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It has been observed in the past that the usual Airy uniform approximation gives probabilities greater than
one, especially for near elastic collisions. By mapping the phase onto —fcos y 4+ ky + A4 rather than
(1/3)y* — Ly + A one obtains a uniform approximation involving Bessel functions of the first kind, which
approaches unity for the elastic collision. This Bessel uniform approximation is no more complicated than
the Airy and also gives good agreement with exact quantum results, even if probabilities are large.

I. INTRODUCTION

There has been considerable interest recently
in the “exact” semiclassical treatment of inelastic
collisions, '~ An integral formulation has been
given for the S matrix '#®# which is of the form

S= fo‘ glx)et e gy, (1.1)

By approximating f(a, x) by a quadratic (“semiclas-
sical result”’) or by a cubic (“Airy result”’) one ob-
tains approximations for S valid for two stationary
phase points far apart or close together, respec-
tively. By mapping fla, x) onto a cubic (“Airy
uniform”)® a uniform approximation is obtained
which is valid regardless of whether the stationary
phase points are far apart or close together, and
indeed, it has produced excellent results,

In the limit of a near elastic collision, however,
even the Airy uniform approximation breaks down
and results in probabilities greater than one. This
can be seen quite easily if one approximatesz"'“"7
dfla, x)/dx, for the near elastic collision, as one
may do, by

1,2)

where €~ 0 for an elastic collision, and if one as-
sumes g{x) to be unity for a near-elastic collision.
The resulting expression for the probability be-
comes®

P=|8|%=2(3/2)Y 3?3 Ai?[~ (3 )¥ 2],

In the limit of ¢ approaching zero, the collision
thereby becoming elastic, the probability becomes
unbounded since Ai(0) is nonzero. This singu-
larity in the Airy uniform expression has been ob-
served for different systems. *°

df(a, x)/dx = 27€ sin27nx,

(1.3)

II. A BESSEL UNIFORM ASYMPTOTIC INTEGRATION
A. Introduction
The integral given by Eq. (1.1) is the fundamental

expression which must be evaluated to calculate
an S-matrix element. Since the Bessel functions
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are usually defined over a (- 7, 7) interval, we will
make a change of variable and consider an integral
of the form

I=2n)* f_: glx)e’ ¥ dx, (2.1)
where the integration is over a 27 interval rather
than a unit interval. For our systems g(x) is
periodic in x and f(o, x) has the property that
f(a, x+2m) equals f(a,x)- 2k7 and f'{a, x) vanishes
at two points in the interval - r<x= 7. From these
properties it can easily be shown that the value of
Iin (2, 1) is unaltered when the integration domain

is changed from — 7<x=< 7t0 a<x=<a+27 (a is
real).

The derivation of the Bessel uniform approxima-
tion is patterned after the method of Chester,
Friedman, and Ursell® for Airy uniform approxi-
mations, except we map f(a, x) onto a function of
the form!?

fla,x)=-fcosy - ky +A4, (2.2)

instead of onto a cubic polynomial in y. In Eq.
(2.2) % is intended to be an integer, A and ¢ are
real, and ;= 0.

It should be emphasized that (2.2) is a mapping
and not the first few terms of an infinite expansion
of f(a,x). Just as in the case of the mapping onto
a cubic, ®° where it was necessary that the sta-
tionary phase points of f(a, x) in the interval
(- m<x= 7)could be made to correspond to those
of the new (cubic) function of y in the interval
(- ©<y<=),? it is necessary that the stationary
phase points of f(a,x) in the interval (- 7<x = #)
be made to correspond to those in the new domain
of integration (a<y = a +2n). Inasmuch as the value
of both I in Eq. (2.1) and of the I expressed as our
integral over y is invariant to any shift in the low-
er limit, as long as the upper limit is similarly
shifted, we may set, without loss of generality the
new limits as — 7 and m



5146 J. R. STINE AND

I=(27)! ]_: glx(y))(dx/dy) exp[ - i(ccosy+ky — A)|dy.
(2.3)

A few additional remarks on the Airy and Bessel
uniform approximations may be in order. In ap-
plying the method of stationary phase one assumes
that most of the contribution to the integral arises
from regions near the stationary phase points of
exp[if (o, x)]. In the Airy uniform approximation
one assumes that the range of integration may be
expanded to — © <y <, since the regions outside
the neighborhoods of the stationary phase points do
not contribute significantly. When these other re-
gions do contribute significantly the Airy uniform
approximation breaks down. The Bessel uniform
approximation avoids this problem by retaining a
finite interval of integration,

A mapping of this form with 2= 0 was applied to
glory scattering by Berry, !

B. Excitation k>0
Stationary phase points occur when
gsiny =k

which has two roots in [- 7, 7]. The mapping is
one-to-one if the stationary phase points corre-
spond.

For classically allowed transitions the corre-
spondence would be
-1 -
x=x,~—y=sin"Y&/5)=6, 056=7/2,
Y ’ (2.4)
x=x_~—y=7-0,

an equation which defines 8. The fact that x, and
x. are real then implies that 2 % for these clas-
sically allowed transitions.

From Eqs. (2.2) and (2. 4) one obtains a sum
and difference,
s f+f)=A- Sk,
s[f - £i]= (- BV 2~k cos (r/¢),
where f.=fla,x_) and f, = fla, x,) are real quantities.
The fact that the right-hand side of (2. 5) is non-

negative implies that f_ is a local maximum
(f!'<0) and, £, is a local minimum (£, >0).

(2.5)

For classically nonallowed transitions the cor-
respondence is

x=x,~y=zm+icosh"(k/g)=3n+if, 620,
R 2.6)

x=x_—~y=3m1-10,
an equation which defines 6, For this classically
nonallowed transition x, and x_ are complex, a
fact which implies that 02 ¢ <k,

The equations corresponding to Egs. (2.5) are,
for this classically nonallowed case, '?
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slf.+f]=4A~ 5k,
s - fil=—i(k® = £®)Y 24 ik cosh™(k/¢).

Now f. and f, are complex with f_=f* and causes
their difference to be pure imaginary. Since the
right-hand side of (2. 7) has as its range the posi-
tive imaginary axis, one may deduce that Im(f.)
>0 and Im(f,)<0,

Expanding (dx/dy) g of Eq. (2.3) as®®

2.7

(dx/dy)g = Do cosy +gosiny, (2.8)

and substituting Eqs. (2.4) into this expression,
one obtains

_1 [gdx/dy),~g.(dx/dy).]
ho=3 cosé

’

(2.9)

_ 1 [g.ldx/dy), — g(dx/dy).]
) siné .

The values for (dx/dy), and (dx/dy). may be obtained
by differentiating Eq. (2.2) twice and inserting the
stationary phase conditions. One obtains

(dx/dy), = (£ L cosb/f!" )V 2, (2.10)

Upon making use of readily derived expressions
for the Bessel functions of integer ordert*

(B/E),(6) = (&*/2m) | " sin(y)
xexpli( - ¢ cosy — ky)] dy
and
J(&) = (¢ /2m1) f_: cos(y) exp[i( - ¢ cosy - ky)]dy,
Eq. (2.3) reduces to'®
1= (=) expliA)[(k/L)ge/ () +ipoJp(E)].  (2.11)

With the aid of Egs. (2.9) and (2. 10) the final re-
sult for the integral is obtained:

I=5 Y2 e {(coso) ¥ g,/ (£ ")V 2+ g/ (= £ W 2] 7 ()

+i(cos8) ™ 2 g,/(f W E— g /(= fI" V2. (&)},
(2.12)
where A=+ [f,+/.].

The expression for I for the classically nonal-
lowed case is of a similar derivation, and is given
by

I= Y 2exp(iA)g(f'' )Y #{cosy J,(t)(sinh6)Y ?

- isinyJj(¢)(sinh6 )"V %, (2.13)
where 2y=2q ~B-%7,

The above result took cognizance of the Schwartz
reflection principle'® which allows one to write

g.=ge*® and £/ =f'"' ¢*13,
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C. De-excitation k<0

The procedure is identical to that of 2> 0, ex-
cept the mapping correspondence for the classical-
ly allowed transitions is given by

x=x, y=-sin"}(|k|/)=-0, 0505%m,
Xx=x., y=—T7+6

and for the classically nonalloweditransitions by
x=x, y=—zmn+icosh™(|k|/t)=~4n+i8, =0
X=x, y=-%m-i6.

Making use of the fact that J_,(¢) = (- 1)*J,(¢) and
J2(£) = (= 1)2,(£) one obtains the identical equa-
tions of Sec. II B for Egqs. (2.5), (2.7), (2.12),
and (2. 13) where & is replaced by | £|.

III. UNIFORM APPROXIMATION TO THE § MATRIX

In the semiclassical theory one usually describes
the motion of a system by a radial coordinate R,
its conjugate momentum P, and the action angle
variables 27{n + %) and w. At an initial precollision
time ¢;, the interaction of the two species is neg-
ligible. Similarly, at a postcollision time ¢, the
interaction of the two species (which may be dif-
ferent than the original species) is again negligible,
The dynamical variables at ¢; and £, are denoted by
a subscript ¢ and f, respectively.

The S-matrix element for a transition from a
state n, to a state m is given by'*® (3. 1) for one
internal degree of freedom w

Sny = J." [0/, *expli ). (3.1)
w, is related to the angle variable w, by
Wy =Wy~ UyVyRy/ Py y=i,f, (3.2)

where p, is the reduced mass for the translational
motion and v, is the frequency of the periodic mo-
tion,

For inelastic collisions the phase A is given by
a=2mln, — mlwy— [ [2nulhn(d) + ROPEO)] at,
t

(3.3)
where the dot denotes differentiation with respect
to time and the integration is performed along the
trajectory.

The stationary phase points of the integrand are
given by dA/dE, =0 and may be found by differentiat-
ing Eq. (3.3). One obtains

da/dws=2n[n,(w,) — m}=0. (3.4)
If one defines a new variable gy,
qs = 27w, - 7, (3.5)

the limits of the integral given in Eq. (3.1) are al-
tered to [ — #, 7] and hence the integral is of the
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type given in Eq. (2.1).

Differentiating Eq. (3.4) and employing Eq. (3.5)
it can be seen that

g2V 2= @up V2, (3.6)
where p, are the classical probabilities given by
po= | dny/dw,| ) . 3.7

Upon making these identifications for use in Eq.
(2.12) for the classically accessible case, one ob-
tains for the S matrix element

Sma, = 2 @m)Y 2cV 2 exp(iA) {(pY %+ pY %) (cos0)Y 27, (L)

+i(pY 2= pY 3)(coso) Y 4 (¢} (3.8)
or for the transition probability P
P=|8|2= g ng{(p} 2+ pY BY2Ti(t) cost
+(pY 2- p¥ 2)212(r) /cosb}, (3.9)
where
A=3{Bpact Bmial (3.10)
k=|n-m|, (3.11)

#[Bpar— Bppa] = (€2 = KV 2 - kcos™M(k/2), (3.12)
and
cosé = [1 - (&/L)?]V 2, (3.13)

For the classically inaccessible case one obtains
from Eq. (2.13)

Sni = 2T 2" 2exp(iA)p" ¥ cos (38 — $1M(E)
(sinhd) ? - i sin(38 - $7),' (¢ )(sinhd) Y/ 2}

and (3.14)
P=mpg{(1+sinp)J2(¢)sinhf + (1 — sinB)J;2(¢)/sinh6},
where p, 8, etc. are defined by (3.15)
Hda.-a)=i9, ¢>0,
- o= - )Y ? - kcosh™ (&/t), (3.16)
(dn,/dw,),=p" e*®, (3.17)
sinhf = [(k/£)? - 1]V 2, (3.18)

IV. LIMITING CASES
A. Stationary Phase Points Far Apart

In the limit that the difference in the phases be-
come large, Eq. (3.12) becomes

sla.-a,)~t-3km (4.1)

The asymptotic expansions for large arguments
of J,(¢) and Ji{¢) are given by %

Ty (&)~ @/mE)Y 2cos(t - s k-5 M),
T~ = 2/n)M Esinlg — s km - 1),
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TABLE L. Ratio of [£/2]1/3 J,() to Ai(0) for various
k.2

Ratio

. 9838
. 9938
9965
. 9977
. 9987
.9991

W WA
(==
.

#Ai(0) =0. 355028,

When they are introduced into Eq. (3.9), one ob-
tains

(4.2)

Upon noting that the cosé in (3.13) approaches unity
for large ¢.

P~ po+p.+2(p, p.)" 2 cos(eg - kn-§m),

Application of Eq. (4.1) then yields the usual
semiclassical result

Pp,+p +2(p,p )Y *sin(a_- a,). 4.3)

B. Stationary Phase Points Close Together

When the stationary phase points are close to-
gether one may approximate n,(n,,zT),) as a quadratic
about a particular w, =wf{ at which », is an extre-
mum, i.e.,

nf(ni,ﬁ‘)ga(iﬂ—i —1,7;)2+n;. (4. 4)

In some interval about wj the value of dw,/
dw;(=w') may be considered a constant. This ap-
proximation enables one to calculate A by

4.5)

The stationary phase points are found by solving
nf(n,,?ﬂ',) =m. The phase A and classical probability
b are given by Eqs. (4.5) and (3. 7), respectively.

Alng, w) = [ 20lnsny, ;) — m)w' dw,.

In the limit that the stationary phase points
coalesce, { approaches % and one obtains for the
probability

P=[3 e [@m)tw’ /a* ] ° Ji(r)

in this coalescence limit.

(4.6)

The corresponding expression for the probability
using the Airy uniform approximation is given by

P=[(2m*w /a®]Y *Ai%(0). .7

Comparing Eqs. (4.6) and (4. 7), one sees they are
equivalent if

Ai(0) =[2/2]Y 3J, (k). (4.8)

A comparison of the two sides of Eq. (4.8) are
given in Table I and clearly shows that this rela-
tion holds.
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C. Near Elastic Collision

Using the same type of approximation as given
in Eq, (1.2), one obtains for the Bessel uniform
probability

P=gle), (4.9)

which in the limit of € approaching zero goes to
unity (the correct result) since J,(0)=1, This be-
havior is in contrast to the Airy uniform expres-
sion (1. 3) which became infinite when €~ 0,

D. Highly Classically Nonallowed Transitions

The classically nonallowed transitions have
02¢ <k with ¢ approaching zero as the transitions
become less probable. Therefore, Egq. (3.16) may

be approximated by
- o=k -FkIn(2k/t) (4.10)

in this region of highly classically nonallowed
transitions. For small £, J,(¢), and J,(¢) may be
approximated by

J () =G gl /k!,
J &) =G e 2k-1)1 .

Substituting Eqs. (4. 11) into the expression for the
probability given in Eq. (3.15) one obtains

(4.11)

P=2kmp(5 0)*/(R! P (4.12)
From Eq. (4.10) one finally obtains

Pxnpe?e, (4.13)
where

n=2kn(k/e)?/ (k).

This expression differs from the usual semiclas-
sical expression for nonallowed transitions by the
factor n. This factor does, however, approach
unity as k becomes large. Indeed, even for k=1,
1= 0. 8503 and so does not introduce a major error
into the result., Typically, the error produced is
less than that introduced by 7, but will cause the
probabilities to be less than the exact quantum,

V. APPLICATION TO A NONREACTIVE SYSTEM

We shall apply the uniform approximation de-
rived in Sec. III to the collinear, nonreactive,
atom-—diatom system given by Secrest and John-
son,!” Their exact quantum mechanical results for
the transition probabilities will be compared to
those calculated with the Airy and Bessel uniform
approximation. The Hamiltonian is the same as
given by Eq. (1) of Ref. 1{e), that is

H=Qur'rt+(mn+3)
+exp{ - a[R— (2n+ 1) ®sin2mw]}=E, (5.1)

where R is the distance from the incoming atom to
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TABLE II. Comparison of exact quantum with Airy and Bessel uniform approximations.

System? Transition Airy Bessel Exact

a u E n—m uniform?®-* uniform®¢ quantum®®
0,114 1/5 3.0 0-1 Nonallowed 7.59(—4) 6.76(=4) 7.06(—4)
0.114 1/2 3.0 0~2 Nonallowed 9.14(~10) 8.54(=10) 9,03(—10)
0.114 1/2 3.8 0-—-1 Nonallowed 4.69(-5) 4,12(=5) 4.30(-5)
0,114 1/2 3.8 1-1 Allowed 4,707 1.000 1.000
0,300 2/3 3.0 1-1 Allowed 1,457 0.966 0,977
0.300 2/3 4.0 0-1 Nonallowed 1.08(=1) 1.03(~1) 1.08(-1)
0,300 2/3 6.0 1-1 Allowed 2.23(—1) 2.33(=1) 2.24(~1)
0,300 2/3 6.0 1-2 Allowed 3.49(—1) 3.44(-1) 3.45(-1)
0,300 2/3 10.0 0-1 Allowed 2,11(~1) 2.05(—1) 2,18(-1)

%@, pand E are the dimensionless parameters in the model of Secrest and Johnson (our E is their E/2).

PNumber in parentheses is power of 10.

Calculated from Eqs. (4.14) or (4.16) of Connor and Marcus. ©

dCalculated from Egs. (3.9) or (3.15).

°Exact quantum mechanical results of Secrest and Johnson,

fNear elastic collision,

the center of mass of the harmonic oscillator and
P is the conjugate momentum; «, pu, E are pa-
rameters given in Table II; 27(:z +3) and w are the
action and angle variables for the harmonic oscil-
lator.

Hamilton’s equations of motion were numerically
integrated with a large initial R and the oscillator
initially in the »; state. The initial radial momen-
tum P is then given by - [2u(E-n, - $)]2. @,
was then varied until the stationary phase condi-
tion #(w;, n;) =m was satisfied, There were two
such points for the above system. The phase A
was obtained by integrating

A=2mwn+RP (5.2)

along with Hamilton’s equations. The classical
probability p as given by Eq. (3.7) was evaluated
at the two stationay phase points.

The Bessel uniform probabilities were then cal-
culated using Eq. (3.9) for the classically acces-
sible transitions and Eq. (3. 15) for the classically
inaccessible transitions. Equations (4. 14) and
(4. 16) of Ref. 1(c) were used to calculate the Airy
uniform probabilities., The results are given in
Table II,

VI. DISCUSSION

It has been shown in Sec, IV that the Airy uni-

form approximation and Bessel uniform approxima-

tion are essentially equivalent except for the near-
elastic collision. This fact also agrees with the
results given in Table II, where for near elastic
collisions the Airy formula gives gross deviations
from the exact quantum probabilities but the Bessel
formula gives good results,

Whereas in the past it was necessary to calculate

17

the S matrix integral directly for large proba-
bilities, '® it is hoped that now one equation will
serve to calculate probabilities of all magnitudes,
The extension of this method to several dimen-
sions is currently being explored. *®
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