ql are respectively 
the locus of maximum and minimum on v curves. 

which dl/du (dl/dv) vanish along a u curve (v curve). 
On any u curve these points are determined from Eq. 
(2. 1) by 

K -t cosu=O 

and on any v curve by 

k -I:: cosv =0 . 

(2.3a) 

(2.3b) 

Of the infinite number of roots of Eqs. (2.3a) and (2.3b) 
we shall select those, denoted by us, us' and vo, vo', 
which lie in the interval (- rr, rr). They have the property 
that 

(2.4) 

We can further classify these roots by the behavior of 
d9/du2 and d21/dv2 on their respective curves. From 
Eqs. (2.3a) and (2.3b) 

d 2J/ du2 = I:: sinu 

and 

d 21/ dv2 = I:: sinv . (2.5) 

We shall distinguish Us from us' and Vo from vo' by the 
conditions: 

I:: sinus < 0, I:: sinus, > 0 

t sinv 0 < 0, t sinv 0' > 0 . 
(2.6) 

This identification specifies that Us and Vo are maxima, 
and us' and vo. are minima. 8 If either of the derivatives 

in Eq. (2.5) equals zero then the roots have coalesced 
to form an inflection point. Figure 1 shows schemati-
cally the curve, labeled by S of all points us. Similarly 
those labeled by S', Q', and Q, from the loci of the 
points us', vo. and vo, respectively. The points Pl , P2, 

P3, and P 4 at the pairwise intersections of these four 
curves correspond to the four pOints of stationary phase 
of f(x, y}. Using the definition in Eqs. (2.5) and (2.6), it 
is seen that PI and P 3 are, respectively, a maximum 
and minimum, and that P2 and P 4 are saddle points. 

At any pair of points Us and us' which satisfy Eq. 
(2.3a) the value of I:: and A can be obtained by substitu-
tion into Eq. (2.1). Then 

Ass' =% Us-+fs} , 

K(us ' -tanus'} =% Us' -fs} . 

(2.7a) 

(2.7b) 

Because f s ' - fs is negative by definition, then when 
K < 0 the solution us' of (2.7b) must lie, one can Show, 
in the (- h, 0) interval. When K> 0, it lies in the (0, h) 
interval. That is, 

-h<us'<o (K<O) , o<us.<h (K>O). (2.8) 

With this restriction the I:: are now determined from 

I:: ss ' =K/cosu s' (K* 0) • (2.9a) 

When K=O, Ass' is given by Eq. (2.7a), and instead of 
Eqs. (2. 7b) and (2.8), we have 

(2.9b) 

In terms of u and v Eq. (1. 2) becomes 

1= (4rr2)"1 J: i:(gJ}ss' exp[i(Ku -I:: ss ' sinu+Ass·}]dudv , 

(2.10) 
where J(x, y; u, v) is the Jacobian of the transformation 
from x, y to u, v. The function gJ is different for each 
member SS' of the family of u curves. Consequently it 
is subscripted sst. We assume that on any u curve SS' 
(gJ)ss' may be written as 

(gJ}ss' =r+ tsinu . (2.11) 

Each u curve has its characteristic value of r and of t, 
and these values for a given u curve are determined 
from the value of gJ at Us and US" (gJ)s and (gJ)s" 
respectively. From Eq. (2.11) one finds 

r =% [(gJ}s' + (gJ}s ] ; (2.12) 
t = (2 sinus.)"1 [(gJ) s. - (gJ) s ] . 

Substituting Eqs. (2.11) and (2.12) into Eq. (2.10) 
yields 

f 7 • 1= (8rr2)"1 oF L [(gJ)s' + (gJ)s] exp[i(Ku -I::ss ' sinu+Ass' ]dudv + (8rr2r l 

x f·i· (sinu s·)"l[(gJ)s·-(gJ)s]sinu exp[i(Ku-tss·sinu+Ass·)]dudv. 
.. ,. "I' 

The integral over u is related to Bessel functions of in-
tegral order. 9 To Simplify the notation we define a func-
tion c\J in terms of a Bessel function and its derivative: 

(2.14) 

where 

JK(I:: SS ') = (2rrt1 I: exp[i(Ku-l:: ss ' sinu) ]du , 

J;(l:: ss') =dJK(tss·)/dl::ss· 
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= (21Ti)"l 1.r sinu exp[ i(Ku - I; s s' sinu) 1 du . 
(2.15) 

The integration over u in Eq. (2.13) may not be per-
formed, with the result 

1= (41Tt l r exp(iAss ') 
-r 

(2. 16) 

The integration over v in Eq. (2.16) could be per-
formed in a similar manner if one could separate vari-
ables, for then I; s s' would be independent of v. Instead, 
since typically I; s s' is dependent on v, it is convenient 
to assume that I;ss' is sufficiently large that al-
most has its asymptotic form 

[2/1Tl;ss' sinus' p/2 

X exp[:fi(Kus' - I; ss' sinus' +{n) ] (large I; ss') 
(2.17) 

We then introduce a new function X; (I; ss') via Eq. 
(2.18). For sufficiently large I; ss' x;(1; ss') approaches 
unity, and for somewhat smaller I; ss' it is only weakly 
dependent on v: 

(2.18) 

The integral in Eq. (2.16) now becomes 

X exp[i(js' + inll + exp[i(js - in)]} dv . 
(2.19) 

We next assume that the pre-exponential factor of the 
terms in Eq. (2.19) have a suffiCiently slowly varying 
phase, as a function of v, that they may be mapped onto 
a function of the form R + T sin v along the 11 curve com-
posed of us' points. Along the curve 5' in Fig. 1 this 
mapping would be 

(2.20) 
A similar expression may be written along the curve 5, 
put with (gJ)s" Rs' and Ts' replaced by (gJ)s', 

Rs and Ts' The value of Rand T along each 
of these two curves will of course be different. In de-
termining the two values of Rand T to be used in the 
evaluation of the integral in Eq. (2.19), we must take 
care to specify the v dependence of the terms containing 
1;, A, and gJ. To do this, it is convenient to use the in-
dex numbers of the stationary phase points in Fig. 1. As 
an example we use the determination of Rs' and T s •. 
Along the curve 5', at the point P3 (Fig. 1) v equals v3, 

u equals u3, and I;ss' equals 1;23' Thus, Eq. (2.20) yields 

Rs' + Ts' sinv3 = (2/1T1;23 sinu3)1I2(gJ)3X;(1;23) • 
(2. 21a) 

Similarly, along 5' at the point P 4 v equals v4 , which in 
tlrn equals - v 3, u equals u4 and I;s s' equals 1;14' ThUS, 

(2. 21b) 
Rs' and Ts' are evaluated from these equations. Sub-
stituting these results into Eq. (2.20), one finds that on 
curve 5' 

(2/1T I; S s' sinus· )1/2(gJ) s s·) = H(2/ 1T 1;23 sinu3)1/2(gJ)aXj,.(1;23) + (2/1T I: 14 

+ (sinv) (2sinv3)-1 [(2/ 1T 1;23 sinu3)11 23) - (2/1T 1;14 sinu4)1/2 (gJ)4xi(I;14) 1. 
(2. 22a) 

Similarly on the curve S one obtains 

(2/1T I; S s' )1/2(gJ) sX;(1; ss') = t [(2/1T 1;23 sinu3)1/2(gJ)2X;(b) + (2/1T 1;14 1 
+ (sinv)(2sinv2)"1 [(2/1T I;z3 sinu3)I/Z(gJ)3X;(l;z3) - (2/ 1T 1;14 sinu4)1/2(gJ)IX;(I;14)] . 

(2. 22b) 

We may write is. and is in Eq. (2.19) in terms of flu, v) given in Eq. (2.2). The substitution of Eqs. (2. 22a) and 
(2. 22b) into Eq. (2.19), integration along the v curves S' and 5, and use of the definition of identical with that 
given (tl') in Eq. (2.14) results in an expression for the integral, 

1= t (2/1T)I/Z {[exp(iA4s + t i1T)] [(1;23 sinus)"1 I 2(gJ)SXK(tZ3 ) + (1;14 sinu4tl/2(gJ)4X;(1;14) 4S)] 

As in Eqs. (26)-(31) of Ref. 1(h) it can be shown that 

gJ=C-1/2 r l2 , 

where 

(2.24) 

(2.25) 

(2.23) 

Here, X and Y denote f. and i y ' XO and yO are the values 
of x and y which characterize the initial phase in the 
system. From Eq. (2.6) one finds that 

F= I; ss' I;QQ' sinu sinv (2.26) 

at any stationary phase point. Equation (2. 23) may now 
be rewritten aslO 

J. Chern. Phys., Vol. 61, No. 11, 1 December 1974 

Downloaded 16 Feb 2012 to 131.215.21.63. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



Kreek, Ellis, and Marcus: Semiclassical collision theory 4543 

I ( ./ )[ -( ) - ( )C-1t2 if ""- (s- )""+( )C-1t2 il4 ",,+ (s- )""-(s- )C-1t2 if2 JC+(s- )",,+(s- )C-1t2 1ft] = 7. 21T X K 623 JC k 643 3 e 3+..n.k b14..n.K 643 4 e +..n.K b23 "'k b12 2 e + K b14 ""k b12 1 e . (2.27) 

Letting the stationary phase contribution from station-
ary phase point Pi be denoted by Ii' we have1b 

I j = (i/21T)Cj1t2 exp(ifj ) , (2.28) 

Eq. (2.27) can now be rearranged to yield 

1= I 1x;(t14 )X; (1;12) + I 2X;(623)X; (612) 

(2.29) 

The results of Eq. (2.29) can also be converted to a 
more symmetrical form, expressed in terms of new 
quantities 621, ••• defined via the equations 

X;(612) ;: X;(621) , etc. (definition of 621) 

We then have 

. 
j 

(2.30) 

(2.31) 

jl and j2 are the nearest neighbors of j. The generaliza-
tion of r-dimensions is 

(2.32) 

where Kl •.. Ky are the integers appearing in the original 
expression for I[Kl = K, K2 = kin (2.31)]. The prescrip-
tion for using Eq. (2.32) is as follows: whenever some 
fi - f1 is positive, that is, disagrees with Eq. (2. 6), the 
corresponding term is replaced by Xi)tji)' 

The Bessel result in Ref. 1(i) was shown to include 
the Airy result of Ref. 1(c) of this series as a limiting 
case. Similarly, the Bessel result in Eq. (2.32) can 
be shown to include the Airy result, Eq. (39), of Ref. 
1(h) as a limiting case. 11 

Returning to the case r = 2, inspection of Eq. (2.29) 
[keeping Eq. (2.19) in mind] shows that as all 6'S be-
come large the integral goes over to the sum of station-
ary phase contributions, 

4 

I=L: Ii . (2.33) 
i=1 

In some physical problems we expect that only a partic-
ular pair of t's will become large. Then from Fig. 1 if 
the curves S' and S are far apart we expect from Eq. 
(2.9), 1:14 and 623 to become large. If this occurs, Eq. 
(2.29) becomes 

(2.34) 

We shall call this result the Bessel uniform-in-pairs 
approximation. A similar situation arises if instead the 
curves Q' and of Q are far apart. Then 612 and 643 would 
become large and the resulting equation would be of the 
same form as Eq. (2.34). 

III. UNIFORM APPROXIMATION FOR REAL PLUS 
COMPLEX STATIONARY PHASE POINTS 

Although the completely uniform apprOXimation, Eq. 
(2.29), was developed for the case of four real station-

ary phase points, a similar treatment can be used for 
some instances involving four complex valued stationary 
phase points. However, this completely uniform result 
cannot be used for the case of two real and two complex 
stationary phase points. The problem lies in the fact 
that the assumed model as stated in Eqs. (2.1) and (2.2) 
does not allow the construction of u curves or v curves 
along which one extremum is at real values of (u, v) while 
a second is at a complex value of (u, v). Instead, we 
treat this situation in the following more restricted way. 

We shall consider the case where the complex and real 
points are well separated and apply the Bessel uniform-
in-pairs Eq. (2. 34) in complex form. Complex roots of 
Eqs. (2.3a) and (2.3b) occur if 6 <k. One solution of 
(2,3a) would be the purely imaginary value vQ' =ivQ' 
However, v Q' =2n1T+ivQ' where n is any positive or nega-
tive integer is also a solution. As 6 approaches k from 
above (i. e., from the region t >k), vQ' tends to zero. 
Thus, of the roots for v Q' in the region t < k, only the 
one with n = 0 applies, by analytical continuation from 
the domain of real roots vQ" A similar conclusion ap-
plies to v Q • That is, the real part of the complex roots 
is to be set equal to zero, 

(3.1) 

The equations for A QQ , and v Q" corresponding to Eqs. 
(2.6)- (2.8), are found to be 

A QQ, =t UQ, +fQ) , 

=t UQ, - f Q) , 

where 

1: is given by 

1: • 

(3.2) 

(3.3) 

(3.4) 

In this case of complex roots f Q, equals to complex con-
jugate of f Q , and causes the rhs of Eq. (3.2) to be 
imaginary. Writing Eq. (3. 3) in a different form 

ik cosh-1(k/t) - i(k2 - t2)1t2 = t UQ, - f Q) , (3.5) 

we can see that the rhs of Eq. (3.5) has as its range the 
positive imaginary axis. Therefore, 

IV. SYMMETRY-INCREASED NUMBER OF 
STATIONARY PHASE POINTS 

(3.6) 

If, because of symmetry, there are more than four 
stationary phase points in the (21T)2 area of integration in 
Eq. (1.1), the above formalism can be extended to cover 
this case. As a simple example we consider first the 
one-dimensional integral 

1= j' g(x)exp[if(x)]dx • -, (4.1) 

When the following periodicity conditions hold 
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j(x + 2rr/N) = j(x) + 2rrM , 

g(x+ 2rr/N) =g(x) , 

(4.2) 

(4.3) 

where Nand M are integers, Eq. (3. 1) becomes 

J'IN 
I=N g(x)exp[ij(x)]dx. 

-. I N 
(4.4) 

If one next maps j(x) onto a function of a new variable, 
U, in a 2rr/N interval, 

j(x) '" l(u) =Ku - i; sin(Nu) +A, 
rr _ rr 

-}j<u< }j 
(4.5) 

and makes the additional change of variable u = Nu, one 
obtains 

I=N jrg(u) Jexp du; (4.6) 
-r 

where g(u) equals g(x) and where J is the Jacobian of the 
transformation from x to u. The uniform approximation 
method is then applied to Eq. (4.6), Thus, to use the 
Bessel uniform approximation method for this case, the 
Kin Eqs. (2,1)-(2.29) is replaced, one sees from Eq. 
(4.6), by K/N. This latter number is still an integer in 
the problems considered in the next paper, because se-
lection rules cause K to be a multiple of N. Similar re-
marks apply to the multidimensional integral in Eqs. 
(1.1) and (1. 2). 
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