
THE JOURNAL OF CHEMICAL PHYSICS VOLUME 59, NUMBER 9 1 NOVEMBER 1973 

Semiclassical S -matrix theory. VI. Integral expression and transformation of conventional 
coordinates * 

R. A. Marcus 
Department of Chemistry, University of Illinois, Urbana, Illinois 61801 

(Received 16 April 1973) 

Sometimes, as in reactive systems, action-angle variables are not conveniently defined at all points of the 
trajectory and recourse must be made to conventional coordinates. A simple canonical transformation 
converts the latter to coordinates of which one is time and the remainder are constant along the trajectory. 
The transformation serves to remove the singularities of the semiclassical wavefunction at the turning points 
of the trajectory. It yields, thereby, an integral expression for the S matrix by having produced 
wavefunctions which can be integrated over all space. The result supplements that of Paper III [R. A. 
Marcus, J. Chem. Phys. 56, 311 (1972)], which was derived for systems for which action-angle variables 
could be defined throughout the collision. 

I. INTRODUCTION 

Several derivations of a semiclassical expres-
sion for the 8 matrix are available, of different 
degrees of length and rigor. 1,2 (Other related 
semiclassical studies are given in Ref. 3.) Be-
cause of the many papers which are now appearing 
utilizing the method, 1,2,4 it is useful to review 
briefly the existing derivations and to generalize 
where needed. 

In Sec. II we summarize a quick and intuitive 
derivation, using either the wavefunction1 or the 
Feynman propagator2 as a starting point. A limi-
tation of such a derivation is pointed out: While it 
does lead to the correct stationary phase and uni-
form expression, it does not, without "fudging," 2b 
lead to a valid integral expression. The desirabil-
ity of having an integral expression for 8 mn is 
particularly true for systems for which the value 
of the integral does not arise almost exclusively 
from small neighborhoods of the stationary phase 
points of the integrand. 5 

Another derivation proceeds with more rigor 
from the standard expression for the 8 matrix1b: 

8mn1i(E'-E)=lim (mE'IU1 (t 2 ,t1) InE) 
. t2--

t 1--oo 

= (mE' e-) I nE e+», (1. 1) 

where U1 is the evolution operator of the system 
in the interaction representation and where the 
second equality in (1. 1) arises when one introduces 
the appropriate definition of the limits t 2 - + 00 and 
t 1 - - 00. The state vector 'mE' e-» describes the 
state which is time reversed from ImE' e+'). Equa-
tion (1. 1) was first used in Paper III to derive an 
integral expression for Smn for systems for which 
one can define action-angle variables for the inter-
nal coordinates throughout the collision. In the 
present paper we treat systems for which such a 

5135 

definition has either not been possible or not con-
venient. 

We note that Eq. (1. 1) is not in itself an integral 
(it is merely a scalar product), but when a coordi-
nate representation of the vectors ,nE(+» and 
, mE' <-l) is used, it can be evaluated as one: 

(mE' e-) I nE 1.» = J (mE' (-) I Q) dQ (Q InEe+» , 
(1. 2) 

where Q denotes the coordinates used. However, 
to evaluate this integral numerically it is neces-
sary to use wavefunctions (Q' nE e+» and (Q , mE' e-» 
which are reilsonably accurate over all space. 
When Q consists of a radial coordinate and inter- . 
nal coordinates, the semiclassical forms of the 
wavefunctions (Q 'nE e+» and (Q 'mE' e-» break 
down badly in certain regions and so may not be 
used for numerical evaluation of the integral in 
(1. 2). [Such coordinates can typically still be used 
in (1. 2) when (1. 2) is evaluated by a stationary 
phase or related method, wherein essentially all 
of the value of the integral is contributed from 
certain very small regions of Q space. ] 

This breakdown of these semiclassical wave-
functions is well known, and occurs at "caustics." 
The latter consist of points or surfaces where 
neighboring classical trajectories propagating the 
semiclassical wavefunction intersect. An example 
of this intersection has been given by Wong and 
Marcus1: There, it was seen that the neighboring 
trajectories corresponding to final states of the 
collision system with neighboring (but different) 
final quantum numbers crossed at large (and at 
small) separation distances. (This crossing occurs 
always, in fact, after every inelastic or reactive 
collision.) The crossing itself gives rise to a 
singularity in the wavefunction because of con-
servation of probability flux: The perpendicular 
"distance" between neighboring trajectories (in 
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higher dimensions the "cross-sectional area") 
multiplied by the square of the local amplitude 
of the wavefunction and by the local velocity normal 
to that cross section yields the local flux. When 
the cross-sectional area of a bundle of trajectories 
vanishes, e. g., when there is an intersection of 
the trajectories, the amplitude of the semiclassi-
cal wavefunction must become infinite to conserve 
probability flux. In summary, the semiclassical 
wave function becomes singular where adjacent 
trajectories cross. 

Thus, to evaluate the integral in (1. 2) numeri-
cally it is necessary to use a different set of co-
ordinates Q than the radial and internal coordi-
nates. Another set of coordinates Q is the follow-
ing: a point moving along a trajectory can be de-
scribed by coordinates all but one of which are con-
stants of the motion and the remaining one of which 
is time (or time plus a constant). In such a co-
ordinate space the neighboring postcollision tra-
jectories cannot actually cross each other at large 
separation distances, the previously mentioned 
singularity at large separation distances has thus 
disappeared, and the coordinate representatives 
(Q I nE(+» and (Q I mE'(-» become more suitable 
for use in a numerical evaluation of (1. 2). The 
better the choice of the transformation to the new 
Q 's, in the sense of the accuracy of the new semi-
classical wavefunctions, the more accurate will be 
the resulting numerical evaluation of (1. 2) using 
those wavefunctions. In systems where the new 
final constants of the motion pass through an ex-
tremum, when one goes from a particular trajec-
tory to a neighboring one, one again has a type of 
"crossing of trajectories" ( an overlap of adjacent 
trajectories) and consequently less accuracy in the 
numerical evaluation of (1. 2). Numerical ex-
amples of these cases will be given in a later pa-
per. 

The transformation to a new set of coordinates 
of which all but one are constants of the motion and 
the remaining one is time was employed in Paper 
III. There, ang.le coordinates were used for the 
internal degrees of freedom instead of, as now, 
conventional coordinates, as a starting point. 

In Sec. III we first recall the semiclassical 
wavefunction expressed in terms of conventional 
coordinates. The use of such coordinates leads 
to the presence of a number of terms in the wave-
functions, in fact, typically 28 terms for a system 
of s coordinates. The terms contain their usual 
singularities at turning-point surfaces (caustics). 
A simple and previously known canonical trans-
formation is given in Sec. IV. It leads to new 
variables, of which one is time T and the others 
are constants of the motion Wi for each trajectory. 

By removing the usual singularities this trans-
formation also simplifies the semiclassical wave-
function, which becomes only one term. 

The time-reversed wavefunction is given in Sec. 
V and is transformed there into one expressed as 
a function of wand T. Equations (1. 1) and (1. 2) 
then lead to an integral over wand T, given in 
Sec. VI. The T integration cancels the 13 function 
in (1. 1) and gives the integral expression for 5mn • 

The result is the same as that in Pape r III. 

In two respects the present derivation is more 
straightforward than that in Paper III, the extra terms 
present in the original semiclassical wavefunctions 
notwithstanding. Obtaining the present time-re-
versed wavefunction is significantly simpler than 
that in Paper III: In the latter, one had to time 
reverse the action-angle variables and there are 
two different kinds of action-angle variables with 
different time-reversal behavior. Now, one sim-
ply changes the sign of all momenta. Secondly, 
Paper III tacitly involved two canonical transforma-
tions one from conventional to action-angle co-, -
ordinates and a second from the latter to wand T. 

Now, a single and well-known transformation suf-
fices. 

II. HEURISTIC DERIVATION FOR THE 

SEMICLASSICAL Sn2 n , 

To illustrate some features of the derivation in 
Sec. III it is useful to consider first a "qUiCk" de-
rivation which assumes that the 5-matrix element 
for a transition for state n 1 to n 2, 5n2n1, can be 
written as a matrix element (n2E O In 1E I +» and 
which also uses action-angle variables for the in-
ternal coordinates; n1 denotes the quantum num-
bers of the system at some time t 1 before the col-
lision (t 1- - 00) and 1Z2 denotes those at some time 
t after the collision (t 2 - + 00 ). The superscript 

2 • 
(+) indicates a state which evolves durmg the col-
lision and the corresponding collisional wavefunc-
tion is denoted by (q 11Z 1E(+». (q denotes 
an unperturbed wavefunction. The totality of co-
ordinates are denoted by q, which in turn denotes, 
at large R, the radial coordinate R and the angle 
coordinates, the latter denoted collectively by q. 

We have, by this argument, 

5 = (n 2Eo I 1Z 1E(+» = J (n2E o I q2)dq2< q2/ 1Z 1E(+», 
"2"1 (2. 1) 

where the integration over dq 2 is performed at a 
fixed final large value of R, R 2 , and hence where 
the integration volume is written as dq 2 instead of 
dq2' The semiclassical wavefunction (q21 1Z1E (+» is 
written as A expiF 2(q2, N1E) (in units our = 1), where 
F 2 is a solution of the Hamilton-Jacobi equation: 

H(q, 8FJaq)=E. (2.2) 
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Here, aFJ aq has been written for the momentum 
p. Thereby, along a trajectory during the collision 
we have, in the present variables, 

Jqa 
Fa(qa, nE)= pdq+P1q1 q1 (2.3) 

A sum over all coordinates is intended in (2.3), but 
pdq and pq are used for notational brevity. 

The unperturbed wavefunction (qa I naE is 
AgexpiFg(qa, naE), where Fg satisfies the Hamil-
ton-Jacobi equation at fa= +00: 

(2.4) 

H ° being the Hamiltonian for the isolated particles. 
Thereby, in the present variables, 

Fg(qa, nzE) = pzqz . 

One finds, after stationary phasing (2. 1), 

Snan1 = (naEo In 1E (+» = I iaaF J an1 anz Ilia 

(2.5) 

xexpiF4(n aE, n 1E), (2.6) 

where 

( l qa JPa F4 naE, n1E)= pdq+ P1q1-pzqa=- qdp. 
q1 P1 

(2.7) 
The pre-exponential factor in (2.6) is chosen so as 
to make the S matrix unitary. The stationary 
phasing of the integrand in (2. 1), plus introduction 
of the values for (qa InaEo) and (qa In1E(+\ en-
sure that the qa in (1. 2) satisfies the condition that 
a(F a - Fg)/ aqa = 0 and hence that the Pa's in Fa and 
Fg are matched. 

The above derivation of (2.6) for Snan1 is, on 
the pro side, quick and, on the con side, oversim-
plified. As already noted it does not, without 
fudging, yield a valid integral for Snan1' This 
shortcoming stems in part from (a) the use of, 
in the integral (2.1), an expression for (qa1n1E<+» 
for all qa which is not everywhere valid (the pre-
exponential factor A becomes very inaccurate at 
certain intervals of qa) and (b) from using 
(naEO I n1E(+» instead of Eq. (1.1) for Sn , . 

a 1 

Similar comments apply to an analogous deriva-
tion based on the Feynman propagator, a which we 
recall here to emphasize the points noted earlier. 
Here, one recognizes that the S matrix is given by 
the first half of (1. 1) but, in a quick derivation, 
neglects the 0 function and hence neglects the dif-
ference between E and E' in the second half of 
(1. 1). a Thereby one writesa 

S =(n EO I eIHotae-IH(ta-t1\e-IHot1 In EO) 'an1 a 1 
=e IEUa- t 1) (naEo I e-IH (ta-t 1) / n1E o) 

=e IE (tz-t 1) j j (naEo / qa)dqa (qa/ e-IH (ta-t 1) /q1) 

xdq 1 (ql / n 1EO) • (2.8) 

The integrations are performed at a large fixed 
R1 and Ra (initial and final R) and hence dqa and 
dq 1 are used instead of dqa and dql' 

The semiclassical form of the Feynman propa-
gator can, apart from a normalization constant, 
be 'shown to be 6 

(qal e-IH (ta-t 1) Iq1)-e IS (qa,q1), 

where S is the integral of the Lagrangian L: 

s= fa L(q, q, f) df. t1 

(2.9) 

(2.10) 

Since L equals Plz - H, one obtains from the last 
three equations, apart from a normalization con-
stant, 

Snn -jj(naEOlqa)dqa a 1 

(2.11) 

where, as in (2.1), the integration is again per-
formed at a fixed large R. Since (q1 I equals 

(qalnaEo)equalsAg expipaqa, 
Eq. (2.11) again yields (2.6) and (2.7) after sta-
tionary phasing and normalization. 

This derivation is seen to have much in common 
with the one leading from (2. 1) to (2.7): Both 
yield the same integral expression, one which re-
quires heuristic argument2b to introduce new vari-
ables iii and hence to obtain a useful integral ex-
pression. The neglect of the (E, E') subtleties in 
(2.8) had, as their counterpart in (2. 1) to (2.7), 
the use of (naEo In 1E(+» instead of (n aE'<-lln 1E(+». 
Finally, and in effect summarizing those short-
comings, the integrand in (2. 1) and (2.11) has 
singularities which can only be legitimately re-
moved (or reduced) by a suitable canonical trans-
formation at the very outset in Eq. (1. 1) itself. 
This step was done in Paper ill and now, with con-
ventional coordinates, in Sec. III. 

One other shortcoming of (2.1)-(2.11), more 
minor, is that a certain term, exp[i(l'1+l'a+ 1)1T/2], 
is missing in both (2.7) and (2. 11); the l's are 
orbital quantum numbers. Actually, in Papers I 
and II a more careful starting point was used in-
stead of the somewhat quicker (2.1)-(2.7) and this 
extra term was obtained. 1a The method for in-
cluding these terms when the Feynman propagator 
is used does not appear to have been explicitly 
given. 

A third but minor defect lies in the appearance 
of certain fractional terms in the phase (2.3). Ac-
tion variables J are related to quantum numbers n 
by the relation J = (n + 0) h or, in units of n = 1, 
21T(n + 0); the 0 depends on the particular degree 
of freedom; its value is known and is usually 0 or 
t. These J's and their canonically conjugate angle 
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coordinates ware used as the P's and q's for the 
internal coordinates in the quick derivation (2. 1)-
(2.11). One obtains, thereby, an extra tw term 
in the phase (2.3) of the wavefunction expiP2q2, 
i. e., in exp [21Ti(n + t)w]. The tw terms violate 
single valuedness of the wavefunction. They can 
be avoided by more careful argument. 1 To be 
sure, they have no effect on the final outcome (2. 7), 
but they should not be there at any stage. 

In passing we note for further use that not only 
are the 21T(n + 6) and w canonically conjugate and 
so satisfy {21T(nl + ( 1), wJ}= 611 , where {, } denotes 
Poisson brackets, but also 21m1 and WI are canon-
ically conjugate since {21mj, wJ}= 611 • 

III. SEMICLASSICAL WAVEFUNCTION WITH 
CONVENTIONAL COORDINATES 

When one uses action-angle variables for the in-
ternal motions and a radial coordinate for the re-
maining degree of freedom, the semiclassical 
wavefunction for a collision typically consists of 
only two terms, lone for the ingoing motion and 
the other for the outgoing motion. This feature is 
one of the major Simplifications afforded by use 
of action-angle coordinates; when instead con-
ventional coordinates are used for a system con-
sisting of internal coordinates and a radial coordi-
nate, s coordinates in all, the semiclassical wave-
function is, as already noted, typically the sum of 
2$ terms. In the present section we shall illus-
trate the present transformation for simplicity for 
the case of s = 2, but the final results are general-
ized to any value of s in Sec. VI. The case of s = 2 
corresponds typically to a colinear collision of 
three particles (in the center-of-mass system of 
coordinates ). 

At large separation distances R the convenient 
coordinates are the radial coordinate R and in-
ternal coordinates, including (when s is greater 
than two) polar coordinates of the line of centers 
of the collision partners. When the internal co-
ordinates are denoted collectively by q and the 
totality of all coordinates are again denoted by q, 
we have 

q '" (q, R) at large R. (3. 1) 

We shall need the phase integral to calculate the 
semiclassical wavefunction at any point. Inas-
much as the phase integral f pdq + f P R dR between 
any two points is invariant to a coordinate trans-
formation, we may write it as f pdq, without 
necessarily specifying the coordinates used to 
actually perform the integration. In practice, one 
frequently uses conventional coordinates (e. g. , 
spherical polar, and vibrational). The end point 
of the trajectory used to calculate the phase inte-
gral will lie either in a reactants' or a products' 

channel. The final internal coordinates and radial 
coordinate may be that of reactants or of products, 
therefore. We need not specify which at this point. 

Each term of the semiclassical wavefunction is 
of the form A exp iF 2(q, nE), F 2 satisfying Eq. (2.2) 
of Sec. II, where the q now denotes conventional 
coordinates. [The n in (1.1), denoted by n 1 in 
(2.1), is again used.] The fact that there are many 
such terms in the semiclassical wavefunction re-
flects the multivaluedness of the function F 2. At 
any given point q each branch of F 2 involves a 
particular choice of initial signs of the various mo-
menta in p. For example, Fig. 1 gives a sketch 
of some ingoing trajectories, each differing in 
vibrational phase at any given R and each having 
a negative radial momentum P R. On branch II the 
vibrational component of momentum points toward 
the lower dotted line, while on branch IV it points 
away from that line, at the indicated value of R. 
Each dotted line is the locus of intersection of 
neighboring trajectories and serves as the locus 
of turning points of the vibrational motion. There-

·1 
R 

·1 
R 

FIG. 1. Sketch of trajectories in (a) an entrance 
channel, indicating some contributing to branch FP of 
F2 and some contributing to FF, and (b) an exit channel, 
the two branches of F2 being and The dotted 
lines denote caustics. B 2(R 2) differs for each trajectory 
since the final n, n2' varies for each. B2 (R2) is the point 
where, for any given R 2, the Py for an isolated internal 
motion having that n2 would vanish [cf. (4.4)]. The B2 
in Fig. 1 (b) is the one appropriate for the middle tra-
jectory (labeled x). 
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by, the upper and lower dotted lines will be re-
ferred to as the "outer" and "inner" vibrational 
turning points, respectively. 

A quantum state of the collision pair as a whole 
is described semiclassically by an ensemble of such 
trajectories, each trajectory differing in initial vi-
brational phase. In Fig. 1 some trajectories lie 
on branch II while the others lie on branch IV, the 
former being used to construct branch F11 of F 2 

and the latter to construct An unperturbed 
wavefunction at any large value of R for this case 
of s = 2 has a phase U; Pydq - knR), plus a con-
stant (± 1T/4, as noted 1later) determined from the 
usual connection formula at the turning point. 'Y 
denotes the branch II or IV. P y is the vibrational 
momentum, the integration being at the specified 
R and from the vibrational turning point B 1 to q. 

The phase integrals needed for the phase of any 
term ('Y) of the semiclassical wavefunction at arbi-
trary q are composed of two parts: 

J"'l. d = Jq l(R 1) d J'l. d 
B (R ) Py q - B (R ) Py q + n Py q, 

1 1 1 1 '1 
(3.2) 

where ql[= (ql' R/)] denotes the initial point on the 
trajectory at R b a large R in the entrance channel 
and outside the region of interaction of the collision 
partners. At the given Rb the initial conditions 
are chosen to conform with the given initial statEt· 2 
and one chooses the initial q 1 so that the trajec-
tory passes through the desired point q. The inte-
gral from B1(R1) to ql(R1) is an integration at fixed 
R, Rb from the lower vibrational turning point Bl 
to q l' The integral uses the appropriate sign of 
Py for the branch 'Y. The integral from ql to q in 
(3.2) is along the dynamical trajectory from ql 
to q. 

The .phase of each term of the semiclassical 
wavefunction at q relative to that at ql must also 
take cognizance of the number of times N" the 
trajectory between ql and q, touches the dotted 
lines in Fig. 1 (the caustics, i. e., the lines 
formed by joining the turning points). Each time 
the trajectory touches such a line the term suffers 
a phase 10ss6 of!n. We allow for this below. 

Normalized to unit radial flux and to 6(n -n') 
or equivalently7 to 21T6(E - E') 6(n - n'), the ingoing 
wavefunction is 

l/Jj(q, nE)= 2-1/2 6 I aZFyaqaPnl1/2 
r-II.IV 

x exp[i(F!± h- tN l1T)], (3.3) 

where P n denotes the totality of 21m's and E: 

Pn =(21Tn,E). (3.4) 

(q, Pn) is given by 

Pn )= kIl1(R1) Pydq+PR.IR1, (3.5) 

where the + and - signs in (3.3) are for 'Y equal to 
II and IV, respectively. At large R in this incident 
channelPR is a constantPR.l and equals -k n (since 
II = 1) and so the given by (3.5) and (3.3) equals 

FHq, Pn) = k'l. (R ) Py dq - knR (large R; P R < 0). 
1 1 

(3.6) 
The part of the wavefunction associated with the 

outgoing particles lJ!f(q, nE) is given by a similar 
expression, but now PR at large R is positive and 
so 'Y is I or ill when R is in a reactants' channel. 
The reflection at small R results in an additional 
phase loss of tn. Thus, we have 

l/Jf(q,nE)=2-1/2 6 lazFyaqaPn 11/2 
",I. III 

x exp t1T - tNf 1T - tn)] 
(R in reactants' channel), (3.7) 

w here the + and - signs are for 'Y equal to III and I, 
respectively. Nf is the number of reflections of 
the trajectory from caustics, apart from the one at 
small R already included in (3. 7). 

When R is in the products' channel, the system 
has not necessarily undergone a reflection at 
small R, and so the extra - t1T can be absent at 
Eq. (3.7) in this case. 

The wavefunction for the collision lJ!(+) (q, nE) is 

l/J(+)(q, nE)=ljJ/(q, nE)+lJ!f(q, nE). (3.8) 

We comment briefly on the pictorial description 
of the trajectories in the branches. That for 
branches II and IV has already been given [Fig. 
l(a)]. For branches II and IV at large R all trajec-
tories relevant to (q I nE (+» are precollision trajec-
tories and so have the same amplitude. However, 
for branches I and ill at large R the trajectories 
are postcollision trajectories and so have different 
amplitudes; they are associated with different 
final internal energies of the system. Thus, suf-
ficiently adjacent trajectories will still intersect 
at turning-point surfaces (caustics) but now each 
caustic surface is no longer, in the example of 
Fig. 1, a straight line [Fig. 1(a)], but rather is 
curved, as indicated crudely and incompletely in 
Fig. l(b). For each trajectory of branch lor 
III in the postcollision region one can nevertheless 
still find a point, which we designate as Bz(Rz) at 
any given Rz, where the Py for each now separable 
internal coordinate would vanish if that internal 
motion was allowed to occur alone at that R z. This 
B 2(Rz) is used later to define a generating func-
tion given by Eq. (4.4). Bz(Rz) varies from 
trajectory to trajectory in this postcollision re-
gion because the amplitude of the internal motion 
is different for the different trajectories. 

We note, inCidentally, that the trajectories 
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usually occur in pairs in which PI! for one member 
of the pair is opposite in sign to PIV for the other 
member, at any R [Fig. l(a)] and similarly (and 
as a result) in which PI for one member is opposite 
in sign to PIlI for the other [Fig. l(b)]. This be-
havior is responsible for the fact that there are 
usually two stationary phase points of the integrand 
in (1. 2) for each final internal state, for a system 
with one internal degree of freedom (2 N for N in-
ternal degrees of freedom). 

IV. CANONICAL TRANSFORMATION OF COORDINATES 
AND UNITARY TRANSFORMATION OF (q InE(+» 

As noted in the introductory section, we shall 
seek a transformation of coordinates to coordinates 
in which the usual crossings of adjacent trajector-
ies have been removed. A simple coordinate trans-
formation would not suffice, since such properties 
of the trajectories are invariant by the latter. In-
stead, one needs a more general transformation, 
namely a canonical transformation, in which, 
therefore, the new coordinates are expressed as 
functions of both the old coordinates and the old 
momenta. We employ a canonical transformation 
in which all but one of the new coordinates describ-
ing a point on any trajectory are now constants of 
the motion and in which the remaining coordinate 
is, apart from an additive constant, time. 

A canonical transformation of coordinates from 
q to Q also gives rise, at the same time, to a unit-
ary transformation of the semiclassical wavefunc-
tion, from (q I nE (+» to (Q I nE (+» and from 
(q I mE' (-» to (Q I mE' (-». The relation between 
canonical transformations of coordinates and unit-
ary transformations of semiclassical wavefunctions 
has been discussed by several authors. 8 The change 
of the phase and of the pre-exponential factor in 
the semiclassical wavefunctions is described in the 
following way [cf. particularly, Eqs. (4. 2) and 
(4.3) below]. 

If the phase of the original and transformed 
wavefunctions are F 2(q, Pn ) and FiQ, Pn ) and if 
G1(q, Q) is the generating function for the canonical 
transformation from (q, p) to (Q, P), the former 
are linked by the usual classical relation, 9 

(4.1) 

[Equation (4. 1) is obeyed since the F 2's and F2's 
satisfy a Hamilton- Jacobi equation, and hence are 
generating functions, for transforming from Q, P 
or q, p to Qn, P n• 9] When, as the in the present case, 
the generating fUnction is given as a function of old 
coordinates and new momenta G2(q, Pn) then from 
the standard relation between G1 and G2 we have 

F2(Q,Pn)=F2(q, P n)-G2(q, P)+QP. (4.2) 

The relation between the new and the old pre-

exponential factors is8b 

1 a2fdaQaPn 11/2 

= 1 a2Fdaq aPn 11/21 a2GJaq aQ 1-1/ 2 

= ja2F 2/aqaPn 11/21 a2Gdaqapl-1/2. (4.3) 

In all of the above we have not specified which 
generating function G2 we shall use. Equations 
(4.1)-(4.3) are valid for any choice of G2• How-
ever, in order that the new coordinates Q have the 
properly that all but one are constants and that 
the remaining one is time, we choose for G2 a 
multi valued solution of the Hamilton- Jacobi equa-
tion (2.2). Such a G2 will be seen below [cf. 
Eq. (4.9)] to lead to new coordinates Q with this 
desired property. is used for branch yand is 
calculated relative to a vibrational turning point 
B 2(R 2) in an outgoing channel at large R, R 2: 

Jq2(R2) (q 1 

Gnq,p)= B:l(R2) Prdq+Jq Prdq+PR.2R2± 41T, 
2 (4.4) 

where P R.2 is the final value of P R on this trajec-
tory passing through q. The integration from B2 
to q2 is at fixed R2 and the integral from q2 to q 
is along a dynamical trajectory. Differentiation 
confirms that aGUaq equals Pr as it should. The 
+ h or - h is used when Py at q2 points toward 
or away from B 2, respectively. When y refers to 
an outgoing reactants' trajectory, one would also 
include the - i1T, included earlier in (3. 7). 

Since the integration in the right-hand side of 
(4.4) begins in an exit channel (reactants' or 
products'), P describes only quantum numbers 
appropriate to that exit channel. In contrast, Pn 
utilizes only the quantum numbers appropriate 
to the entrance channel. 

The Pin Eq. (4.2) must be chosen so that the 
right-hand side of (4.2) is independent of q, as 
implied by the arguments of F2 on the left-hand 
side. Thereby, for all q, P is chosen so that 

(4.5) 

and hence so that the Py given by aFHq, P n)/ aq 
matches that given by aGUaq, for all q. If IT 2 

denotes the final n' s for this trajectory, compari-
son of (4.4) with (3.5) and (3.2) shows that the 
py's are matched by setting 

P=Pnz =(21Tn2 , E) (4.6) 

in (4.2). 

With these equations, (4.2) then becomes, on 
integrating by parts, 
_ P[B2(R2 )] 

F 2y(Q, Pn )= - JP[B1(R 1)] q dpy+QP;;2 'fi1T. (4.7) 

The significance of the Q' s conjugate to the P's 
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in (4.6) follows from (4.4) and from the Hamilton-
Jacobi equation (2.2) satisfied by Q is given by 

Q=acUap. (4.8) 

Equation (2.2) implies that the new Hamiltonian 
Ii(Q, P) is one of the P's. Hamiltonian's equations 
then yield 

P= aH/aQ= 0, 

QE=aH/aE=l, Q=aH/ap=O (P*E), (4.9) 

where QE is canonically conjugate to E. 

Thus, all Q's but QE are constants of the motion 
for a given P ( = Pi; ) and hence for a given trajec-z , _ 
tory. These constant Q s will be denoted by w. 
QE will be denoted by T, being a time variable, ac-
cording to (4. 9). Since the w calculated from 
(4.8) and (4.4) is constant for the trajectory, we 
may obtain this value at any q, and it is convenient 
to choose q= (qz, R z). At sufficiently large R z, the 
frequencies vo[= aHoIa(21Tn)] are constant, and the 
equations then yield 10 

(4.10) 

The different branches y = I, III will map into dif-
ferent values of w in this transformation, since w is 
determined by both qa and by the sign of Pr at Ra. The 
transformation thereby reduces the number of 
terms in Eq. (3.7) for 1/1f from two to one in this 2-
dimensional system. In an s -dimensional system, 
the corresponding 2&-1 terms in I/Jf that would be 
present in (3.7) would also be reduced to one. 

Further, when R z is large, Eqs. (4.4) and (4.8) 
show that when I/Ji is considered, P R is negative 
and so T (== QE) is large and negative. When I/Jf is 
considered, P R is positive and so T is large and 
positive. Thus, the present transformation serves 
to condense the four terms in (3.8) (and, in the s 
dimensional case, 2" terms) into a single term. 
The factor of 2-1/2 in (3.3) and (3.7) now becomes 
unity because of the nature of the mapping and 
hence the normalization before and after the trans-
formation: One maps a single q, with two differ-
ent signs of p, onto two different iV's. The trans-
formed and appropriately normalized wavefunction 
(Q I nE (+» is 

(Q I nE (+»= I a2Fd aQ a Pn 1
1/z expi(Fz - N1T), 

(4. 11) 
where F z is given by (4.7) and where N is the num-
ber of times the trajectory touches the upper 
caustic between q1 and q2' Equation (4.11) in-
cludes all four possible cases generated by the 
± h's in (3.7) and (4.4). 

Noting that Q denotes the constants iV and the 
time variable T one might expect that apart from 

the ET term present in F 2 (in Q Pi; ) the wavefunc-
tion (Q I nE (+» is independent of t6e values of R 1 
and R2 present in F 2' This independence is con-
firmed in the Appendix. 

As noted earlier P n) can be regarded as a 
generating function for canonically transforming 
(q, p) to (Qm P n ), since it satisfies the Hamilton-
Jacobi equation (2. 2). The "new" Hamiltonian Ii 
is seen to be E, which is one of the variables. 
From Hamilton's equations of motion, Qn equals 
an/aPn and so is zero unless the P n is E, in which 
case the corresponding Qn is unity, and so this Qn 
is a time variable. Since the other Qn's are seen 
to be constants, they will be denoted by iVo and can 
be evaluated via 

(4. 12) 

at any q. It is convenient to choose a q at large R, 
namely Rb and so find from (3.6)10 

-0 .Q1(R1). • 
w =VOJB 1(Rt(dq/q)-v oRJR 1• (4.13) 

These iVo's clearly differ from iV's, as one sees by 
comparison with (4.11). The iVo's and the iV's are 
the same as those in Paper III. 

Finally, since Qn equals aFUaPn and thence 
from (4.2) equals aF1/ap", the pre-exponential 
factor in (4. 11) can be rewritten to yield 

(Q InE!+»= I aQn/aQ 1
1/2 expi(F2 -N1T). (4.14) 

V. TIME-REVERSED WA VEFUNCTION (q I nE'('» 
AND (Q I mE'(') ) 

The wavefunction (q I mE'(-\ where mE' denotes 
properties for an exit channel, is obtained from 
(q I mE' (+» by time reversal. The latter can, in 
turn, be obtained from the arguments in Sec. III, 
noting only that the roles of R1 and R2 are inter-
changed, since mE' refers to the exit channel. 
Thereby, we may write 

(q I mE,!+» = I/J;,m + I/Jf,m, 
where, by analogy with (3. 3), 

I/Jl,m= 2-1/zL; I aZF 2(q, Pm)/aqaPm I-lIZ 
r 

(5.1) 

Pm)± h-iN1m1T], (5.2) 

where now 

Pm)= fB:<R2) Prdq - kmR2 

q2(R2) .. 
== fB 2(RZ) prdq +.hz Prdq - k m R2 (5. 3) 

and N im is the number of times the trajectory 
touches a caustic between q2 and q. The y's in 
(5.2) are those corresponding to ingoing particles. 
Pm denotes 

Pm ==(21Tm,E'). (5.4) 
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Once again, is given by an expression simi-
lar to (5.2), apart from an extra - t1T in the phase, 
when both Rl and R z are in a reactants' channel, and 
use of appropriate y's. 

(q I mE' <-» is obtained from the above equations 
by reversing the signs of all momenta. The sign 
of PR in the l/!j,m contribution to (q I mE'C-» is 
thereby the same as that in the 1jJf contribution 
(q I nE c+» and similar remarks apply to l/!f,m and 
l/!j. Thus, when the transformation to iih is made, 
the transformed phases in each of these pairs will 
still be paired, since they will each have the same 
set of values of T. 

The transformation of (q I mE' <-» using the 
generating function given by (4.4) yields 

(Q ImE,C-»=expiQPm, (5.5) 

all other terms in F z -:- Gz cancel, since the inte-
grations in this F z and Gz both begin at Bz(Rz) in 
an exit channel. 

VI. S MATRIX 

From (1. 1) we have 

SmnO(E-E')=J (mE'(-) IQ)dQ(Q InE(+». 
(6.1) 

Equations (1. 1) and (6.1) presume that the state 
functions have InE C+J) and I mE' C-» are normalized 
to O(E -E')onn" In the present case, the wave-
functions (4.14) and (5.5) were normalized to 
21T0(E - E ') o(n - n'), and so should be multiplied 
by (21Ttl/2. These equations and (6.1) then yield, 
on integration over QE' i. e., over T, a factor 
which cancels the 0 function (we use real T, as 
discussed below) and which leaves 

Smn = J I 1Jiij0/aw II/Z expi('i\ -N1T)dw, (6.2) 

where 

- _ 
F4= - J,(Bl) qdp+ 21T(nz-m)w. (6.3) 

w is defined by (4.11) and N was defined immedi-
ately after (4. 14). The integral in (6. 2) can be 
transformed into one over wo: 

Smn= J;;,lo"O law/awo II/Zexpi('i\-N1T)dwo (6.4) 

and WO varies from 0 to 1. 

In the Appendix, it is shown that (4.14), (5.5), 
and (6.4) are independent of the choice for Rl and 
R z• Further, in obtaining (6.2) from (6. 1) real 
T was used, i. e., systems were treated where 
products were reached from reactants without 
tunneling. 

VII. EXTENSION TO HIGHER NUMBER OF DIMENSIONS 

When the number of coordinates is greater than 
two, the phase of the unperturbed wavefunction at 

large R, P n), can be written as 

ql)+fz(qb Pn), 

where is a phase integral J pdq, integrated from 
ql to q, P n denotes the quantum numbers and ener-
gy as in (3.4), andfz is a standard generating func-
tionl! for transforming the conventional internal 
coordinates ql to action variables [the latter equal 
(nj + o;)h or in units of n = 1, 21T(nj + OJ)]. A vibra-
tion contributes to fz the term J pdq, integrated 
from vibrational turning point B 1(R l ) to ql' The 
radial, orientational, and polar coordinates also 
contribute to fz by a standard expression, l! which 
we shall deriote byf2(qb Pn)+PRIRl' In the system 
of Sec. IIfz(qb Pn) was PRI R 1• 

Equations (3.2) and (3.7) remain unchanged, but 
of course Prdq denotes a sum of terms, as does 
Prdq. Equation (3.3) again applies, except for a 
modification of the 1T/4 terms as discussed below. 
Equations (3.5) and (3.6) again follow, but now the 
right-hand side also contains the Pn). 
Equations (4.1)-(4.3) are unaffected. The right-
hand side of (4.4) contains additional ± h terms 
(discussed below) andf2(qz, P). Equation (4.7) 
is unaffected apart from the 'f t 1T terms. The ex-
pression (4.8) for Q and hence for iii yields an 
angle variable w, minus the last term of (4.10).10 

The terms in Sec. ill involving ± t1T and N j [Eq. 
(3. 3)] can also be immediately extended to a high-
er number of dimensions. For example, for 
three coordinates (s = 3), one has instead of the 
open-ended rectangle in Fig. 1(a) an open-ended 
box. The edges of the rectangle were the caustics 
and now the sides of the box form the caustic sur-
faces. The turning point B l (R 1) in Eq. (3.2) is now 
a turning point for both vibrations and so is chosen 
to lie at the intersection of a preselected two of the 
four caustic surfaces at a given Rb which we will 
call "near caustics." At any other R, this locus 
of pOints on this intersection, will be denoted by 
B(R). One of the two near caustics plays the same 
role, for one of the internal coordinates, as that 
played by the lower dotted line in Fig. 1(a) or (b), 
while the other plays a similar role for the second 
internal coordinate. 

The remaining two caustics surfaces will be 
called "opposite caustics." One of these plays the 
same role for one of the internal coordinates as 
that played by the upper dotted line in Fig. l(a) or 
(b) and the second plays a similar role for the 
other coordinate. The integration in (3.2) from 
B 1 to q 1 is an integration first over one of the in-
ternal coordinates, holding Rl and the other coordi-
nate fixed, until the desired component of ql is 
reached and then over the second internal coordi-
nate, holding the other two coordinates fixed, until 
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its desired component of q1 is also reached. The 
integral from q1 to q in (3.2) is again an integral 
over a dynamical trajectory. 

The sum in (3.3) now has four terms instead of 
two, the four corresponding to the four possible· 
combinations of signs of the two internal momenta 
at R 1• The ± h in (3.3) is replaced by ± ilT ± h, 
the plus signs being used when both internal mo-
menta at R1 point toward B 1(R 1), the two minus 
signs are used when they point away form B 1(R 1), 

and the remaining two sign combinations correspond 
to the two remaining ones of the P's. 10 The N j in 
(3.3) is again the number of times the trajectory 
touches a caustic surface. The same remarks 
apply to (3. 7), there now being four terms in the 
latter and the ± i IT being replaced by ± h ± h. 
Similar remarks apply to (4.4), (4.7), and (5.2). 
B 2(R2) is the value of B(R) at R=R2• 

One obtains two iii's one for each of the internal 
coordinates and each of the form (4.10). One 
also again obtains (4.11) N now being the number 
of times the trajectory touches opposite caustics 
between q1 and Q2' The equations of Sec. VI again 
follow. 

Similarly, the equations in Sec. VI are obtained 
for any dimensionality s. 

APPENDIX: INDEPENDENCE OF WAVEFUNCTIONS AND 
EQ. (6.2) ON RI AND R2 

It is first shown that F2 -ET in (4.7), 
(R2)] 

jP[1J1(R1)] qdp,.+QP;;2:FilT, (4.7) 

is independent of the choice of R 2• To this end it 
is useful throughout this Appendix to subdivide a 
trajectory at large R2 into R intervals, each inter-
val being bounded by successive R's for which the 
trajectory touches the upper caustic. Such an in-
terval will simply be c.alled an R interval. The 
- J qdp in (4.7) is independent of the choice of R2 
for all R 2's in this R interval: - J R dPR makes no 
contribution since PR is constant at large R; 
- J q dp is unchanged, since the upper limit of this 
integral is always the P at the lower vibrational 
turning point, regardless of R 2• 

If, however, R2 is in the next R interval of the 
trajectory at larger R, the contribution - J q dp 
has increased by an amount equal to its value over 
one vibrational cycle, namely §Pdq, which in turn 
equals 2lT(n 2+ t); - f RdPR is again unchanged. 

The iii in (4.7) is independent of R2, as long as 
R2 lies in the given R interval: diii equals 
vo[dq/q - d R 2/R], i. e., vo(dt - dt) or O. At the 
boundary between two adjacent R intervals, iii 
changes discontinuously by - 1 when R2 is changed 
from just less than to just greater than the R at 

the boundary. [The value of vo (dq /ti) in (4.10) 
approaches + t or - t when q 2 becomes the upper 
turning point, depending on the sign of q.] Thus, 
the 2lTn2iii in (4.7) is constant in any given R inter-
val but jumps by - 2lTn2 when R2 is placed in the 
adjacent R interval at larger R. 

The N in (4. 15) is unchanged when R2 is varied, 
as long as R2 remains in the given R interval, but 
jumps by unity when R2 is placed in the adjacent 
R interval at larger R. 

Thus, as long as R2 remains in a given R inter-
val, (4. 7) shows that F 2 - ET remains unchanged. 
When R2 is placed in the next R interval at larger 
R, F 2 - ET changes by 2lT(n2 + t) - 21i"n2 - IT, from 
the above arguments. Thus, it too remains un-
changed. Similar remarks apply to changes of R2 
to any other R intervals at still larger R 2• The 
pre-exponential factor in Eq. (4.14) is also un-
changed, it being equal to 1 aiii/aiiio 11/2. 

_ We consider next the effect of a change of R1 on 
F 2 - ET • This time iii is unaffected, since its 
definition involves only R 2• - J RdPR is of course 
unaltered; - J qdp is unchanged as long as R 1 lies 
in a given R interval, but increases by §p dq, 
i. e., by 2lT(n + t), when R 1 is placed in the adjacent 
R interval at larger R 1• N also stays constant in 
a given R interval and increases by unity when R1 
is in the adjacent interval at larger R. Thus, a 
change in R 1 either causes F 2 - ET to remain con-
stant or, when Rl is placed in the adjacent R inter-
val at larger R to increase by 2lTn, a change which 
leaves expi(F2-ET) unaltered. 

Again, if one considers the 2lTmiii in the expo-
nent Q Pm in Eq. (5.5) for (Q 1 m Et<-», iii re-
mains constant in a given R interval but changes 
by unity when R2 is placed in an adjacent R inter-
val. However, the exp 2lTimiii in (Q 1 mE' (-» 
changes only by exp 2lTim and hence is unaffected, 
m being an integer. 

From these arguments one also sees that the 
integrand in (6.2) is also unchanged when R1 or 
R2 are altered. 
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