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It has been observed in the past that the usual Airy uniform approximation gives probabilities greater than 
one, especially for near elastic collisions. By mapping the phase onto -t cos y + ky + A rather than 
(1/3)y 3 - ty + A one obtains a uniform involving Bessel functions of the first kind, which 
approaches unity for the elastic collision. This Bessel uniform approximation is no more complicated than 
the Airy and also gives good agreement with exact quantum results, even if probabilities are large. 

1. INTRODUCTION 

There has been considerable interest recently 
in the "exact" semiclassical treatment of inelastic 
collisions. 1- 5 An integral formulation has been 
given for the S matrix 1a,b,2b which is of the form 

s= 11 g(x)elf(Ol"d dx. (1.1) 
o 

By approximating j(OI, x) by a quadratic ("semiclas-
sical result") or by a cubic ("Airy result") one ob-
tains approximations for S valid for two stationary 
phase points far apart or close together, respec-
tively. By mapping J{OI, x) onto a cubic ("Airy 
uniform")6 a uniform approximation is obtained 
which is valid regardless of whether the stationary 
phase points are far apart or close together, and 
indeed, it has produced excellent results. 

In the limit of a near elastic collision, however, 
even the Airy uniform approximation breaks down 
and results in probabilities greater than one. This 
can be seen quite easily if one approximates2b ,3a,7 

dJ{OI, x)/dx, for the near elastic colliSion, as one 
may do, by 

dj(OI, x)/ dx = 27TE sin27Tx, (1. 2) 

where E - 0 for an elastic colliSion, and if one as-
sumes g(x) to be unity for a near-elastic collision. 
The resulting expression for the probability be-
comes8 

p= 1 sl2 = 2(3/2)1/ 3 E- 2/3 Ai2[ - (% d I3 ]. (1. 3) 

In the limit of E approaching zero, the collision 
thereby becoming elastic, the probability becomes 
unbounded since Ai(O) is nonzero. This singu-
larity in the Airy uniform expression has been ob-
served for different systems. 4,5 

II. A BESSEL UNIFORM ASYMPTOTIC INTEGRATION 

A. Introduction 

The integral given by Eq. (1.1) is the fundamental 
expression which must be evaluated to calculate 
an S-matrix element. Since the Bessel functions 
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are usually defined over a (- 7T, 7T) interval, we will 
make a change of variable and consider an integral 
of the form 

(2.1) 

where· the integration is over a 27T interval rather 
than a unit interval. For our systems g(x) is 
periodic in x and j( 01, x) has the property that 
j(0I,x+27T) equalsj(OI,x)- 2krr andj'(OI,x) vanishes 
at two points in the interval - 7T < X 7T. From these 
properties it can easily be shown that the value of 
1 in (2.1) is unaltered when the integration domain 
is changed from - 7T < X 7T to a < x a + 27T (a is 
real). 

The derivation of the Bessel uniform approxima-
tion is patterned after the method of Chester, 
Friedman, and Ursell9 for Airy uniform approxi-
mations, except we map j(OI, x) onto a function of 
the form1o 

j(OI, x) = - ?; cosy - ky +A, (2.2) 

instead of onto a cubic polynomial in y. In Eq. 
(2.2) k is intended to be an integer, A and?; are 
real, and ?; O. 

It should be emphasized that (2.2) is a mapping 
and not the first few terms of an infinite expansion 
of j(OI, x). Just as in the case of the mapping onto 
a cubic, 6,9 where it was necessary that the sta-
tionary phase points of j(OI, x) in the interval 
(- 7T < X 7T) could be made to correspond to those 
of the new (cubic) function of y in the interval 
(- 00 < y < 00), 9 it is necessary that the stationary 
phase points ofj(OI,x) in the interval 11) 
be made to correspond to those in the new domain 
of integration (a < y a + 211). Inasmuch as the value 
of both 1 in Eq. (2. 1) and of the 1 expressed as our 
integral over y is invariant to any shift in the low-
er limit, as long as the upper limit is Similarly 
shifted, we may set, without loss of generality the 
new limits as - 7T and 7T: 
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1= (21T)·1 j' g[x(y)J(dx/dy)exp[ - i'(?;cosy+ky -A)]dy. ., 
(2.3) 

A few additional remarks on the Airy and Bessel 
uniform approximations may be in order. In ap-
plying the method of stationary phase one assumes 
that most of the contribution to the integral arises 
from regions near the stationary phase points of 
exp[if(G', x)]. In the Airy uniform approximation 
one assumes that the range of integration may be 
expanded to - 00 < y < 00, since the regions outside 
the neighborhoods of the stationary phase points do 
not contribute significantly. When these other re-
gions do contribute significantly the Airy uniform 
approximation breaks down. The Bessel uniform 
approximation avoids this problem by retaining a 
finite interval of integration. 

A mapping of this form with k = 0 was applied to 
glory scattering by Berry. 11 

B. Excitation k 0 

Stationary phase points occur when 

t siny = k 

which has two roots in [ - 1T, 1T ]. The mapping is 
one-to-one if the stationary phase points corre-
spond. 

For classically allowed transitions the corre-
spondence would be 

X=X. - Y = sin .1(k/l;) "= e, 0::: e::: 1T/2, 
(2.4) 

X=X_-y=1T-e, 

an equation which defines e. The fact that x. and 
x. are real then implies that I; ::: k for these clas-
sically allowed transitions. 

From Eqs. (2.2) and (2.4) one obtains a sum 
and difference, 

Hf. + f.] =A - h, 
!- [j. - f.] = (1;2 - k2)1/ 2 - k cos·1(k/I;), 

(2.5) 

where f. = fiG', xJ and f. = fiG', x.) are real quantities. 
The fact that the right-hand side of (2.5) is non-
negative implies that f. is a local maximum 

< 0) and. is a local minimum (j;' > 0). 

For claSSically nonallowed transitions the cor-
respondence is 

x= x. - y= !-1T+icosh·1(k/l;) 1T+ (e, e ::0, 

x=x_ - y= !-1T- ie, (2.6) 

an equation which defines e. For this classically 
nonallowed transition x. and x. are complex, a 
fact which implies that 0::: I; ::: k. 

The equations corresponding to Eqs. (2. 5) are, 
for this classically nonallowed case, 12 

Hf. + f.] =A - t k1T, 
(2.7) 

Hf. - f.] = - i(k2 - 1;2)1/2 + ik cosh·1(k/1;). 

Now f. andf. are complex withf.=f! and causes 
their difference to be pure imaginary. Since the 
right-hand side of (2.7) has as its range the posi-
tive imaginary axiS, one may deduce that Im{jJ 
> 0 and Im{f.) < o. 

Expanding (dx/dy)g of Eq. (2.3) as13 

(dx/dy)g = Po cosy +qo siny, (2.8) 

and substituting Eqs. (2.4) into this expression, 
one obtains 

Po='!' [g.(dx/dy).-g.(dx/dy).] 
2 cose 

(2.9) 
. .! [g. (dx/dy). - g.(dx/dy).] 

qo· 2 sine 

The values for (dx/dy). and (dx/dy). may be obtained 
by differentiating Eq. (2.2) twice and inserting the 
stationary phase conditions. One obtains 

(2.10) 

Upon making use of readily derived expressions 
for the Bessel functions of integer order14a 

xexp[i( - I; cosy - ky)] dy 

and 

= (z""/21Ti) r cos(y) exp[i( - I; cosy - ky )]dy, .. 
Eq. (2.3) reduces t015 

1= (- (2.11) 

With the aid of Eqs. (2.9) and (2.10) the final re-
sult for the integral is obtained: 

1 =!- 1;1/ 2 ei"il.{ (cose )1/ 2[g./U:')1/ 2+ g./( _ f:')11 2 ]J,,(t) 

+ i(cose)-1I 2[g./U '.')1/2 _ g./( _ f:')1/ 2] J; (I;)} , 

(2. 12) 
where A =!- [j. + f']. 

The expression for 1 for the classically nonal-
lowed case is of a similar derivation, and is given 
by 

- i 

where 2y = 2G' - Ji - t1T . 

(2.13) 

The above result took cognizance of the Schwartz 
reflection principle16 which allows one to write 
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C. De-excitation k < 0 

The procedure is identical to that of k 0, ex-
cept the mapping correspondence for the classical-
ly allowed transitions is given by 

x=x+, y=-sin-1(lkl/?;)=-O, 

X=X_, y=-1T+O 

and for the classically nonallowed transitions by 

x=x+, y=-i1T+icosh-1(lkl/?;)=-h+iO, 02:0 

x = x_, y = - i 1T - iii. 
Making use of the fact that J_k(?;) = (- 1)kJk(?;) and 

= (- one obtains the identical equa-
tions of Sec. II B for Eqs. (2.5), (2.7), (2.12), 
and (2.13) where k is replaced by I kl. 

III. UNIFORM APPROXIMATION TO THE S MATRIX 

In the semiclassical theory one usually describes 
the motion of a system by a radial coordinate R, 
its conjugate momentum P, and the action angle 
variables 21T(n + i) and w. At an initial precollision 
time ii' the interaction of the two species is neg-
ligible. Similarly, at a postcollision time tf the 
interaction of the two species (which may be dif-
ferent than the original species) is again negligible. 
The dynamical variables at i l and tf are denoted by 
a subscript i andj, respectively. 

The S-matrix element for a transition from a 
state nl to a state m is given by1a,b (3.0 for one 
internal degree of freedom w 

Sm. = f [dWf/dwd-1I 
I 0 

(3.1) 

Wy is related to the angle variable Wy by 

(3.2) 

where iJ. y is the reduced mass for the translational 
motion and Vy is the frequency of the periodic mo-
tion. 

For inelastic collisions the phase is given by 

= 21T(nr m)wr tf +R(t).P(t)] dt, 
t I 

(3.3) 
where the dot denotes differentiation with respect 
to time and the integration is performed along the 
traj ec tory. 

The stationary phase points of the integrand are 
given by dWf = 0 and may be found by differentiat-
ing Eq. (3.3). One obtains 

awf = 21T[nf(w,) - m] = O. (3.4) 

If one defines a new variable qf' 

qf = 21TWf - 71, (3.5) 

the limits of the integral given in Eq. (3. 1) are al-
tered to [ - 71, 71] and hence the integral is of the 

type given in Eq. (2.0. 

Differentiating Eq. (3.4) and employing Eq. (3.5) 
it can be seen that 

(3.6) 

where p, are the classical probabilities given by 

(3.7) 

Upon making these identifications for use in Eq. 
(2.12) for the classically accessible case, one ob-
tains for the 5 matrix element 

Sm.1 = i (271 )1/ 2?;1/ 2 exp(iA){ (p!/ 2 + 2)(cose)1/ 2Jk (?;) 

+ i(p!/ 2 _ 2)(COSO )-1/ (?;)} (3. 8) 

or for the transition probability P 

P= 1512= h?;{(p!' 2+pY cosO 

where 

if = i 
k=ln-ml, 

and 

(3.9) 

(3.10) 

(3.U) 

(3.13) 

For the classically inaccessible case one obtains 
from Eq. (2.13) 

Sm.1 = (271)1/ 2?;1/ 2exp (iA)p1/ 2{ cos(te - t 71)Jkm 

(sinhO)1/2 - i - t71)Jk'(?;)(sinhO)"1/2} 

and (3.14) 

P= 71P?; {(l + + (1-

where p, {3, etc. are defined by 

- = i cp, cp > 0, 
_ cp = (k2 _ ?;2)1/ 2 _ k cosh-l(k/?;), 

(dnf/dwI)' = p-l e'la, 

sinh6 = [(k/?;)2 _ 1]11 2. 

IV. LIMITING CASES 

A. Stationary Phase Points Far Apart 

(3.15) 

(3.16) 

(3.17) 

(3. 18) 

In the limit that the difference in the phases be-
come large, Eq. (3. 12) becomes 

(4.0 

The asymptotic expansions for large arguments 
of Jk (?;) and are given byl4b 

J k(?;) - (2/71?;)l/ 2 cos(?; - i k1T - t 71), 

(2/71?;)l/2 sin(?;- tk1T- t71). 

Downloaded 16 Feb 2012 to 131.215.21.63. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



5148 J. R. STINE AND R. Ao MARCUS 

TABLE 1. Ratio of [k/2jl/3 Jk(k) to Ai(O) for various 
k.a 

k Ratio 

1 0.9838 
2 0.9938 
3 0.9965 
4 0.9977 
6 0.9987 
8 0.9991 

aAi(O) = O. 355028. 

When they are introduced into Eq. (3.9), one ob-
tains 

p- p+ + p_ + 2(p+PY/ 2 cos(21: - k7T - 7T), (4.2) 

Upon noting that the cose in (3.13) approaches unity 
for large 1:. 

Application of Eq. (4.1) then yields the usual 
semiclassical result 

(4.3) 

B. Stationary Phase Points Close Together 

When the stationary phase points are close to-
gether one may approximate n,wl' WI) as a quadratic 
about a particular WI = wr at which n, is an extre-
mum, i. e., 

(4.4) 

In some interval about the value of dw,/ 
dWI (= w') may be considered a constant. This ap-
proximation enables one to calculate .6. by 

.6.(nl, WI) = J 27T[n,(nl, WI) - m] W' dWj' (4.5) 

The stationary phase points are found by solving 
n,(nj> WI) = m. The phase .6. and classical probability 
P are given by Eqs. (4.5) and (3.7), respectively. 

In the limit that the stationary phase points 
coalesce, I: approaches k and one obtains for the 
probability 

p= ]2/ 3[(27T)4 w' /a2 ]1/ 3 J k
2(k) (4.6) 

in this coalescence limit. 

The corresponding expression for the probability 
using the Airy uniform approximation is given by 

(4.7) 

Comparing Eqs. (4.6) and (4.7), one sees they are 
equivalent if 

(4.8) 

A comparison of the two sides of Eq. (4.8) are 
given in Table I and clearly shows that this rela-
tion holds. 

C. Near Elastic Collision 

USing the same type of approximation as given 
in Eq. (1. 2), one obtains for the Bessel uniform 
probability 

(4.9) 

which in the limit of E approaching zero goes to 
unity (the correct result) since Jo(O) = 1. This be-
havior is in contrast to the Airy uniform expres-
sion (1.3) which became infinite when E - O. 

D. Highly Classically Nonallowed Transitions 

The classically nonallowed transitions have 
0::: I: ::: k with I: approaching zero as the transitions 
become less probable. Therefore, Eq. (3.16) may 
be apprOXimated by 

- qJ "" k - k In(2k/i:) (4.10) 

in this region of highly classically nonallowed 
transitions. For small 1:, Jk(I:), and may be 
approximated by 

Jk(l:) "" 

(4.11) 

Substituting Eqs. (4.11) into the expression for the 
probability given in Eq. (3.15) one obtains 

P "" 1:)2k /(k! )2. 

From Eq. (4.10) one finally obtains 

P"" 1/pe-2 ", , 

where 

(4.12) 

(4.13) 

This expreSsion differs from the usual semiclas-
sical expression for nonallowed transitions by the 
factor 1/. This factor does, however, approach 
unity as k becomes large. Indeed, even for k= 1, 
1/= O. 8503 and so does not introduce a major errol' 
into the result. Typically, the error produced is 
less than that introduced by 1/, but will cause the 
probabilities to be less than the exact quantum. 

V. APPLICATION TO A NONREACTIVE SYSTEM 

We shall apply the uniform approximation de-
rived in Sec. III to the collinear, nonreactive, 
atom-diatom system given by Secrest and John-
son. 17 Their exact quantum mechanical results for 
the transition probabilities will be compared to 
those calculated with the Airy and Bessel uniform 
approximation. The Hamiltonian is the same as 
given by Eq. (1) of Ref. He), that is 

H= (2jJ.)-1 p2 + (n 

+ exp{ - a[R - (2n + 1)112 sin27Tw]) = E, (5.1) 

where R is the distance from the incoming atom to 
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TABLE n. Comparison of exact quantum with Airy and Bessel uniform approximations. 

Systema Transition Airy Bessel Exact 
O! f.L E n-m Type uniformb,e uniformb,d quantumb," 

0.114 1/5 3.0 0-1 Nonallowed 7.59(-4) 6.76(-4) 7.06(-4) 
0.114 1/2 3.0 0-2 Nonallowed 9.14(-10) 8.54(-10) 9.03(-10) 
0.114 1/2 3.8 0-1 Nonallowed 4.69(-5) 4.12(-5) 4.30(-5) 
0.114 1/2 3.8 1-1 Allowed 4.707f 1.000 1.000 
0.300 2/3 3.0 1-1 Allowed 1. 457 f 0.966 0.977 
0.300 2/3 4.0 0-1 Nonallowed 1. 08(-1) 1.03(-1) 1. 08(-1) 
0.300 2/3 6.0 1-1 Allowed 2.23(-1) 2.33(-1) 2.24(-1) 
0.300 2/3 6.0 1-2 Allowed 3.49(-1) 3.44(-1) 3.45(-1) 
0.300 2/3 10.0 0-1 Allowed 2.11(-1) 2.05(-1) 2.18(-1) 

aO!, f.L and E are the dimensionless parameters in the model of Secrest and Johnson (our E is their E/2). 
in parentheses is power of 10. 

eCalculated from Eqs. (4.14) or (4.16) of Connor and Marcus. Ie 
dCalculated from Eqs. (3.9) or (3.15). 
"Exact quantum mechanical results of Secrest and Johnson. 17 
f Near elas tic collis ion. 

the center of mass of the harmonic oscillator and' 
P is the conjugate momentum; a, /J., E are pa-
rameters given in Table II; 27TVz + t) and ware the 
action and angle variables for the harmonic oscil-
lator. 

Hamilton's equations of motion were numerically 
integrated with a large initial R and the oscillator 
initially in the ni state. The initial radial momen-
tum Pi is then given by - [2/J.(E- ni - t)]1/2. Wi 
was then varied until the stationary phase condi-
tion n (Wi' ni) = m was satisfied. There were two 
such points for the above system. The phase .6, 

was obtained by integrating 

(5.2) 

along with Hamilton's equations. The classical 
probability p as given by Eq. (3.7) was evaluated 
at the two stationay phase points. 

The Bessel uniform probabilities were then cal-
culated using Eq. (3.9) for the classically acces,.. 
Sible transitions and Eq. (3.15) for the claSSically 
inaccessible transitions. Equations (4.14) and 
(4. 16) of Ref. 1(c) were used to calculate the Airy 
uniform probabilities. The results are given in 
Table II. 

VI. DISCUSSION 

It has been shown in Sec. IV that the Airy uni-
form approximation and Bessel uniform approxima-
tion are essentially equi valent except for the near-
elastic collision. This fact also agrees with the 
results given in Table II, where for near elastic 
collisions the Airy formula gives gross deviations 
from the exact quantum probabilities but the Bessel 
formula gives good results. 

Whereas in the past it was necessary to calculate 

the S matrix integral directly for large proba-
bilities, Id it is hoped that now one equation will 
serve to calculate probabilities of all magnitudes. 
The extension of this method to several dimen-
sions is currently being explored. 18 
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