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The activated-complex theory of chemical reactions has proved to be very
useful in interpreting rate data on a wide variety of chemical reactions. The
topics so treated include preexponential factors of bimolecular gas-phase
reactions, preexponential factors at high pressures of unimolecular reactions,
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14 ACTIVATED-COMPLEX THEORY

salt and polar solvent effects on bimolecular-reaction rates, and recombina-
tion rates of radicals under certain conditions. In conjunction with additional
concepts, the theory has also found extensive use in such subjects as pressure
effects on unimolecular reactions (so-called RRKM theory), chemical
activation, and electron-transfer reactions both in solution and at electrodes.

In the present chapter the assumptions and several derivations of the
theory are considered. Some of the recent tests of activated-complex theory
that are based on the numerical solution of the dynamical equations of
motion of the reactants are summarized. Topics such as the “free-energy-
maximization criterion” for the position of the activated complex are also
considered. Several of the applications of activated-complex theory are
treated, and some dynamical extensions of it are noted.

Some of the work described in the present chapter is drawn from the
writer’s published studies, but the material in Sections 3 and S on an en-
semble derivation for reactions in solution and on a basis for the usual
free-energy-maximization criterion for location of the activated complex is
drawn from unpublished work.

1 ASSUMPTIONS AND DERIVATION

Assumptions

In typical applications of activated-complex theory to a system, attention
is focused on one or more molecules that may be in the process of reacting.
The influence of any surrounding molecules or ions in the liquid or gas is
frequently also included in the treatment, via solvation terms. In a system
having N coordinates, say, one attempts to define a set of configurations
occupying N — 1 dimensions. This set, termed a hypersurface, separates two
parts of the space and is chosen (as much as possible) so that once the system
has crossed this hypersurface, only the products can result. All the con-
figurations belonging to the hypersurface are called the activated complex.

To demonstrate what is involved in the definition of this hypersurface in
a little more detail, we consider an example of a reaction

AB + C— A + BC 2.1)

in which all three particles lie along a straight line. The number of coordinates
N needed to describe the relative distances is two. They can be chosen to be
the AB distance and the distance between C and the center of mass of AB.
The curves of constant potential energy are indicated on the usual skewed
plot of Fig. 2.1, where the coordinates are mass-weighted values of the above
two coordinates, as discussed later.

A single point on this plot represents the values of the two coordinates,
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Fig. 2.1 Potential energy contours for reaction (2.1), plotted as a function of mass-weighted
coordinates r ;5 and r 5 ¢ (cf. €q. 2.14). The dotted line denotes the activated complex.

and the motion of that point represents the dynamical behavior of the system.
Stable configurations of reactants are in the valley in the lower right-hand
valley of the figure, and those of the products lie in the upper left-hand
valley. The configurations that constitute the activated complex occupy
N — 1 dimensions (i.e., one dimension on the figure) and are represented
by the dotted line in the figure. The dotted line is seen to separate the
reactants’ region from the products’ one, and the motion away from the
dotted line is downhill, on either side of the line.
The assumptions of activated-complex theory are the following:

1. A set of configurations, the (N — 1)-dimensional hypersurface in an
N-dimensional coordinate space, can be defined as having the property that
a system that has crossed it has thereby reacted.

2. There is an equilibrium between reactants and systems crossing the
surface in the forward direction. Such an equilibrium, which does not involve
equilibrium between reactants and systems crossing in the reverse direction,
has been termed a quasi equilibrium.
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3. In a quantum-mechanical treatment it is meaningful to speak of energy
levels E; of the activated complex.

4. When quantum-mechanical effects are important in the rate of crossing
of the surface (e.g., in tunneling), one usually assumes that the motion across
the surface can be treated as a rectilinear motion and the relevant quantum
mechanics for rectilinear tunneling can be applied.

Derivation

With these assumptions one can derive the customary activated-complex-
theory expression as follows [1]: In activated-complex theory one first
calculates a probability density for finding the system in a given quantum
state n and per unit length along the direction perpendicular to the (N — 1)-
dimensional hypersurface of configurations of the activated complex.* One
then multiplies the above by the appropriate velocity and sums over all
quantum states n of the activated complex. We first derive an expression for
the rate constant of a gas reaction in a given volume V and temperature T.
The effect of tunneling is first neglected.

We denote by s the coordinate perpendicular to this (N — 1)-dimensional
hypersurface and denote by p; the corresponding momentum. The value of
s on the hypersurface is denoted by s*. The probability of finding the system
in a phase-space-volume element ds dp; and at the same time finding the
system in a quantum state n of the activated complex is denoted by p* ds dp,.

The latter is equal to
. ds dp, e BT
ptdsdp, = — 0 (2.2)
since ds dp,/h is the number of translational quantum states in ds dp,. Here,
Q is the partition function for the reactants at a given temperature and

volume. E is the total energy and can be written near st as

2
E = Efs) + (-’1“—) + Vi), 2.3)

where E,(s) is the energy of all degrees of freedom of the system on a hyper-
surface at any s (other than the s-coordinate), p,2/2u is the kinetic energy
along the reaction coordinate at that s, p is the effective mass for motion
along that coordinate, and V(s) is the minimum potential energy on the
hypersurface at this s. To discuss the crossing of the hypersurface at s = s,
the E,(s) and V;(s) will be replaced by their values E}and V}ats*,and p}/2u
will indicate the value of the s-kinetic energy at s*.

* For a system with N degrees of freedom, the Nth of which is the reaction coordinate, the
quantum number n denotes a quantum number for each degree of freedom: that is, it denotes
(Nys .. sNN=1)
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When (2.2) is divided by ds, a probability per unit length is obtained, and
when this result is multiplied by $, the velocity along the reaction coordinate,
the contribution of the specified quantum states to the reaction rate is
calculated. Upon integration over all values of p, in the positive direction—
that is, from 0 to co—and summation over all quantum states n of the acti-
vated complex, an expression for the rate constant of the reaction k, is then

obtained:
® 5 dp, —(E} + (0220 + V3)
k, = - . .
Since § equals p,/u, § dp, equals d(p,*/2u) and integration of (2.4) then leads to
_ kT Q' —vigr — kKT _aatpr
k,—th = -e . (2.5)

AA* is the (Helmholtz) free energy of activation and Q° is the partition
function of all degrees of freedom of the activated complex apart from that
of the s-motion:

: —E; : o ;

' = =1, AA* = —kT1 Vi. 2.6

The activation energy E, of the reaction readily follows from (2.5) by
differentiating In k, with respect to 1/kT:

—dInk,
Ea = STy -

Insertion of (2.5) into (2.7) yields terms —0 In Q*/6(1/kT) and —0In Q/
d(1/kT), denoted by (E}) and (E,>, which are the average energies of the
activated complex, apart from that of the s-motion, and of the reactants,
respectively. The kT term in the preexponential factor of (2.5) contributes
another kT to the activation energy. Thus,

E, = kT + Vi + (E}> — (E» (arbitrary T). (2.8)

When the temperature is sufficiently low that all species are essentially in
their lowest quantum state of energy E, (reactants) or E§ + Vi (activated
complex), (E:> and <E,) become the energies in the lowest states of the
activated complex and reactants, respectively. One then obtains

E, =V} + E} — E, (T = 0°K). (2.9)

@2.7)

Extension of Concepts

In the previous section we were mainly concerned with the crossing of a
hypersurface at s = s*, an s* that was independent of n, the quantum state
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of activated complex. To treat systems where s* depends on n or where
quantum-mechanical tunneling occurs through a wide barrier or where a
free-energy criterion is considered (see Section 5), it is desirable to extend
some of the concepts of the previous section.

The two-dimensional system in Fig. 2.1, will serve for purposes of illus-
tration. One may imagine that curvilinear reaction-coordinate curves have
been introduced (curves on which the vibrational coordinate is constant).
One example of such curves is illustrated by a family of curves in Fig. 2.2,
of which L, I, and [’ are members. Hypersurfaces (one-dimensional in the
present figure) of constant s are illustrated by the dotted lines.

Curve L itself passes along the floor of the valley of the reactants in the
lower right of Fig. 2.2, over the saddle-point, and then down to the floor of
the products in the upper left of Fig. 2.2 (L is thereby the curve of lowest
potential energy V leading from reactants to products). Along L, V has a

l-"
L

Ll

Tap.c

Tuc

Fig. 2.2 llustration of hypersurfaces at different values of s (the dotted lines normal to L-
curves) and of reaction coordinate curves L, L, 1> differing in value of the vibrational coordinate
(rin Fig. 2.6).
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Vi (s) + Enf(s)

s

Fig. 2.3 Plot of effective potential energy V,(s) + E,s), for two states n, along the reaction
coordinate, and plot of ¥,(s)

value V,(s), the minimum value of ¥ on any hypersurface at a given s [cf. (2.3)].

Classically the point representing the reacting system would oscillate in
the reactants’ valley and at the same time move from this valley, in which the
reactants are far apart, over the dotted line occupying a saddle-point region,
and into a valley in which the products are far apart.

If we now use (2.3) for all values of s (a point commented on later), E,(s)
is the energy, kinetic plus potential, the potential measured relative to that
on L, for motion on the hypersurface. In this example of Figs. 2.1and 2.2,
E,(s) is the usual vibrational energy. A plot of the potential energy V along
curve L, that is, V,(s)—for a surface somewhat less symmetrical than that
given in Figs. 2.1 and 2.2—is given in Fig. 2.3, together with a plot [2] of
E(s) + Vi(s) for some n.

Activated Complexes Whose Position Is State-Dependent

Apart from a quantum-mechanical treatment of the s-motion, (2.5)+2.9)
do not include the possibility, which is sometimes important, that s*, the
position of the (N — 1)-dimensional hypersurface, may depend upon the
quantum state n of the activated complex [2, 3]. Specifically, the maximum
of E,(s) + V,(s) can depend on n as in Fig. 2.3. A simple example of this
dependence occurs when part of the barrier to a bimolecular reaction arises
from a centrifugal potential of the colliding molecules [4]. The orbital
angular-momentum quantum number [ then contributes to ».

For the case where s* depends on n, and so is denoted by s;, (2.4) is still
valid, except that E! and V} are the values at the maximum of E/(s) + Vi(s)
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(i.e., at s = s;). For each n, the integration of (2.4) over p, is performed at
that si. As before, § dp, equals d(p,2/2u) and one ultimately obtains

kT/h)Q:
k, <= *T/MQer (2.10)
1Y)
where
t —(E} + Vi)
Qs = g,exP [—"——kT ] (2.11)
and
E} + Vi = Eis)) + Vi(s). (2.12)

Equations (2.10)—(2.12) include as a special case the treatment of many years
ago of recombination of free radicals [4, 5], in which centrifugal potential
and van der Waals’ attraction were assumed to dominate the interactions.
Steric effects were omitted in the latter. They are normally small in the
specific instance of free-radical recombinations but can be present in other
systems. They contribute to E,(s) and so are automatically included in (2.11).

Tunneling Contribution

In discussing the classical s-motion across a hypersurface in the interval
(s*, s* + ds), the s-motion can be treated as rectilinear. In a quantum-
mechanical treatment of the s-motion, a rectilinear coordinate can be used
for sufficiently small degrees of tunneling, since only regions close to the
usual saddle-point in the potential-energy surface in Fig. 2.1 would then
contribute to k,. With larger amounts of tunneling, the curvilinear nature
of the s-motion should be considered, as one sees from Fig. 2.2.

It is useful to recall a definition of the skewed axes and of an effective mass
ut, by examining the definition of the coordinates, for example, for the reaction

AB + C— A + BC. (2.13)

We illustrate the origin of this u by considering for simplicity the case of A,
B, and C as being on a line, but the same definition of u applies in the actual
full three-dimensional system [6]. Of the resulting three coordinates, the
position of the center of mass of the three atoms can be chosen as one co-
ordinate. It can be omitted from the present discussion of rate constants,
since it does not affect the interactions and, hence, does not affect the reaction
rate. The two remaining coordinates can be taken to be the AB distance,
R,, and the distance between C and the center of mass of AB, Rpp c. With
such a choice the kinetic energy for these two degrees of freedom contains
no cross-terms [4].

One further frequently introduces mass-weighted coordinates [4]. Then,
the motion in this two-coordinate system can be represented by a single
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point moving in Fig. 2.1 with a single effective mass u [4, 6]. The new co-
ordinates are denoted by r,5 and r,p ¢, respectively.  could be chosen equal
to unity, affecting thereby the scaling factor in r,p and 5 ¢.

When discussing the motion of the reaction products it is convenient to
introduce mass-weighted coordinates r, pc and rgc, which are linear com-
binations of the two previously introduced coordinates and which also con-
tain no cross terms in their kinetic energy [4]. They are indicated in Fig. 2.1.

The kinetic energy of the system thereby equals

T = 3u(Fap® + isc) = Sutac’ + f'i_nc)o (2.14)

One set of coordinates is obtained from the other set by rotation through
an angle 6 in Fig. 2.1, where [4]

sin 6 = [( Ml )]1/2. (2.15)

m, + mg)(mc + my

To consider tunneling, now, it will be assumed that the motion along a
reaction coordinate s can, in the activated-complex region, be separated
from the remaining motions and that a rectilinear expression for the kinetic
energy of the reaction coordinate s can be used. That is, curvilinearity of the
s-coordinate curves is neglected in the usual treatment. After this ““adiabatic
separation of variables™ of the internal motion at each s to obtain E(s),
one then solves the separated wave equation of the s-motion in the vicinity
of the potential-energy maximum:

h? d*
[_5;_129—2 + Vi(s) + E,,(s)]‘PE,,(s) = EWg,(s). (2.16)

The effective barrier for the tunneling, V;(s) + E,(s), is depicted for some n
in Fig. 2.4.

Since the tunneling is through a V;(s) + E,(s) barrier, rather than through
the V,(s) barrier along L, the system actually tunnels along the entire family
of L curves in Fig. 2.2. The contribution from each L curve is weighted in a
subtle way [by the contribution of the vibrational wave function to E,(s)].

Solution of (2.16) yields the probability «(E, n) that the system crosses the
activated-complex region. The energy for the remaining degrees of freedom
has some value E! in the activated-complex region. The arguments leading
from (2.3) to (2.5) can again be used, in a somewhat modified manner, but
now including tunneling.

The probability of finding the system in a phase-space-volume element
ds dp, at some specified s near to, but to the left of, point a in Fig. 2.4, and
at the same time of finding the system in a quantum state n for the remaining
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Vi(s) + Ep(s)

s

Fig. 2.4 Plot of the effective potential energy V\(s) + E,(s) versus reaction coordinate. Points
a and b are “turning-points” (i.e., points where the classical momentum p; vanishes).

degrees of freedom, is p ds dp,:

ds dp, exp {— [E,(s) + Vi(s) + (,°/2m)]/kT}
h Q

(s < a),

(2.17)

recalling (2.3). After dividing by ds, one obtains the probability per unit
length at the given s. When this result is multiplied by 3, the velocity along
the reaction coordinate at that s, the probability flux of systems incident on
the reaction barrier is obtained. Of this incident flux, only a fraction «(E, n)
passes into the products’ region. Upon multiplying the above expression by
k(E, n), integrating over all positive values of p,, and summing over all
quantum states n of the activated complex, an expression is obtained for the
rate constant k,:

p dsdp, =

k=Y j K(E, n) exp {—[E9) + Vi(s) + (0,>/2W)/kT} s,,‘g". (2.18)

Since E(s) + Vi(s) + (p,2/2u) is E and § dp, is dE, one obtains [3]

kT dE/kT
k, = —| x(E, n)e” BT ———_
h Je 0
When the dependence of E,(s) on s in the vicinity of s* is negligible, and
written as E:, then x(E, n) depends on E and n only via E — E}. Denoting
the latter by € + Vi, ¢ equals E — E} — Vi and so is the “translational

(2.19)
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energy” at s*. Equation (2.19) can be written as

kT . de QF —vi
k. = — e/kT ___ 1
. p fx(e)e T 0 exp ( T ) (2.20)

When there is no tunneling, k() in (2.20) is zero when ¢ is negative and
equals unity when e is positive. In this case the integral over ¢ becomes unity
and (2.20) reduces to (2.5). Similarly, (2.19) can be shown to reduce to (2.10)
in the absence of tunneling.

A semiclassical value for (€) in (2.20), when ¢ < 0, is [3]

(2.21)

K(€)=1+a2

b
o = exp (I \p.dl éhf) (2.22)

a and b are defined in Fig. 2.4, and
p, = +{2u[E — Vi(s) — EIJ}'". (2.23)

A related expression can be written for kf(e) for € > 0 [3]. As an example of
(2.21)-(2.23), one may consider the case where V,(s), the potential energy
along curve L in Fig. 2.3,is a parabola, Vi — k(s — s*)2. The integral in
(2.22) is given by

b b
(104 = [~ s - 7 L ew
The points a and b are those where the integrand vanishes. The integral is
a standard one and equals (— ne)/hv, where v is the “frequency’’ of s-motion,
(1 /2n)\/m. ¢ is negative in the tunneling region.

This special case of (2.21)—(2.23), where V,(s) is a parabolic barrier, was
treated by Bell by other methods [7], but curiously enough (2.20)-(2.23)
have rarely been used in the tunneling literature. Instead the V(s) has been
fitted to an Eckart potential [1] or numerical solutions have been employed.

One can also derive the curvilinear counterpart of (2.20)—(2.23), and we
refer the reader to the relevant literature [2, 8].

where

2 BASIS OF ACTIVATED-COMPLEX THEORY

The possible dynamical basis of activated-complex theory is a topic of
considerable interest and not yet fully understood. In some cases the deri-
vation of activated-complex theory from first principles is fairly clear, and
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we shall discuss them. In all the cases below it will be assumed that the dis-
tribution of the reactants themselves among quantum states is a Boltzmann
distribution. Calculations that have been made of the deviation from
Boltzmann population of reactants due to reaction suggest such effects to
be relatively small [9].

Highly Exothermic Reactions

When a highly exothermic reaction has a negligible activation energy
barrier and when there is a long-range attractive interaction, the activated
complex sometimes occurs at a relatively large distance of approach R of the
two reactants. In this case, the dynamical problem becomes simply a two-
body problem and one need consider only the long-range attractive con-
tribution to the potential energy.

As usual for such two-body problems having a potential V(R) that depends
only upon R, one introduces polar coordinates, “separates variables,” and
finds that the radial motion obeys the equation

2
B * Verl®) + E, = E, (2.25)
where pg is the radial momentum pR, E, is the energy of the other coordinates,
and V,.(R) is an effective potential energy:

Il + 1)h?
2uR?

The last term in (2.26) is the usual centrifugal potential, ! being the orbital
angular momentum. The other degrees of freedom of the reactants remain,
in the present example, in the same quantum state from the beginning of the
collision to (at least) the point where the system passes the activated-complex
hypersurface and have an energy E,. By an argument the same as that leading
to (2.12), the exact dynamics lead to that equation, but with E(s}) now
replaced by E, + V.(R}), where R} is the R for which (2.25)is a maximum
and where [ is one of the quantum numbers contributing to n.

The potential energy surface for a low-activation-energy, highly exo-
thermic reaction is sketched in Fig. 2.5. Activated-complex theory for this
system is obeyed, provided a system that has crossed the dotted line is not
reflected back to reform reactants, upon striking the bent region of the
“reaction channel” in Fig. 2.5. An example appears later in [23].

Ve R) = V(R) + (2.26)

Highly Endothermic Reaction

If we consider the reverse reaction, a highly endothermic reaction, it will
have the same activated complex as above and, by microscopic reversibility,
will also obey activated-complex theory. During the reaction, the system in
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Fig. 2.5 Potential energy contours for reaction (1.1) for a highly exothermic reaction, with
activated complex in reactant’s valley (cf. Fig. 2.1).

the vicinity of the curve L in Fig. 2.5 proceeds from the upper portion to the
lower right-hand portion. For later use, we note that it obeys activated-
complex theory, even though there are now considerable changes in internal
quantum states before reaching the activated complex from the left.

Statistically Vibrationally Adiabatic Reactions

We consider now a different class of reactions, those for which the dy-
namical basis for activated-complex theory is a more subtle one than the
above. Many years ago it was suggested that if the system somehow remained
in the same quantum state during motion along the reaction coordinate an
activated-complex-theory equation would be obeyed [10]. Such a system
could be called adiabatic in the quantum-mechanical sense of the term, in so
far as the motions other than s are concerned. It has, for brevity, been called
vibrationally adiabatic [11].

Apart from the rare case where the reaction coordinate is rectilinear, the
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detailed meaning of “remaining in the same quantum state’’ was not speci-
fied in this earlier period, for systems with smooth potential-energy surfaces:
no way for defining such a state for all values of the reaction coordinate
had been offered. (For that purpose we shall later utilize “natural collision
coordinates” [11, 12]). The suggestion of this adiabaticity [10, 4] passed
largely unnoticed and was subsequently “rediscovered’ independently by a
number of investigators, with added insights or elaborations [13-15].

We consider first, therefore, natural collision coordinates [11]. Such co-
ordinates pass smoothly from those suited to reactants to those suited to
the activated complex and to those suited to products. They are sketched
for a linear collision in Fig. 2.6. In this space a curve C is drawn as indicated
and, from any point P, a perpendicular to the curve is also drawn. The
curve C need not coincide with the reaction path L, but it is sometimes
convenient to choose it this way, as in fact we have done by using the family
of L-curves in Fig. 2.2 as the reaction-coordinate curves.

Tas.C
Fig. 2.6 Natural collision coordinates s and r, s being the reaction coordinate and r the
vibrational coordinate (cf. Fig. 2.2).

The distance from P to P’, the foot of the perpendicular from P to curve
C, is one coordinate, r, and is positive on one side of the curve and negative
on the other. The arc length from any fixed point O’ on the curve to P’ is
the second coordinate s. The kinetic energy of the system can be expressed
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in terms of the velocities, 7 and §$, and the curvature «(s) of curve C [11]:

T = $ulfap® + Fascd) = ul( + xr)%$* + %]

N
o ('27:)[(1—4{5)7 + p,.z], (2.27)

x(s) is a function of s and is zero ats = 0. [This (s) is not to be confused
with the transmission probability x(E, n) used in a previous section and later
in (2.30).] The terms p, and p, are the momenta corresponding to s and r,
respectively:

ps = u(l + Kkr)s, p, = W (2.28)
The potential energy of the system V(r, 5) can be expressed as
Vir, s) = Vils) + Vy(r; s) (2.29)

where V,(s) is the value of V at P’ on curve C, and ¥, is the increment to go
from P’ to P, in Fig. 2.6.

Coordinate r is a vibrational coordinate throughout the collision, as one
can see from Fig. 2.6. For reaction (1.1), it is the vibrational coordinate of
the reactant AB at large negative values of s, the vibrational coordinate
of the product BC at large positive values of s, and a symmetric stretching
vibrational coordinate of the activated complex in the vicinity of s = st
The coordinate s is, apart from an additive constant, seen to be the distance
between the products at large negative values of s, the distance between the
products at large positive values of s, and the usual asymmetric stretching-
vibration reaction coordinate near s = s*. Thus, s is the reaction coordinate,
defined now not only in the vicinity of the activated complex, the reactants’
and the products’ region, but throughout the reaction. We consider now
the meaning of “remaining in the same vibrational quantum state during
the collision.”

When the r- and s-motions are independent—for example, in the region
of large negative or large positive s—the system remains in the same vibra-
tional quantum state regardless of how large §, the s-component of velocity,
is. However, the system will tend to be excited or de-excited vibrationally
when § is large in the region near the bent part of curve L in Fig. 2.1. Thus,
provided $ is small in that region, the system can be characterized as vi-
brationally adiabatic by writing the wave function as

Y(r, 5) = Y SWEls) (2.30)

where (r; s) is the vibrational wave function, which depends mainly on r
but also parametrically on s. The force constant, for example, varies with s
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at intermediate s values, and so, ¥,(r; s) varies with s. Y¥g,(s) is the wave
function describing the motion along the reaction coordinate.

Wave functions analogous to that in (2.28) are very common in other
problems. For example, in the Born-Oppenheimer approximation used to
separate electronic and nuclear motions, ¥, would be the electronic wave
function (r would then denote the electronic coordinates), and y,(s) would
be the nuclear wave function (s would denote the atomic positions). The
adiabaticity would be one of electronic adiabaticity.

Using ¥,(r; s) as an approximate wave function, the vibrational energy
levels of the system E,(s) can be calculated as a function of s, and when added
to the potential-energy term V(s), they constitute an effective potential
energy for a motion along the reaction coordinate. Schematic plots of this
effective potential energy were given in Fig. 2.3.

Using the wave function in (2.28) as a zero-order approximation, one can
then calculate transition probabilities to other vibrational states of the
system, quantum mechanically or classically, as a result of the reaction
[11, 13]. However, we shall examine instead how one may derive activated-
complex theory from dynamics when the vibrationally adiabatic approxi-
mation is made.

A formal expression for the rate constant k,, given by (2.32), is first derived
and then the vibrationally adiabatic approximation is introduced to yield
(2.10)—(2.12).

The probability of finding the reactants in some initial state n and in a
phase-space region ds dp, in the reactant’s region (large negative s) is

ds dp, exp (—E/kT)
h 0 ’

where E is total energy of the reacting molecule or molecules. Dividing by ds
and multiplying by § and by a transmission coefficient x(E, n)(to be evaluated
later) for reaching the products from this initial state, integrating over all E,
and summing over all n, one obtains

k, = ’—C}-IT— Y J. x(E, n) exp (-_—E—>d(E/kT), (2.32)
n JE

(2.31)

pdsdp, =

kT ) Q

since § dp, equals dE, as before.

Expression (2.32) is a formal one untila prescription is given for calculating
(E, n), and as yet the vibrationally adiabatic approximation has not been
introduced. In this assumption (2.30) for ¥ is valid for all s. Neglecting
curvilinear effects and, for the moment, treating the s-motion classically,
the total energy E can be written as

2
E = E(s) + Vils) + %, (2.33)
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with n independent of s when one assumes vibrational abiabaticity. x(E, n)
is unity if the p,2/2u given by (2.33) is positive for all s. Otherwise, x(E, n) is
zero. Integration of (2.32) then yields (2.10)—(2.12). These equations reduce
to (2.4)—(2.6) when the dependence of s* on n can be neglected. Inclusion of
tunneling again yields (2.19) and (2.20) instead of (2.4)—(2.6). Inclusion of
curvilinear effects introduces, among other things, a position-dependent
coefficient of p,2, namely, (1 + xr)~2in (2.33) [11] and a treatment of curvi-
linear effects has been given elsewhere [3, 14]. ’

For a vibrationally adiabatic system the energy levels E(s), and hence
E,(s%), entered quite naturally, because of the wave function (2.30). However,
the coupling present between the s and other motions would be expected to
lead at least to a distribution of the n at s* about the adiabatic value (statis-
tical adiabaticity) and, at stronger coupling, to distribution about some other
value [16]. The statistical adiabaticity would be expected intuitively to
yield a k, approximately the same as that given by a vibrationally adiabatic
system.

Again, when one considers three-dimensional collisions, the rotational
motion of the reactants, coupled with the orbital motion and to some extent
with the vibrational motion, evolves into the bending vibrations of the
activated complex. The orbital motion, coupled with the rotational motion,
evolves into the overall rotation of the activated complex. Adiabaticity for
such degrees of freedom is too restrictive, and statistical adiabaticity or even
a more random (Boltzmann-like) statistical distribution [17] among levels
Ei(s*) might be more appropriate. Both can still lead, approximately, to the
activated-complex-theory expression.

Summary

In summary, there are a number of dynamical situations in which activated-
complex theory will result, in the first approximation. Because of the wide
range of such possibilities, ranging from highly vibrationally adiabatic to
highly vibrationally nonadiabatic, and to statistical, one cannot equate
activated-complex theory with any of these alone, although each may some-
times provide useful insight into the dynamics in the system.

One can suppose that a necessary condition for validity of activated-
complex theory is that (a) the states E,(s*) be reasonably accessible from the
initial states, either by a vibrationally adiabatic or statistically adiabatic
evolution from the initial states as the system moves along the coordinate s
or by a statistical redistribution of relatively closely spaced states as a result
of strong coupling; and that (b) systems passing through the activated-
complex region should not subsequently be reflected back, in their motion
along s, to reform reactants.

The strength of activated-complex theory for calculating rate constants is
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its broad base, indicated above. By the same token its weakness would be
its inability to calculate the now frequently measurable more dynamical
properties, such as distribution of final states of products.

3 ACTIVATED-COMPLEX THEORY FOR SOLUTIONS

The derivation in Section 1 referred to a system of a given volume and
temperature, whereas in solution the reaction proceeds at a given pressure
P and temperature T. To treat the latter, one should use the appropriate
ensemble. The probability of finding the system in some quantum state n of
energy E, and with some volume V in such an ensemble p(n, V) is [18]

oo, 1) = Cexp [ — )+ PV] (2.34)
kT
where C is a normalizing factor, related to the Gibbs free energy G of the
system E(V) — PV
C = —GﬂtT Z exp (_[ ll( ;c; ]) (2'35)

The summation over V is actually an integration, since ¥V is a continuous
variable. The energy levels E, can depend on V.

In the present case, as in Sections 1 and 2, one considers quantum states
for the (translational) s-motion and the internal motion. The number of
quantum states such that s and p, are in the phase-space-volume element
ds dp, and such that the system is in a particular quantum state n for the re-
maining degrees of freedom, is ds dth The probability of finding the system
in these states and in a volume V' is p ds dp,,

dsdp, [G — Es, V) — (p3/2p) — Vi(s, V*) — PV‘]

pdsdp, = — kT

(2.36)

The E,(V) in (2.34) has been written as E,(s, V%) + (0,2/20) + Vi(s, V).
The probability per unit length along s is obtained, as before by dividing by
ds, and the contribution to the reactive flux is obtained by then multiplying
by $, integrating over p, for motion in the forward direction and summing
over n and V?}. As before, tunneling is first neglected. The maximum of
E s, V) + V(s, V*) along s occurs at some s;, which can now depend on
¥+, and defines the position of the activated complex. For each n, the inte-
gration over p, is performed at that s}. As before, § dp, equals d(p,%/2p) and
the net result for the rate constant k, is

k =T exp (-AG’) 2.37)

h kT
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where AG* is G* — G, G is given by (2.35), and

aV?i

kT

G!isthe Gibbs free energy of the activated complex. When s; does not depend
on n significantly, G* is the Gibbs free energy of a system on a hypersurface
at s = s, and then

G V(s V? E(s*, V) + PV}
oo (~i7) = o (-5 ) por ()
(2.39)

Equations (2.37)—(2.38) are the analogues of (2.10)-(2.11), and (2.37) and
(2.39) are the analogues of (2.5)—(2.6). As before, tunneling could readily be
included and one would obtain the analogue of (2.19)-(2.20).

) . (2.38)

4 TRAJECTORY TESTS OF ACTIVATED-COMPLEX
THEORY

There have been many calculations of classical trajectory studies for
various reaction systems, both bimolecular and unimolecular, primarily for
purposes of comparison with data on molecular beam experiments and on
infrared chemiluminescence [19]. Several such calculations have also been
performed for testing activated-complex theory and are considered in the
present section. We consider bimolecular reactions first.

Comparisons between the numerical results of classical trajectories and
classical mechanical activated-complex theory have been made for both one-
dimensional (collinear) systems and full three-dimensional systems. Both
bimolecular and unimolecular reactions have been treated. In the case of
quantum-mechanical calculations, however, the comparisons thus far are
few and restricted to linear collisions. In the next few years one may expect
three-dimensional numerical quantum-mechanical results to become avail-
able and answer some important questions.

Full three-dimensional numerical classical trajectory calculations have
been made for the H + H, » H, + H reaction [20]. The data have been
reported in the form of total reaction cross sections as a function of initial
relative velocity of reactants, initial rotational state, and initial vibrational
state. The first comparison of purely classical trajectory results with purely
classical activated-complex theory was made several years ago [21].
Trajectory data were available, at that time, for only the lowest initial
vibrational state of H,, rather than for all classical states, and so adiabaticity
was assumed, to perform the calculation. Microcanonical activated-complex
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theory [21], which is actually the Laplace transform [21, 22], of the usual
activated-complex theory, was used, the former referring to systems at a
given total energy E and the latter to systems at a given temperature. In the
canonical or constant-temperature activated-complex theory one calculates
rate constants, while in the microcanonical or constant-energy activated-
complex theory one calculates energy-averaged cross sections.

The resulting comparison is given for the H + H, reaction in Table 2.1,
where ¢ is the reaction cross section, p is the initial momentum, and the
summation is really an integral over all initial states (for a given initial
vibrational state) consistent with the given total energy E. The energies
are those of interest for the thermal reaction (300-1000°K). The agreement
between numerical results and activated-complex theory is good, surprisingly
sO.

Table 2.1 Comparison of Numerical Results with Micro-
canonical Activated-Complex Theory [21]

E (total) Y pPo/nh? Y. p*a/nh?
(kcal/mole) (numerical) (activated complex)
15.5 9.6 7
17.0 24.5 22
18.5 55 50

A comparison of numerical trajectory and a microcanonical activated-
complex theory result for the one-dimensional (collinear) form of the
reaction H + H, — H, + H has also been made [23]. The agreement
between trajectory-calculated and activated-complex-theory-calculated re-
sults was good.

The linear collision H + HBr — Br + H, reaction, a low-activation-
energy and fairly exothermic system, has also been investigated at energies
corresponding to reaction temperatures of the order of, or below, 500°K
[23]. There was good agreement between trajectory and activated-complex
theory results. At appreciably higher energies studied in the Br + H, —
H + HBr reaction, the activated-complex-theory-calculated reaction prob-
ability exceeded the numerical trajectory one [23]. In the latter the potential-
energy barrier was located in H + HBr channel and many of the systems
were reflected back toward reactants before reaching the activated complex,
when they struck (at high energies) the curved region of the reacting path
in Fig. 2.5.

An asymmetric reaction has also been studied for three-dimensional
systems and reasonable agreement was found between trajectory-calculated
and activated-complex-theory-calculated results for forward (and, therefore,
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for reverse) reaction at the lower energies [24]. Even at the highest energies
examined, the difference in reaction probability calculated from numerical
trajectories and from activated-complex-theory results was only a factor of 2.

Quantum-mechanical comparisons of numerical solutions of the
Schrodinger equation with actived-complex theory results for the reaction
rate have been made only for the case of collinear collision [25, 26]. The
H + H, reaction has been studied in this way. Activated-complex theory
and vibrational adiabaticity were both tested [25], neglecting curvilinear
effects in the definition of the vibrationally adiabatic model. The tunneling
at low energies was greater in the exact results than in the adiabatic. An
approximate estimate of the curvilinear effect [27] served to decrease the
difference by a factor of about 2, but further detailed calculations on the
curvilinearity should be performed. At the time of writing there are no
quantum-mechanical results for three-dimensional systems of comparable
accuracy.

In the field of unimolecular reactions there have been tests of activated-
complex theory in a particular form, namely, tests [28-30] of the RRKM
theory [31] of unimolecular reactions, a theory that blends the concepts
formulated in the 1920s by Rice, Ramsperger, and Kassel with the later
ideas embodied in activated-complex theory. Good agreement was found
between numerical trajectory results on the dependence of lifetime of the
high-energy unimolecularly decomposing molecule on its energy and
RRKM theory [28, 29]. When there is only a weak potential-energy
maximum near s*, a minimum-density-of-states criterion, described in
Section 5, was used to define a position of the activated complex [29].

5 LOCATION OF THE ACTIVATED COMPLEX AND THE
POINT OF MAXIMUM FREE ENERGY

The position s} of the activated complex for any » was seen earlier to be
that for which V,(s) + E,(s) has its maximum value. When there are many
states n or when inadequate information is available about the s dependence
of each, the procedure of locating each st is too formidable and resort must
be made to some more approximate argument. Just as in a simpler system
where s? is frequently chosen to occur at the maximum of V(s), so too is
the st in these more complicated systems usually defined as the one occurring
at the maximum of some free energy A(s), in a plot of A(s) versus s. In the
present section we shall consider a basis for such a choice of s using (2.10)-
(2.12).

We use ¢,(s) to denote the sum,

€.(5) = EJs) + Vi(s). (2.40)
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By definition of s}, one has

&(8) < €,(s3). (2.41)
Thus, in (2.10)-(2.12)
— 3
Qi = Z €xp [ ;?1(-.%)

] < Y exp [_kfl':(s)]. 2.42)

The first sum in (2.42) is the correct one, and we wish, therefore, to make
the last sum approach the first as closely as possible. To do so, one must
choose an s, st, which makes the last sum as small as possible. Since the sum
is related to the free energy A(s) of a system moving on a hypersurface,

at a given s,
—A -
exp [——,—c?@] =) exp [_ke_;fs_):l’ (2.43)

this choice of s = s* also serves to locate the largest value of A(s) in a plot
of A(s) versus s and so provides a basis for the approximate procedure.

This criterion for the choice of s? is also related to a minimum-state-
density criterion for choosing s* in a microcanonical ensemble. The latter
criterion has been useful in some unimolecular [29] and bimolecular
reactions [32].

In the case of reactions in solution, (2.37)—(2.39) would be used instead
of (2.10)—(2.12), but otherwise, the argument would completely parallel that
in (2.40)-(2.43) and so provide a basis for the sometimes used procedure of
maximizing G*(s) to define the s* in (2.39).

6 REMARKS ON APPLICATIONS

The many applications of activated-complex theory to reactions have been
described in many texts [4, 9, 33]. They usually entail efforts to evaluate the
partition function Q* from assumed properties of the potential-energy
surface or to evaluate the free energy of activation AG*, sometimes using
dielectric-continuum theory to treat ion-solvent interactions. In the present
section we shall instead outline two applications that involve additional
assumptions, namely, unimolecular reactions and electron-transfer reactions,
in the first two parts. In the third, other reactions are discussed briefly, and
in the fourth, the relation of activated complex to more dynamical properties
is considered.

Unimolecular Reactions

In unimolecular reactions [31] one considers the activation and de-
activation of energetic molecules of energy E, A*(E), by collisions with a
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molecule M, and reaction of those molecules,

A+M == AYE)+ M
A*E) - products.

(2.44)

One considers all possible values of E that could lead to the reaction. Because
of the second step in (2.44) the concentration of A*(E) is below its equilibrium
value, except when the concentration of M is high enough that the reverse
step in step 1 dominates step 2 in (2.44). Such domination occurs at high
enough pressure. Since A*(E) is below its equilibrium value except at high
pressures, activated-complex theory cannot be applied to the overall
reaction in (2.44). Instead, it is applied in its microcanonical form to the
second step to obtain the energy-dependent rate constant k, for that step.
The energy-dependent rate constants k, and k_, for the forward and reverse
steps in step 1 are calculated by (a) noting that their ratio is the (micro-
canonical) equilibrium constant of that step at the given energy and (b)
assigning some approximate value to the deactivation rate constant k_,.
One sums over E the contribution from k,A*(E) to obtain the overall
reaction rate.

Sometimes, particularly with smaller systems, the moment of inertia of
the activated complex in the second step of (2 44) is substantially larger
than that of A*. The resulting change in centrifugal potential in the second
step influences k,, and so, one considers the behavior of an ensemble of
molecules of given E and rotational angular momentum J, A*(E, J), finds
their contribution to the reaction rate, and, finally, sums over all Eand J
[29, 31b, 34].

RRKM theory and its applications have been extensively discussed
elsewhere [31, 35-37].

Electron-Transfer Reactions

Like the unimolecular reactions electron-transfer reactions [38] involve
features additional to those contained in activated-complex theory. In
certain respects, electron-transfer reactions are the simplest of all reactions:
simple electron transfers involve no breaking of chemical bonds, no forma-
tion of new chemical bonds, but only fluctuations of bond lengths and bond
angles and fluctuations of molecular orientations of the solvent in such a
way as to facilitate electron transfer. The first problem is to define the nature
of the activated complex for this electron transfer. Such a discussion leads to
one of the potential-energy surfaces and to the role of the Franck-Condon
principle in the electron transfer.

In any chemical reaction there is a change in configuration of the atoms



36 ACTIVATED-COMPLEX THEORY

and molecules from one that is appropriate to the reactants to one that is
appropriate to the products. In reactions that involve only the transfer of
an electron, there are the changes in configuration cited above: the bond
lengths in a particular reactant will depend on the charge of that reactant
and hence will differ before and after the electron-transfer step. Sometimes
this difference is very small and may be ignored, but at other times it con-
stitutes the principal factor making the electron-transfer rate constant small.
Again, the solvent molecules in the vicinity of the reactant are more oriented,
on the average, toward a more highly charged reactant. Thus, when the
charge of that reactant is altered by electron transfer, the average degree of
orientation of the solvent molecules around it eventually relaxes from the
one appropriate to reactants to one appropriate to products. Thus, there is
a net change in the distribution of orientations of many solvent molecules.

When the reactants are far apart, the reaction coordinate is the distance
between the two particles. Gradually, as they come closer, the reaction
coordinate begins to include the other kinds of motion discussed above—
those involving fluctuations of bond lengths and bond angles in the co-
ordination shells of the reactants and fluctuations of solvent-molecule
reorientations. Along the reaction coordinate, such coordinates change
from values appropriate to reactants to those appropriate to products. In
this region, in fact, the reaction coordinate begins to resemble, instead of a
translation, a vibrational-like motion as indicated schematically in Fig. 2.7.

Potential energy

Nuclear configuration

Fig. 2.7 Profile of potential-energy surfaces of reactants (R) and of products (P), plotted versus
nuclear configuration of all the atoms in the system. ——— = surface for zero electronic inter-
action of the reacting species. — = adiabatic surface.
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Figure 2.7 describes the profile, labeled R, of the many-dimensional
surface of the potential energy of the two reactants and solvent, as a function
of the various coordinates in the system mentioned above. It also contains a
profile, labeled P, of the potential-energy surface of the products and solvent,
as a function of the same coordinates. These two curves do not have minima
at the same configuration, because the equilibrium bond lengths are different
in any species when it is a reactant compared to when it is a product and
because the typical favorable orientations of the solvent molecules are also
different.

When the reactants are far apart, fluctuation in these coordinates can
occur but without leading to an electron transfer, that is, without causing
the system to move from curve R to curve P in Fig. 2.7. When the reactants
are close together, there is appreciable electronic coupling between them,
causing a splitting of these potential-energy surfaces, as indicated by the
dotted lines in Fig. 2.7. Under such conditions a suitable fluctuation of
coordinates from values appropriate to reactants toward values appropriate
to products will lead in many cases to the system moving from the reactants
curve to the products curve. For example, when the splitting of those
surfaces is large enough, the system stays on the lowest split surface. That
is, the system moves along the lower dotted line in Fig. 2.7. In this case the
reaction is said to be adiabatic as far as the electronic motion is concerned.
If, on the other hand, the splitting is very small, the chance of the system
moving from the reactants’ curve to the products’ curve becomes corre-
spondingly small, and on the occasions that it does so, the reaction is said
to be electronically nonadiabatic.

For reaction to occur, we have seen that it is necessary for the system to
reach the intersection region in Fig. 2.7. This need is another way of stating
the Franck-Condon principle for this electron-transfer problem: The
Franck-Condon principle states that the process of going from the R surface
to the P surface in Fig. 2.7 is a “vertical” one, to avoid changing atomic
positions (and momenta). Thus, if the electron transfer occurred to the left
of the intersection region in Fig. 2.7, the transfer would require the absorption
of light and thus be a photochemical reaction rather than a thermal reaction.

An important part of the problem of calculating the reaction rate lies
in calculating the probability of reaching in this many-dimensional co-
ordinate system the intersection of the two potential energy surfaces, R and
P, in Fig. 2.7. If activated-complex theory is applied to this system, this
intersection of the two surfaces constitutes, in effect, the activated complex
for the reaction.

In applying activated-complex theory one circumstance that makes these
reactions different from most other reactions involving ijons in solution
should be noted: In the electron-transfer reactions of the type discussed here
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(“outer sphere” electron transfers), there is a large separation distance
between the charges of the reacting species before and after the transfer.
In most other reactions the change of charge distribution does not occur
as dramatically. This considerable change of charge distribution occurs in a
relatively small increment of reaction coordinate in Fig. 2.7 as the system
moves along the dotted line.

We consider the solvent polarization change accompanying the motion
in Fig. 2.7. The actual many-dimensional surface, whose profile is approxi-
mated in Fig. 2.7, actually has many local minima (since solvent orientations
do not obey harmonic oscillator laws of motion). The many configurations
in the general vicinity of these minima, suitably weighted by a Boltzmann
factor, contribute to the solvent dielectric polarization. The solvent polariza-
tion represented by any group of configurations on, or near, the intersection
region in Fig. 2.7 cannot be in thermal equilibrium with the charges of the
reactants (or with that of products). Thus, this polarization fluctuates from
the equilibrium polarization appropriate to reactants as the system moves
toward the intersection region in Fig. 2.7 and can be termed a nonequilibrium
polarization. The electronic polarization of the system is typically, on the
other hand, largely in equilibrium with the field created by the charges and
by the remaining polarization (orientational, vibrational) of the solvent.

To calculate the free energy of a system containing this yet to be determined
polarization function one has to find a reversible path for forming this
nonequilibrium polarization system. Such a path was found by charging
up the system to form the desired orientation-vibration polarization function
of position and by holding that polarization fixed, changing the charges to
the desired values (i.e., of reactants or of products), allowing the electronic
polarization to adjust to these changes [38].

This expression for the free energy of the fluctuation involves an integral
whose integrand is a quadratic function of the polarization (in the usual
dielectric unsaturation approximation). One can minimize it to obtain the
unknown polarization function, subject to the condition that the activated
complex consists of configurations on the intersection of the R and P surfaces
in Fig. 2.7. In this way the free energy of activation AG? was calculated.
The details have been described elsewhere [38]. Here, we give the functional
form of the equations:

—AG!
k, = Z exp ( T ) (2.45)

1 AGY(R) AGY(R)?
t — w4 = .

AG w o+ 2 + 3 + T
where Z is the collision frequency, w’ 1s the work required to bring the

reactants to some most probable distance R in the activated complex, A is

(2.46)
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an intrinsic reorganization property, and AG®(R) is the “standard” free
energy of reaction® in the prevailing medium and at the separation distance R,

AGY(R) = AG® + w? — w', 2.47)

where wP is the work required to bring the products together to the separation
distance R.
A has a certain additivity property: In the cross-reaction

A(ox) + B(red) — A(red) + B(ox) (2.48)
and isotopic-exchange reactions
A(ox) + A¥red) — A(red) + A*(ox)
B(ox) + B*(red) — B(red) + B*(ox),
with the A written as A, A, A5, respectively, we have [38]
Aop = Hua + i) (2.50)

In the case of electrode reactions, AG! is given by (2.46)—(2.47) but with 4
replaced by a A, and with AG®" replaced by the activation overpotential,
ne(E — E¥), E and E® being the actual and “standard” potential for the
system.

A variety of predictions result from these equations for reactions in
solution and at electrodes have been the subject of many experimental tests.
Among the predictions are the relation of isotopic-exchange rate constants
to those for cross-reactions, the effect of the standard free energy AG° on
reaction rates, the effect of the activation overpotential on the electro-
chemical reaction rate, and relations between rate constants of homogenous
and electrochemical reactions. The results are described in various articles
and reviews [39, 40].

Remarks on Other Reactions

The treatment of electron transfers in the previous section raises the
question of whether analogous predictions can be made for other reactions
(viz., atom and proton transfers). In the case of atom transfers the potential-
energy surfaces are typically not of the small-splitting (weak-interaction)
type in Fig. 2.7. Instead, the splitting is very large, and a different method of
calculation must be used. While ab initio surfaces have been calculated for
several chemical reactions [41], semiempirical surfaces will continue to be
used for some time to come. One very simple method that has yielded

(2.49)

* That is, it is the free energy of any two specified product molecules, a distance R apart,
minus that of the two specified reactant molecules at the same R. Thus, it contains no entropy-
of-mixing term, and so is labeled “standard.” The quotation marks refer to the fact that AG”
is calculated for the prevailing temperature and medium, rather than for some standard state.
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surprisingly reasonable results for activation energies of reactions has been
the BEBO (bond-energy—bond-order) method [42].

With this method it has been possible to deduce an equation somewhat
similar in form to the ones in the preceding subsection and to show that the
slope of a Bronsted plot of AG* versus AG® is approximately equal to the
bond order of the newly formed bond, in a reaction in which one bond was
broken and a new one formed [43].

Apart from steric effects and statistical factors, which are included separ-
ately, AG? is of the following form, based by analogy on the corresponding
expression for AE* for gas reactions [43],

A AGY(R) + AG°(R)

AG = w™ + 2 + 5 % In cosh y (2.51)
2 AG°(R)In 2
- g )In 2.52)

and A again has the approximate additivity property (2.50). Applications of
the equations to the data have been made [44, 45]. (But, the less rigorous
nature of this approach as compared with that in the preceding subsection
should be noted.)

The treatment of proton transfers has ingredients of both that of electron
transfers and that of atom transfers. The theory for these reactions appears,
therefore, to be more formidable than that for the other two. Depending
upon the system, the proton might form such a strong bridge between the
reactants that the rearrangement of charge distribution accompanying proton
transfer will be relatively small. Or, when the bridge is weak, perhaps even
sterically hindered [46], the change of charge distribution is more substantial
and might require appreciable reorganization of the solvent, perhaps as in
electron transfer. A number of investigations of these problems have been
made and further work remains to be done because of the complexity of the
problem [47]. Equations (2.46) and (2.51) have been applied to AG* versus
AG® data [44, 45].

To study the dependence of AG* In AG® in the reactions of the previous
or present section, it is customary to hold one reagent fixed and vary the
other reagent. Particular care is needed to choose a series in which 4 does
not also vary significantly in the series if one is to obtain the simplest results
for interpretation. In such a case the intercept of a plot of AG* versus AG”
is 3(w" + wP) + (4/4). When the w-terms either are small or can be estimated,
A can be calculated [44, 45].

In the case of proton transfers, with 4 referring to a nitrogen base or
acid to an oxygen base or acid, rather than a carbon acid or base, the 4,, is
very small. Variation in A in a series leaves 1, and hence the 4 in (2.50)
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largely unchanged during the series and leads to a simple AG? versus AGY
plot. In contrast, when the varying reagent is a carbon acid or base, A varies
and anomalous values [48] (negative or greater than unity) are found for
the slope of AG* versus AG® plots. The slopes found in the other small 4,,
case have the expected values between zero and unity, varying from zero at
sufficiently negative AG? to unity at sufficiently positive AGY. In applica-
tions to the data, the slope has been typically 0.5 at small AGY or less than
0.5 for quite negative AG” and greater than 0.5 at quite positive AG®”
as expected from (2.46) or (2.51) [44].

Exit or Entrance Channel States and Activated-Complex States

With the increasing development of new experimental methods, including
gas-phase studies with molecular beams or infrared chemiluminescence of
rotationally and vibrationally excited products [49], there has been a need
for theories capable of predicting or interpreting the increased dynamical
information. The principal theoretical technique used thus far for such
studies is a classical mechanical treatment of the coordinates describing
the collision. Hamilton’s equations of motion for the coordinates and
momenta are integrated numerically, using initial conditions and initial
distributions appropriate to the experiment, and the distribution of final
values of observables are determined and compared with experiment [19].

Quantum effects can occur in such reactions, typically in a “threshold
region,” a region where probability of formation of some final quantum
state of products changes rapidly with energy or with quantum state.
However, fully three-dimensional numerical and accurate quantum-
mechanical calculations have not yet been made for even the simplest chemical
reaction, although several groups are now developing a method. The recent
development of “exact semiclassical” methods for treating molecular
collisions may bridge this gap [50, 51].

For some reactions it has been possible to develop analytical models,
such as for ““spectator-stripping” reactions [52] and for reactions involving
long-lived complexes [53]. The question arises as to whether extra as-
sumptions can be added to activated-complex theory so that it, too, can
deal with the more dynamical problems—problems such as dependence of
the probability of reaction and reaction cross section on initial velocity and
quantum state of the reactants and such as the probability distribution for
formation of products in various final quantum states and with specified
range of final velocities. We mention below several recent efforts to treat
these problems.

For reactions (2.1) that are vibrationally adiabatic insofar as the stretching
vibration is concerned (the r-coordinate in Fig. 2.6) and for which the other
internal coordinates are statistically vibrationally adiabatic, from reactants
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to activated complex, it has been possible to use microcanonical activated-
complex theory to develop a treatment of reaction cross sections [54, 55].
Agreement with trajectory data on the H + H, exchange reaction was
quite reasonable at energies of interest for the thermal reaction.

On the other hand, appreciably endothermic reactions are typically
highly nonadiabatic according to data on the reverse exothermic reaction
[56], and the above method would not be applicable. A method has been
described for representing phenomenologically the extensive data [57, 58]
and represents a stimulating approach.

Recently, molecular beam techniques have been used to measure trans-
lational energy distributions of reactions involving complexes [53, 59, 60].
The results of such studies have been compared with RRKM-type theory.
In such a theory predictions can be made regarding translational distribution
in the activated complex. They can be made [60] for that of the final products
only in the case of a truly “loose” activated complex for the exit channel of
the reaction (a complex in which the product molecules exist and rotate
freely), as it appears to be in Ref. [53]. (Such a remark applies in general
to the calculation of the translational distribution of the products from
that in the activated complex.) In other cases, added assumptions are needed
to make such predictions, and thus, one tests not simply RRKM but RRKM
plus added assumptions [61].

One result of many of these more dynamical experimental and theoretical
studies is that more and more information is becoming available on the
reactions themselves, on the shape of the activated complexes [62], and on
the nature of the potential-energy surfaces—‘‘early” of “late downhill,”
and so on [56]. Such information supplements the quite different type of
information obtained by the more classical methods used for reactions in
solution and in the gas phase, as well as providing data vital to understanding
nonequilibrium reactive systems in such environments as lasers, the upper
atmosphere, and, presumably, interstellar space.

Other interesting studies that should be noted but that have not been
discussed above include phase-space theory [63], which aims at discussing
distributions without reference to the potential-energy surface and contri-
butions to a more formal theory of kinetics [64]. Excellent detailed reviews
have appeared on various quantum mechanical aspects of inelastic and
reactive collisions [65]. A recent symposium and review [66] may also be
consulted in this regard.
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