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Sometimes, as in reactive systems, action-angle variables are not conveniently defined at all points of the
trajectory and recourse must be made to conventional coordinates. A simple canonical transformation
converts the latter to coordinates of which one is time and the remainder are constant along the trajectory.
The transformation serves to remove the singularities of the semiclassical wavefunction at the turning points
of the trajectory. It yields, thereby, an integral expression for the S matrix by having produced
wavefunctions which can be integrated over all space. The result supplements that of Paper III [R. A.
Marcus, J. Chem. Phys. 56, 311 (1972)], which was derived for systems for which action-angle variables

could be defined throughout the collision.

I. INTRODUCTION

Several derivations of a semiclassical expres-
sion for the S matrix are available, of different
degrees of length and rigor. 2 (Other related
semiclassical studies are given in Ref. 3.) Be-
cause of the many papers which are now appearing
utilizing the method, 1"?'* it is useful to review
briefly the existing derivations and to generalize
where needed.

In Sec. Il we summarize a quick and intuitive
derivation, using either the wavefunction! or the
Feynman propagator? as a starting point. A limi-
tation of such a derivation is pointed out: While it
does lead to the correct stationary phase and uni-
form expression, it does not, without “fudging,” 2
lead to a valid integral expression. The desirabil-
ity of having an integral expression for S,,, is
particularly true for systems for which the value
of the integral does not arise almost exclusively
from small neighborhoods of the stationary phase
points of the integrand. ®

Another derivation proceeds with more rigor
from the standard expression for the § matrix™:
Smid(E' —E)=1lim (mE'|Up(t,,t,) | nE)

to=30
. t%._w

= (mE'® |nEW), (1.1)

where Uy is the evolution operator of the system

in the interaction representation and where the
second equality in (1. 1) arises when one introduces
the appropriate definition of the limits £~ + < and
t,~~wo. The state vector |mE’"’) describes the
state which is time reversed from ImE'(")}. Equa-
tion (1. 1) was first used in Paper III to derive an
integral expression for S,, for systems for which
one can define action-angle variables for the inter-
nal coordinates throughout the collision, In the
present paper we treat systems for which such a
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definition has either not been possible or not con-
venient.

We note that Eq. (1.1) is not in itself an integral
(it is merely a scalar product), but when a coordi-
nate representation of the vectors InE(")) and
| mE’'®") is used, it can be evaluated as one:

(mE' |nE)= [ (mE' | Q) dQ(Q[nE™),
(1.2)

where Q denotes the coordinates used. However,
to evaluate this integral numerically it is neces-
sary to use wavefunctions (Q!zE*’) and (Q | mE’ )
which are reasonably accurate over all space.
When Q consists of a radial coordinate and inter-
nal coordinates, the semiclassical forms of the
wavefunctions (Q |#E *) and (Q | mE’ ©") break
down badly in certain regions and so may not be
used for numerical evaluation of the integral in
(1.2). [Such coordinates can typically still be used
in (1. 2) when (1. 2) is evaluated by a stationary
phase or related method, wherein essentially all
of the value of the integral is contributed from
certain very small regions of Q space. ]

This breakdown of these semiclassical wave-
functions is well known, and occurs at “caustics.”
The latter consist of points or surfaces where
neighboring classical trajectories propagating the
semiclassical wavefunction intersect. An example
of this intersection has been given by Wong and
Marcus®; There, it was seen that the neighboring
trajectories corresponding to final states of the
collision system with neighboring (but different)
final quantum numbers crossed at large (and at
small) separation distances. (This crossing occurs
always, in fact, after every inelastic or reactive
collision. ) The crossing itself gives rise to a
singularity in the wavefunction because of con-
servation of probability flux; The perpendicular
“distance” between neighboring trajectories (in
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higher dimensions the “cross-sectional area™)
multiplied by the square of the local amplitude

of the wavefunction and by the local velocity normal
to that cross section yields the local flux. When
the cross-sectional area of a bundle of trajectories
vanishes, e.g., when there is an intersection of
the trajectories, the amplitude of the semiclassi-
cal wavefunction must become infinite to conserve
probability flux. In summary, the semiclassical
wave function becomes singular where adjacent
trajectories cross.

Thus, to evaluate the integral in (1. 2) numeri-
cally it is necessary to use a different set of co-
ordinates Q than the radial and internal coordi-
nates. Another set of coordinates Q is the follow-
ing: a point moving along a trajectory can be de-
scribed by coordinates all but one of which are con-
stants of the motion and the remaining one of which
is time (or time plus a constant), In such a co-
ordinate space the neighboring postcollision tra-
jectories cannot actually cross each other at large
separation distances, the previously mentioned
singularity at large separation distances has thus
disappeared, and the coordinate representatives
(Q 12E ™Y and (Q | mE’") become more suitable
for use in a numerical evaluation of (1.2). The
better the choice of the transformation to the new
Q’s, in the sense of the accuracy of the new semi-
classical wavefunctions, the more accurate will be
the resulting numerical evaluation of (1. 2) using
those wavefunctions, In systems where the new
final constants of the motion pass through an ex-
tremum, when one goes from a particular trajec-
tory to a neighboring one, one again has a type of
“crossing of trajectories” ( an overlap of adjacent
trajectories) and consequently less accuracy in the
numerical evaluation of (1.2). Numerical ex-
amples of these cases will be given in a later pa-
per.

The transformation to a new set of coordinates
of which all but one are constants of the motion and
the remaining one is time was employed in Paper
IIO. There, angle coordinates were used for the
internal degrees of freedom instead of, as now,
conventional coordinates, as a starting point.

In Sec. III we first recall the semiclassical
wavefunction expressed in terms of conventional
coordinates. The use of such coordinates leads
to the presence of a number of terms in the wave-
functions, in fact, typically 2° terms for a system
of s coordinates. The terms contain their usual
singularities at turning-point surfaces (caustics).
A simple and previously known canonical trans-
formation is given in Sec. IV. I leads to new
variables, of which one is time 7 and the others
are constants of the motion w; for each trajectory.

By removing the usual singularities this trans-
formation also simplifies the semiclassical wave-
function, which becomes only one term.

The time-reversed wavefunction is given in Sec.
V and is transformed there into one expressed as
a function of w and . Equations (1. 1) and (1. 2)
then lead to an integral over w and 7, given in
Sec. VI. The 7 integration cancels the 6 function
in (1. 1) and gives the integral expression for S,,,.
The result is the same as that in Paper III.

In two respects the present derivation is more
straightforward thanthat in PaperIII, the extra terms
present in the original semiclassical wavefunctions
notwithstanding. Obtaining the present time-re-
versed wavefunction is significantly simpler than
that in Paper III: In the latter, one had to time
reverse the action-angle variables and there are
two different kinds of action-angle variables with
different time-reversal behavior. Now, one sim-
ply changes the sign of all momenta. Secondly,
Paper III tacitly involved two canonical transforma-
tions, one from conventional to action-angle co-
ordinates and a second from the latter to & and 7.
Now, a single and well-known transformation suf-
fices.

II. HEURISTIC DERIVATION FOR THE
SEMICLASSICAL Sn2

&

To illustrate some features of the derivation in
Sec. III it is useful to consider first a “quick” de-
rivation which assumes that the S-matrix element
for a transition for state zn, ton,, S, canbe
written as a matrix element (#,E° {#,E"’) and
which also uses action-angle variables for the in-
ternal coordinates; »n, denotes the quantum num-
bers of the system at some time ¢, before the col-
lision (#;~ - «) and #, denotes those at some time
¢, after the collision ({,—~+). The superscript
(+) indicates a state which evolves during the col-
lision and the corresponding collisional wavefunc-
tion is denoted by (q |7n,E“". (q I7,E® denotes
an unperturbed wavefunction, The totality of co-
ordinates are denoted by q, which in turn denotes,
at large R, the radial coordinate R and the angle
coordinates, the latter denoted collectively by ¢.

We have, by this argument,

Snzn1= (n,E° lnlEm) = f(”zEu | 92)dg2< q, ’nlE(+)> ’

(2.1)
where the integration over dg, is performed at a
fixed final large value of R, R,, and hence where
the integration volume is written as dg; instead of
dq,. The semiclassical wavefunction {(qaln, EC?) is
written as A expiF,(q,, N,E) (inunits ofZ=1), where
F, is a solution of the Hamilton—Jacobi equation:

H(q, 9F,/8q)=E. (2.2)
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Here, 8F,/aq has been written for the momentum
p. Thereby, along a trajectory during the collision
we have, in the present variables,

Fylas, E)= [ pda+pya, (2.3)

A sum over all coordinates is intended in (2. 3), but
pdq and pq are used for notational brevity.

The unperturbed wavefunction (q, |7,E® is
Adexp iFY(a,, nyE), where F} satisfies the Hamil-
ton—Jacobi equation at {,=+=:

Hy(q, 3F3/3q) = E,

H, being the Hamiltonian for the isolated particles.
Thereby, in the present variables,

(2.4)

FJ(@s, 72E)=Dsd - (2.5)

One finds, after stationary phasing (2. 1),
Sngny= (2E° [n By = | i8F /on on, |12

X expiF (n,E, nyE), (2.6)

where

Fy(n,E, mE)= quz pPdq+ P1d; - PAz=— fpjz qdp.

(2.7
The pre-exponential factor in (2. 6) is chosen so as
to make the S matrix unitary. The stationary
phasing of the integrand in (2. 1), plus introduction
of the values for (q, |7,E°) and (q, |#,E “)y en-
sure that the q, in (1. 2) satisfies the condition that
8(F,~ F3)/8q,=0 and hence that the p,’s in F, and
FJ are matched.

The above derivation of (2. 8) for Snyn, 18, 0N
the pro side, quick and, on the con side, oversim-
plified. As already noted it does not, without
fudging, yield a valid integral for S,,, . This
shortcoming stems in part from (a) the use of,
in the integral (2.1), an expression for (g, |n,E*’)
for all g, which is not everywhere valid (the pre-
exponential factor A becomes very inaccurate at
certain intervals of ¢,) and (b) from using
(n,E® | n,E") instead of Eq. (1.1) for Sn, m, -

Similar comments apply to an analogous deriva-
tion based on the Feynman propagator,2 which we
recall here to emphasize the points noted earlier.
Here, one recognizes that the S matrix is given by
the first half of (1.1) but, in a quick derivation,
neglects the 6 function and hence neglects the dif-
ference between E and E’ in the second half of
(1.1).2 Thereby one writes?

Spyn = (Mo E° |etHotagrii ot ity | £O)
= e!B gt (5, EO | o HH D | EO)
- i H ot )
=e'E4rty [ [(n,E°|qp)dg,(a, | #9270 |q,)

xdgq, @y |n,E®). (2.8)

The integrations are performed at a large fixed
R, and R, (initial and final R) and hence dg, and
dq, are used instead of dq, and dq,.

The semiclassical form of the Feynman propa-
gator can, apart from a normalization constant,
be shown to be®

@] ety qy)~eSatr, (2.9)
where S is the integral of the Lagrangian L:
S= /2L, 4 1) dt. (2.10)

Since L equals pg — H, one obtains from the last
three equations, apart from a normalization con-
stant,

Sy~ J J (n2E° | q2) da

x exp( i j;‘:z pdq)dg; @, | n,E®), (2.11)
where, as in (2,1), the integration is again per-
formed at a fixed large R. Since (q, InlEo) equals
A{ expip,q; and (q, |7, E°) equals A] exp ip;qs,
Eq. (2.11) again yields (2. 6) and (2. 7) after sta-
tionary phasing and normalization.

This derivation is seen to have much in common
with the one leading from (2. 1) to (2.7): Both
yield the same integral expression, one which re-
quires heuristic argument® to introduce new vari-
ables w and hence to obtain a useful integral ex-
pression. The neglect of the (E, E’) subtleties in
(2. 8) had, as their counterpart in (2. 1) to (2.7),
the use of (n,E® |n,E™) instead of (n,E'[n,E“.
Finally, and in effect summarizing those short-
comings, the integrand in (2. 1) and (2. 11) has
singularities which can only be legitimately re-
moved (or reduced) by a suitable canonical trans-
formation at the very outset in Eq. (1. 1) itself.
This step was done in Paper III and now, with con-
ventional coordinates, in Sec. IIL

One other shortcoming of (2.1)-(2. 11), more
minor, is that a certain term, exp[i(l,+1,,+1)1/2],
is missing in both (2.7) and (2. 11); the I’s are
orbital quantum numbers. Actually, in Papers I
and II a more careful starting point was used in-
stead of the somewhat quicker (2. 1)-(2.7) and this
extra term was obtained.'® The method for in-
cluding these terms when the Feynman propagator
is used does not appear to have been explicitly
given,

A third but minor defect lies in the appearance
of certain fractional terms in the phase (2.3). Ac-
tion variables J are related to quantum numbers »n
by the relationJ = (2 + 6)% or, in units of 7 =1,
2m(n + 8); the & depends on the particular degree
of freedom; its value is known and is usually 0 or
2. These J’s and their canonically conjugate angle
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coordinates w are used as the p’s and ¢’s for the
internal coordinates in the quick derivation (2. 1)-
(2.11). One obtains, thereby, an extra 3w term
in the phase (2. 3) of the wavefunction expip,q,,
i.e., inexp[2mi(n+ 3)w]). The 3w terms violate
single valuedness of the wavefunction. They can
be avoided by more careful argument. ! To be
sure, they have no effect on the final outcome (2. 7),
but they should not be there at any stage.

In passing we note for further use that not only
are the 2m(n + 6) and w canonically conjugate and
so satisfy {2n(n, + 0;), w,}=0,;, where {, } denotes
Poisson brackets, but also 2m; and w; are canon-
ically conjugate since {2m,, w;}=0,;.

IIl. SEMICLASSICAL WAVEFUNCTION WITH
CONVENTIONAL COORDINATES

When one uses action-angle variables for the in-
ternal motions and a radial coordinate for the re-
maining degree of freedom, the semiclassical
wavefunction for a collision typically consists of
only two terms, ! one for the ingoing motion and
the other for the outgoing motion. This feature is
one of the major simplifications afforded by use
of action-angle coordinates; when instead con-
ventional coordinates are used for a system con-
sisting of internal coordinates and a radial coordi-
nate, s coordinates in all, the semiclassical wave-
function is, as already noted, typically the sum of
2° terms. In the present section we shall illus-
trate the present transformation for simplicity for
the case of s =2, but the final results are general-
ized to any value of s in Sec. VI. The case of s=2
corresponds typically to a colinear collision of
three particles (in the center-of-mass system of
coordinates).

At large separation distances R the convenient
coordinates are the radial coordinate R and in-
ternal coordinates, including (when s is greater
than two) polar coordinates of the line of centers
of the collision partners. When the internal co-
ordinates are denoted collectively by g and the
totality of all coordinates are again denoted by q,
we have

q=(g,R) at large R. (3.1)

We shall need the phase integral to calculate the
semiclassical wavefunction at any point. Inas-
much as the phase integral [pdq+ [prdR between
any two points is invariant to a coordinate trans-
formation, we may write it as [ pdq, without
necessarily specifying the coordinates used to
actually perform the integration. In practice, one
frequently uses conventional coordinates (e. g.,
spherical polar, and vibrational). The end point
of the trajectory used to calculate the phase inte-
gral will lie either in a reactants’ or a products’

channel. The final internal coordinates and radial
coordinate may be that of reactants or of products,
therefore. We need not specify which at this point.

Each term of the semiclassical wavefunction is
of the form A expiF,(q, nE), F, satisfying Eq. (2, 2)
of Sec. II, where the q now denotes conventional
coordinates. [The # in (1.1), denoted by #, in
(2.1), is again used.]| The fact that there are many
such terms in the semiclassical wavefunction re-
flects the multivaluedness of the function F,. At
any given point q each branch of F, involves a
particular choice of initial signs of the various mo-
menta in p. For example, Fig. 1 gives a sketch
of some ingoing trajectories, each differing in
vibrational phase at any given R and each having
a negative radial momentum pr. On branch II the
vibrational component of momentum points toward
the lower dotted line, while on branch IV it points
away from that line, at the indicated value of R.
Each dotted line is the locus of intersection of
neighboring trajectories and serves as the locus
of turning points of the vibrational motion. There-

FIG. 1. Bketch of trajectories in (a) an entrance
channel, indicating some contributing to branch F} of
F, and some contributing to F}V, and (b) an exit channel,
the two branches of F, being F} and FiI, The dotted
lines denote caustics. B,(R,) differs for each trajectory
since the final n, #,, varies for each. B,y(R,) is the point
where, for any given R,, the p, for an isolated internal
motion having that #, would vanish [cf. {4.4)]. The B,
in Fig. 1(b) is the one appropriate for the middle tra-
jectory (labeled x).
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by, the upper and lower dotted lines will be re-
ferred to as the “outer” and “inner” vibrational
turning points, respectively.

A quantum state of the collision pair as a whole
is described semiclassically by an ensemble of such
trajectories, each trajectory differing in initial vi-
brational phase. In Fig. 1 some trajectories lie
on branch II while the others lie on branch IV, the
former being used to construct branch F} of F,
and the latter to construct FL¥. An unperturbed
wavefunction at any large value of R for this case
of s =2 has a phase (f; p,dq -k,R), plus a con-
stant (+ 7/4, as noted later) determined from the
usual connection formula at the turning point. y
denotes the branch I or IV. p, is the vibrational
momentum, the integration being at the specified
R and from the vibrational turning point B, to q.

The phase integrals needed for the phase of any
term (y) of the semiclassical wavefunction at arbi-
trary q are composed of two parts:

" ,
j"x“ﬂ’ P, dq= ;i:ﬁ:) p,dq + fq:p, dq , (3.2)
where q,(= (g,, R,)] denotes the initial point on the
trajectory at R,, a large R in the entrance channel
and outside the region of interaction of the collision
partners. At the given R,, the initial conditions
are chosen to conform with the given initial state!2
and one chooses the initial g, so that the trajec-
tory passes through the desired point g. The inte-
gral from By(R,) to ¢,(R,) is an integration at fixed
R, R;, from the lower vibrational turning point B,
to ¢,. The integral uses the appropriate sign of

p, for the branch y. The integral from g, to q in
(3. 2) is along the dynamical trajectory from q,

to q.

The phase of each term of the semiclassical
wavefunction at q relative to that at q, must also
take cognizance of the number of times N;, the
trajectory between q, and q, touches the dotted
lines in Fig. 1 (the caustics, i.e., the lines
formed by joining the turning points). Each time
the trajectory touches such a line the term suffers
a phase loss® of 7. We allow for this below.

Normalized to unit radial flux and to 6(n -»')
or equivalently’ to 276(E — E’)6(n —n’), the ingoing
wavefunction is
i(q, nE)=212 25

11,1V

1/2

| 82F}/ 8 0P, |

x expli(F}+ tn— 3N,m)], (3.3)
where P, denotes the totality cﬁ 2m’s and E:
P.=(2mn,E). (3.4)
F%(q, P,) is given by
FY4, Po)= foyp Pyda+Dg, Ry, (3.5)
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where the + and - signs in (3. 3) are for y equal to
II and IV, respectively. At large R in this incident
channel p is a constant pp, ; and equals — &, (since
7i=1) and so the F} given by (3. 5) and (3. 3) equals

F}(a,P,) = Jo «zp p,dq-k,R (large R; pr<0).
(3.6)

The part of the wavefunction associated with the
outgoing particles y,(q,nE) is given by a similar
expression, but now pp at large R is positive and
so y is I or Il when R is in a reactants’ channel.
The reflection at small R results in an additional
phase loss of 37. Thus, we have

¥s(q, nE)=272 T |s*FY/8qsep, |V*

1,111
X exp[i(F}+ 47— 3N, - 37)]

(R in reactants’ channel), (3.7

where the + and - signs are for y equal to IIl and [,
respectively. Ny is the number of reflections of
the trajectory from caustics, apart from the one at
small R already included in (3. 7).

When R is in the products’ channel, the system
has not necessarily undergone a reflection at
small R, and so the extra - 37 can be absent at
Eq. (3.7) in this case.

The wavefunction for the collision y*’ (q, nE) is

3%, nE)=9,(q, nE)+y4q, nE). (3.8)

We comment briefly on the pictorial description
of the trajectories in the branches. That for
branches II and IV has already been given [Fig.
1(a)]. For branches II and IV at large R all trajec-
tories relevant to (q |nE™’) are precollision trajec-
tories and so have the same amplitude. However,
for branches I and I at large R the trajectories
are postcollision trajectories and so have different
amplitudes; they are associated with different
final internal energies of the system. Thus, suf-
ficiently adjacent trajectories will still intersect
at turning-point surfaces (caustics) but now each
caustic surface is no longer, in the example of
Fig. 1, a straight line [Fig. 1(a)], but rather is
curved, as indicated crudely and incompletely in
Fig. 1(b). For each trajectory of branch I or
III in the postcollision region one can nevertheless
still find a point, which we designate as B,(R,) at
any given R, where the p, for each now separable
internal coordinate would vanish if that internal
motion was allowed to occur alone at that R,. This
B,(R,) is used later to define a generating func-
tion G} given by Eq. (4.4). B,(R,) varies from
trajectory to trajectory in this postcollision re-
gion because the amplitude of the internal motion
is different for the different trajectories.

We note, incidentally, that the trajectories
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usually occur in pairs in which py; for one member
of the pair is opposite in sign to p;y for the other
member, at any R [Fig. 1(a)] and similarly (and
as a result) in which p; for one member is opposite
in sign to pyy; for the other [Fig. 1(b)]. This be-
havior is responsible for the fact that there are
usually two stationary phase points of the integrand
in (1. 2) for each final internal state, for a system
with one internal degree of freedom (27 for N in-
ternal degrees of freedom).

IV. CANONICAL TRANSFORMATION OF COORDINATES
AND UNITARY TRANSFORMATION OF (q |zE (*))

As noted in the introductory section, we shall
seek a transformation of coordinates to coordinates
in which the usual crossings of adjacent trajector-
ies have been removed. A simple coordinate trans-
formation would not suffice, since such properties
of the trajectories are invariant by the latter. In-
stead, one needs a more general transformation,
namely a canonical transformation, in which,
therefore, the new coordinates are expressed as
functions of both the old coordinates and the old
momenta. We employ a canonical transformation
in which all but one of the new coordinates describ-
ing a point on any trajectory are now constants of
the motion and in which the remaining coordinate
is, apart from an additive constant, time.

A canonical transformation of coordinates from
q to Q also gives rise, at the same time, to a unit-
ary transformation of the semiclassical wavefunc-
tion, from {q |#E“’) to ( InE®*’) and from
@ |mE'") to (Q ImE’). The relation between
canonical transformations of coordinates and unit-
ary transformations of semiclassical wavefunctions
has been discussed by several authors.® The change
of the phase and of the pre-exponential factor in
the semiclassical wavefunctions is described in the
following way [cf. particularly, Egs. (4.2) and
(4. 3) below].

If the phase of the original and transformed
wavefunctions are F,(q, P,) and F,(Q, P,) and if
G (g, Q) is the generating function for the canonical
transformation from (q, p) to (Q, P), the former
are linked by the usual classical relation, °

FZ(Q) Pn):FZ(qy Pn)_Gl(qy Q)-

[Equation (4. 1) is obeyed since the F,’s and F,’s
satisfy a Hamilton—- Jacobi equation, and hence are
generating functions, for transforming from Q, P
orq,ptoQ,, P, 9] When, as the in'the present case,
the generating function is given as a function of old
coordinates and new momenta G,(q, P,) then from
the standard relation between G, and G, we have

FZ(Q’ Pn):Fa(q’ Pn)_GZ(qs P)+QP' (4- 2)

The relation between the new and the old pre-

(4.1)
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exponential factors is®

| 9%F, /2 QoP, | /2
= | 8°F,/0q 8P, |V/2|8*G /aqaQ |2

=19%F,/0q 8P, |2 ] %G, /oq oP [ /2, (4.3)

In all of the above we have not specified which
generating function G, we shall use. Equations
(4. 1)-(4. 3) are valid for any choice of G,. How-
ever, in order that the new coordinates @ have the
property that all but one are constants and that
the remaining one is time, we choose for G, a
multivalued solution of the Hamilton—-Jacobi equa-
tion (2.2), Such a G, will be seen below [cf.

Eq. (4.9)] to lead to new coordinates Q with this

desired property. G} is used for branch y and is
calculated relative to a vibrational turning point

B,(R;) in an outgoing channel at large R, R,:

as(R,) 4

Gg (q7 P) = fB:(R:) py dq + ‘/‘;2 py dq*'pR.ZiEZt %’”y

4.4
where pg , is the final value of p g on this traanc- )
tory passing through q. The integration from B,
to g, is at fixed R, and the integral from q, to q
is along a dynamical trajectory. Differentiation
confirms that 8G}/aq equals p, as it should. The
+47 or — 37 is used when p, at g, points toward
or away from B, respectively. When v refers to
an outgoing reactants’ trajectory, one would also
include the — 37, included earlier in (3. 7).

Since the integration in the right-hand side of
(4. 4) begins in an exit channel (reactants’ or
products’), P describes only quantum numbers
appropriate to that exit channel. In contrast, P,
utilizes only the quantum numbers appropriate
to the entrance channel,

The P in Eq. (4.2) must be chosen so that the
right-hand side of (4. 2) is independent of q, as
implied by the arguments of fz on the left-hand
side. Thereby, for all q, P is chosen so that

8[F}(qa, P,)-G}(q, P)l/8q=0 (4.5)

and hence so that the p, given by 8F}(q, P,)/dq
matches that given by 8G}/aq, for allq. I#,
denotes the finaln’s for this trajectory, compari-
son of (4.4) with (3. 5) and (3. 2) shows that the
p,’s are matched by setting

P= P;ZE (27, E)
in (4. 2).

(4.6)

With these equations, (4.2) then becomes, on
integrating by parts,
_ p[B,(Ry)] .
Fy@, Po)=- fis,rpy 440,+QP7, Fam.  (4.7)

The significance of the Q’s conjugate to the P’s
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in (4. 6) follows from (4. 4) and from the Hamilton—
Jacobi equation (2. 2) satisfied by G}; Q is given by

Q=9 G}/8P. (4.8)

Equation (2. 2) implies that the new Hamiltonian
H(Q, P) is one of the P’s. Hamiltonian’s equations
then yield

P=8H/3Q=0,
Qp=2dH/®E=1, @=08H/8P=0 (P+E), (4.9)
where @y is canonically conjugate to E.

Thus, all @'s but @5 are constants of the motion
for a given P(=P;_) and hence for a given trajec-
tory. These constant @’s will be denoted by w.

Qg will be denoted by 7, being a time variable, ac-
cording to (4. 9). Since the i calculated from

(4. 8) and (4. 4) is constant for the trajectory, we
may obtain this value at any q, and it is convenient
to choose q=(g,, R,). At sufficiently large R,, the
frequencies vy[= 8 Hy/8(277)] are constant, and the
equations then yield!®

_ LRy . .
W=V 152 (R, [@dq/q)-vo(R5/R3).

Thedifferent branches y =1, IIlwill map intodif-
ferent values of win thistransformation, since w is
determined by both ¢, and by the signof p, at R,. The
transformation thereby reduces the number of
terms in Eq. (3.7) for ¢; from two to one in this 2-
dimensional system. In an s-dimensional system,
the corresponding 25 terms in Py that would be
present in (3. 7) would also be reduced to one.

(4.10)

Further, when R, is large, Eqs. (4.4) and (4. 8)
show that when i; is considered, pj is negative
and so 7 (=Qg) is large and negative, When y; is
considered, pj is positive and so 7 is large and
positive. Thus, the present transformation serves
to condense the four terms in (3.8) (and, inthe s
dimensional case, 2°terms) into a single term.
The factor of 272 in (3. 3) and (3. 7) now becomes
unity because of the nature of the mapping and
hence the normalization before and after the trans-
formation: One maps a single ¢, with two differ-
ent signs of p, onto two different w’s. The trans-
formed and appropriately normalized wavefunction

(QInE® is

(Q|nE“= | 8*F,/8Q 0P, | /2expi(F,- N7),

_ (4.11)
where F, is given by (4.7) and where N is the num-
ber of times the trajectory touches the upper
caustic between q, and q,. Equation (4. 11) in-
cludes all four possible cases generated by the
+37s in (3.7) and (4. 4).

Noting that @ denotes the constants w and the
time variable 7 one might expect that apart from
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the ET term present in F, (in QP,;Z) the wavefunc-
tion (Q IzE“’) is independent of the values of R,
and R, present in F,. This independence is con-
firmed in the Appendix.

As noted earlier F}(q, P,) can be regarded as a
generating function for canonically transforming
(q, p) to (Q,, P,), since it satisfies the Hamilton—
Jacobi equation (2. 2). The “new” Hamiltonian H
is seen to be E, which is one of the variables,
From Hamilton’s equations of motion, Q'" equals
9H/8 P, and so is zero unless the P, is E, in which
case the corresponding Qn is unity, and so this Q,
is a time variable. Since the other Q,’s are seen
to be constants, they will be denoted by @° and can
be evaluated via

#'=Q,=8F}/ 8P, (P,=2mn) (4. 12)

at any q.
namely R;, and so find from (3.6

It is convenient to choose a q at large R,
)10

—0 .2y (Ry) . .
W=y fp, p [@2/7) = voRy/R,. (4.13)

These w°’s clearly differ from #’s, as one sees by
comparison with (4. 11). The #%’s and the #’s are
the same as those in Paper III.

Finally, since Q, equals 8F}/8 P, and thence
from (4. 2) equals 8F,/8P,, the pre-exponential
factor in (4. 11) can be rewritten to yield

(Q|nE™)=|2Q,/8Q [V 2expi(F,~N7). (4.14)

V. TIME-REVERSED WAVEFUNCTION (g | nE'®)
AND (Q|mE'®) )
The wavefunction {q ImE"')), where mE’ denotes

properties for an exit channel, is obtained from
(@ | mE'™) by time reversal. The latter can, in
turn, be obtained from the arguments in Sec. III,
noting only that the roles of R, and R, are inter-
changed, since mE’ refers to the exit channel.
Thereby, we may write

@ [mE )=y m+ Vsym,
where, by analogy with (3. 3),
Yim=2"22 | 9°F,(q, Pn)/2qdP, |/
7

(5. 1)

X expi[F}(q, Pn)t 17~ 3N;,m], (5.2)

where now
q
FYa, Pn)= f5,cr,p Pydd —kuR,
ag(Rp) q
= ,fBz(Rz) pydq"' ft‘lz pydq_kaZ

and Ny, is the number of times the trajectory
touches a caustic between q; and q. The ¥’s in

(5. 2) are those corresponding to ingoing particles.
P,, denotes

P, =(21m, E’).

(5.3)

(5. 4)
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Once again, yy,, is given by an expression simi-
lar to (5. 2), apart from an extra — ;7 in the phase,
when both R, and R, are in a reactants’ chamnel, and
use of appropriate 7’s.

(¢ |mE’®) is obtained from the above equations
by reversing the signs of all momenta. The sign
of pg in the §;,,, contribution to (g | mE’' ) is
thereby the same as that in the ; contribution
(g 1mE"’) and similar remarks apply to ¢y, and
¥;. Thus, when the transformation to w7 is made,
the transformed phases in each of these pairs will
still be paired, since they will each have the same
set of values of 7.

The transformation of {q | mE’ )y using the
generating function G} given by (4. 4) yields

(Q|mE" Y= expiQP,, (5. 5)

all other terms in F,- G, cancel, since the inte-
grations in this F, and G, both begin at B,(R,) in
an exit channel.

VI. § MATRIX
From (1. 1) we have

Snn®(E -E')= [ (mE'” |Q)dQ(Q [nE ™).
(6.1)

Equations (1. 1) and (6. 1) presume that the state
functions have [E®’) and | mE’“’) are normalized
to 8(E —E")5,,.. In the present case, the wave-
functions (4. 14) and (5.5) were normalized to
2m8(E —=E")8(n —n'), and so should be multiplied
by (27)"'%2. These equations and (6. 1) then yield,
on integration over @5, i.e., over 7, a factor
which cancels the & function (we use real 7, as
discussed below) and which leaves

Spn=J | 88°%/ 0w |1/2 expi(F, - Nn)diw, (6.2)
where

— p{B2) _ —_

F4E—£(Bli qdp+ 2n(fi,— m)w. (6.3)

w is defined by (4. 11) and N was defined immedi-
ately after (4. 14). The integral in (6. 2) can be
transformed into one over w:

1 —_
Sun= J5 0o |830/08%° |V 2expi(Fy— N1)dw®  (6.4)

and @° varies from O to 1,

In the Appendix, it is shown that (4. 14), (5.5),
and (6. 4) are independent of the choice for R; and
R,, Further, in obtaining (6. 2) from (6. 1) real
7 was used, i.e., systems were treated where
products were reached from reactants without
tunneling,

VH. EXTENSION TO HIGHER NUMBER OF DIMENSIONS

When the number of coordinates is greater than
two, the phase of the unperturbed wavefunction at
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large R, Fl(q, P,), can be written as

F(Z)(q, Pn):F(l)(q: ql)+f2(q1; Pn) ’

where F? is a phase integral [ pdq, integratedfrom
q, to q, P, denotes the quantum numbers and ener-
gy as in (3. 4), and f; is a standard generating func-
tion!! for transforming the conventional internal
coordinates q, to action variables [the latter equal
(n;+0;)h or in units of # =1, 2n(n;+06;)]. A vibra-
tion contributes to f, the term [pdg, integrated
from vibrational turning point B,(R,) to q;. The
radial, orientational, and polar coordinates also
contribute to f, by a standard expression, ! which
we shall denote by f3(q;, Pn)+Pg,R:. In the system
of Sec. IIfq(q,, P,) was pg Ry

Equations (3. 2) and (3, 7) remain unchanged, but
of course p,dq denotes a sum of terms, as does
p,dq. Equation (3. 3) again applies, except for a
madification of the 7/4 terms as discussed below.
Equations (3. 5) and (3. 6) again follow, but now the
right-hand side also contains the term f §(q,, P,).
Equations (4. 1)-(4. 3) are unaffected. The right-
hand side of (4.4) contains additional + 4 terms
(discussed below) and f3(qs, P). Equation (4.7)
is unaffected apart from the ¥ i 7 terms. The ex-
pression (4. 8) for Q and hence for w yields an
angle variable w, minus the last term of (4. 10), X

The terms in Sec. II involving + 37 and N, [Eq.
(3. 3)] can also be immediately extended to a high-
er number of dimensions. For example, for
three coordinates (s = 3), one has instead of the
open-ended rectangle in Fig. 1(a) an open-ended
box. The edges of the rectangle were the caustics
and now the sides of the box form the caustic sur-
faces. The turning point B,(R,) in Eq. (3.2) is now
a turning point for both vibrations and so is chosen
to lie at the intersection of a preselected two of the
four caustic surfaces at a given R;, which we will
call “near caustics.” At any other R, this locus
of points on this intersection, will be denoted by
B(R). One of the two near caustics plays the same
role, for one of the internal coordinates, as that
played by the lower dotted line in Fig. 1(a) or (b),
while the other plays a similar role for the second
internal coordinate.

The remaining two caustics surfaces will be
called “opposite caustics.” One of these plays the
same role for one of the internal coordinates as
that played by the upper dotted line in Fig. 1(a) or
(b) and the second plays a similar role for the
other coordinate. The integration in (3, 2) from
B, to q, is an integration first over one of the in-
ternal coordinates, holding R; and the other coordi-
nate fixed, until the desired component of q, is
reached and then over the second internal coordi-
nate, holding the other two coordinates fixed, until
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its desired component of q, is also reached. The
integral from g, to q in (3. 2) is again an integral
over a dynamical trajectory.

The sum in (3, 3) now has four terms instead of
two, the four corresponding to the four possible
combinations of signs of the two internal momenta
at R,. The * 37 in (3. 3) is replaced by + 37+ 37,
the plus signs being used when both internal mo-
menta at R, point toward B,(R,), the two minus
signs are used when they point away form B,(R,),
and the remaining two sign combinations correspond
to the two remaining ones of the p’s.'® The N; in
(3. 3) is again the number of times the trajectory
touches a caustic surface. The same remarks
apply to (3.7), there now being four terms in the
latter and the + : 7 being replaced by + 57+ 7.
Similar remarks apply to (4.4), (4.7), and (5. 2).
B,(R,) is the value of B(R) at R=R,.

One obtains two w’s one for each of the internal
coordinates and each of the form (4. 10). One
also again obtains (4. 11) N now being the number
of times the trajectory touches opposite caustics
between q, and q,. The equations of Sec. VI again
follow.

Similarly, the equations in Sec. VI are obtained
for any dimensionality s.

APPENDIX: INDEPENDENCE OF WAVEFUNCTIONS AND
EQ. (6.2) ON R, ANDR,

It is first shown that F,— ET in (4.7),

_ pIBy (Ry) 1

FYQ,Pn)=- [ym,crp1 4dp,+ QP ¥im,  (4.7)
is independent of the choice of R,. To this end it
is useful throughout this Appendix to subdivide a
trajectory at large R, into R intervals, each inter-
val being bounded by successive R’s for which the
trajectory touches the upper caustic. Such an in-
terval will simply be called an R interval. The
— [ qdp in (4.7) is independent of the choice of R,
for all R,’s in this R interval: — /R dpy makes no
contribution since py is constant at large R;
~ [gdp is unchanged, since the upper limit of this
integral is always the p at the lower vibrational
turning point, regardless of R,.

If, however, R, is in the next R interval of the
trajectory at larger R, the contribution - [gdp
has increased by an amount equal to its value over
one vibrational cycle, namely §pdg, which in turn
equals 27(7 5+ 3); — [ Rdpy is again unchanged.

The w in (4. 7) is independent of R,, as long as
R, lies in the given R interval: dw equals
voldg/d—d R, /R), i.e., vodt—dt)or 0. At the
boundary between two adjacent R intervals, &
changes discontinuously by — 1 when R, is changed
from just less than to just greater than the R at
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the boundary. [The value of v, [33(dg/¢) in (4. 10)
approaches + 3 or — 3 when g, becomes the upper
turning point, depending on the sign of 4, ] Thus,
the 277,w in (4.7) is constant in any given R inter-
val but jumps by — 277, when R, is placed in the
adjacent R interval at larger R.

The N in (4. 15) is unchanged when R, is varied,
as long as R, remains in the given R interval, but
jumps by unity when R, is placed in the adjacent
R interval at larger R.

Thus, as long as R, remains in a given R inter-
val, (4.7) shows that F,— ET remains unchanged.
When R, is placed in the next R interval at larger
R, F,— ET changes by 2n(7i,+ 3) - 2f7i,— 7, from
the above arguments. Thus, it toc remains un-
changed. Similar remarks apply to changes of R,
to any other R intervals at still larger R,. The
pre-exponential factor in Eq. (4. 14) is also un-
changed, it being equal to | 8w/ 8w° |*/2,

We consider next the effect of a change of R; on
FZ—ET. This time % is unaffected, since its
definition involves only R,. — [ Rdpy is of course
unaltered; — [gdp is unchanged as long as R, lies
in a given R interval, but increases by §p dg,

i.e., by 2n(n+3), when R, is placed in the adjacent
R interval at larger R;,. N also stays constant in

a given R interval and increases by unity when R,
is in the adjacent interval at larger R. Thus, a
change in R, either causes F,— ET to remain con-
stant or, when R, is placed in the adjacent R inter-
val at larger R to increase by 27#, a change which
leaves expi(F,~ E7) unaltered.

Again, if one considers the 2mmw in the expo-
nent QP,, in Eq. (5.5) for (Q Im E'™"), w re-
mains constant in a given R interval but changes
by unity when R, is placed in an adjacent R inter-
val. However, the exp 2mimw in (@ |mE’ )
changes only by exp 2mim and hence is unaffected,
m being an integer.

From these arguments one also sees that the
integrand in (6. 2) is also unchanged when R, or
R, are altered.
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