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Compound state resonance effects are reported in exact, numerical calculations of the collinear 
collision of a particle with a harmonic oscillator with a Morse interaction potential. They are shown to 
be due to the formation of a long-lived complex or quasibound state and are much more narrow than 
resonances reported previously for this type of system. The stable eigenvalues resulting from a 
variational calculation with a bound state basis set are found to be in excellent agreement with the 
resonance energies, and such a variational calculation is a good way of locating these resonances. 

INTRODUCTION 

Compound state resonances are resonance ef-
fects in the scattering of a projectile from a tar-
get which are due to the formation of a long-lived, 
projectile-target complex. Such resonances have 
been observed experimentally in processes such 
as nuclear particle scatteringl and in electron-
atom collisions,2 and a number of theoretical treat-
ments of such phenomena exist. 3,4 In addition, 
compound state resonances have been found in cal-
culations of the scattering of a particle from a 
rigid rotor. 5-7 

In this work, compound state resonances in the 
collinear collision of a particle with a harmonic 
oscillator are studied. This relatively simple 
model is often used to study molecular vibrational 
energy transfer without the complications intrb-
duced by the possibility of rotation and other pro-
cesses. 8 

There appear to be two types of resonances in 
collinear collisions. The first type, which has 
been studied previously, 9 has been seen only for 
square well interaction potentials. These reso-
nances are due to the formation of standing waves 
in the region of the attractive well9 and might well 
be called shape resonances8 in analogy with the shape 
resonances of potential scattering. The second type 
of resonance in collinear collisions is the com-
pound state resonance reported here. These are 
seen for Morse interaction potentials which do not 
exhibit shape resonances. These resonances are 
very much narrower than the shape resonances; 
that is, the resonance effect occurs over a very 
narrow range of incoming particle energy. An-
other difference is that the inelastic vibrational 
transition probability decreases drastically at a 
compound state resonance whereas it increases or 
peaks at a shape resonance in all cases which have 
been calculated. 

A number of collinear collision calculations have 
been carried out in the past with attractive well in-
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teraction potentials which exhibit fluctuations in 
the transition probability9-15 which are often called 
resonances. One such caicuiation10 involving a 
deeper attractive well than considered in this work 
exhibits a sequence of dips in the inelastic transi-
tion probability. Possibly these are compound 
state resonances of the type investigated here. 

One motivation for this work was the desire to 
provide exact, quantum mechanical results for 
resonances in a simple, well-defined model. These 
may be used to evaluate approximate methods, in 
particular the semiclassical treatment of multi-
dimensional bound states and resonances recently 
proposed by Marcus. 16 

The next section contains the results of scatter-
ing calculations in which compound state reso-
nance effects are seen and provides the physical 
interpretation. The last section is a discussion of 
various methods of locating these very narrow 
resonances. 

SCATTERING CALCULATIONS 

The Schrodinger equation for the collinear colli-
sion of a particle with a harmonic oscillator may 
be reduced by proper choice of units9,17 to 

[- m-1a2 jax2 - a2 jal +l + V(x - y) - E]>I1(x,y) =0 o. 
(1) 

Here m is a mass ratio, 9 x is the coordinate of the 
incoming particle, y is the displacement from 
equilibrium of the oscillator, V(x - y) is the inter-
action potential, and E is the total energy of the 
system in units of the zero point energy of the 
oscillator. The interaction potential is here taken 
to be a Morse potential which has the form 

V(r) =0 d exp( - ar) - 2d exp( - t arl. 

Here d is the depth of the attractive well and a 
determines the "steepness" of the attractive and 
repulsive parts of the potential. 

The boundary conditions for Eq. (1) when the 
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oscillator is initially in the state denoted by i are 

>¥l (x, y) 0, 

+ ¢n (y) exp(ik"x)(kl /k n)11 2Snl , 
n (3) 

where ¢n(Y) is the wavefunction for a free oscilla-
tor which satisfies 

(4) 

and m(E - 2n - 1). The matrix of coefficients 
5nl is often called the S matrix. 18 The probability 
that the oscillator in state i will undergo a transi-
tion to state n is given by 

(5) 

In what follows, use will be made of the phase of 
the S matrix defined by 

5nl 2 exp (il)nl ) (6) 

where I)ni is real and ranges from 0 to 21T. 

A series of calculations of Snl for a range of en-
ergies E were performed for a number of mass, 
well depth, and steepness parameters 111, d, and 
a. The method of amplitude density functions 19 

was used to compute a reactance or K matrix, 
which is analogous to the 5 matrix defined as in 
Eq. (3) but with the complex exponentials replaced 
by sines and cosines. 20 Thus, solving for the K 
matrix involves only real arithmetic. The S ma-
trix was then recovered from the K matrix by a 
suitable transformation. 20 

The resonances reported here are characterized 
by an extremely rapid increase by 21T of the phase 
of the 5 matrix 7]ni with energy E. This occurs in 
the vicinity of certain distinct energies which are 
usually called the resonance energies. At these 
resonance energies the inelastic transition prob-
abilities dip sharply and then rise again to the off-
resonance value. 

The behavior of the phase of the S matrix and the 
transition probability at a typical resonance is 
shown in Fig. 1. The rapid rise in 7]ni and the dip 
in P nl is clearly seen on this greatly expanded en-
ergy scale. The resonance occurs at an energy 
of E 3.642630, which is above the threshold for 
excitation of the n 1 vibrational state at E 3 but 
below the threshold for the n 2 state at E 5. 

To compute the 5 matrix accurately close to the 
resonance energy, it was necessary to include 
several more channels in the close coupling scheme 
and to take many, closely spaced integration steps. 
In the calculation reported in Fig. 1, eight chan-
nels were included and 5700 integration steps taken 

at E 3. 6426298, for example, while at 
E = 3. 6426200 only four channels and 500 steps 
were necessary to obtain comparable accuracy. 

Even with this amount of computation, it was not 
possible to adequately resolve the resonance in the 
ground state elastic phase 7]00' It is not known 
whether the numerical method is not capable of 
resolving this resonance or whether the resonance 
in 7]00 does not exist. 

The usual physical interpretation of this type of 
resonance is as follows. At the resonance energy, 
the incident particle "sticks" to the target for an 
abnormally long time compared with the particles 
incident at neighboring energies. The resonance 
is thus an indication of the formation of a quasi-
bound or compound state, which in this case is a 
three-particle complex with a long but finite life-
time. 

The evidence for this interpretation in the pres-
ent case is twofold. First of all, it may be shown21 

that the time by which the incident particle is de-
layed by the interaction with the target oscillator 
is proportional to d7]ni / dE. Thus if 7]nl rapidly in-
creases by 21T at the resonance energy and returns 
to its previous, slowly changing behavior, the in-
cident particle has been trapped by the target with 
a lifetime proportional to the rate of increase of 
I)nl with E. 

On the other hand, one may evaluate the integral r I >¥1(x,y)1 2 dydx, 
.. 00 .. 00 

where r is large enough so that the integration is 

(Y) 3 
$2 2 

rf'0 

o 
1= 1 
-;""0 
f'1 

y 
_f 

_J 
3.64262 3.64263 3.64264 

E 
FIG. 1. The probability of a 1-0 vibrational transi-

tion and the phase of the S-matrix modulo 271" [cf. Eq. (6)] 
in the vicinity of a resonance. This collinear system 
has mass, steepness, and well depth parameters m = 0.2. 
Oi = 0.1, d 1. 5, respectively. 

Downloaded 16 Feb 2012 to 131.215.21.63. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



COMPOUND STATE RESONANCES IN COLLINEAR COLLISIONS 4759 

over the whole region where the interaction poten-
tial is nonnegligible. This integral is a measure 
of the probability of finding the incident particle in 
the vicinity of the oscillator. In the Appendix it 
is shown that it is 

!'l1 i (x,y)!2dydx 

=r(1 Pnlk j /kn) + fP;;/kl sin(2kl r + 1)jj) 

+ (2k i /m) L: PnM1)n/dE) • (7) 
n 

It is clear from this result that close to a reso-
nance energy where d1)nl/dE is large, the last term 
will dominate and there will be a high probability 
of finding the incident particle in the vicinity of the 
target. 

VARIATION AND PERTURBATION CALCULATIONS 

It is very difficult to discover the location of the 
resonance energies by performing scattering cal-
culations because the jump in the phase occurs 
over a very small range of energy. For example, 
to find all the resonances like the one in Fig. 1 
between the thresholds for 1- 0 and 2 - 0 vibrational 
transitions would require calculations at more than 
4000 energies, which is a considerable computa-
tional effort. Better methods of locating the reso-
nance energies, which have been found to be use-
ful, will now be discussed. 

From Eq. (7), one suspects that the amplitude of 
the wavefunction at a resonance energy will be 
large in the region where the potential is large. At 
nearby energies the amplitude will be much small-
er. Thus the resonance wavefunction has the quali-
tative features of a bound state wavefunction. The 
difference is that, whereas a bound state wave-
function vanishes as the incoming particle coordi-
nate approaches infinity, the resonance wa vefunc-
tion oscillates in the manner given by Eq. (3). 
Thus it is reasonable to expect that a variational 
calculation of 'l1(x,y) of Eq. (1) using a basis set 
of bound state wavefunctions will nearly converge 
to the resonance energy. This method of comput-
ing resonance energies was first proposed by 
Taylor22 ,23 and was called the stabilization method. 
It was used successfully to compute resonances 
for simple models. 24-27 

In this work the scattering wavefunction was ap-
proximated by a set of harmonic oscillator eigen-
functions <Pn(Y) defined by Eq. (4). That is, the 
wavefunction was written 

'l1(x, y) =L:Cln<P1 (Ax - 1I)<Pn(y), (8) 
i,n 

where A and" are adjustable parameters and the 
coefficients Cln are to be determined by the varia-
tional procedure. Substitution of Eq. (8) into Eq. 

(1) leads to the usual algebraic eigenvalue problem, 
which was solved by standard numerical methods. 28 

This results in a large set of eigenvalues. The 
eigenvalues lying below energy E = 1 are, of course, 
approximations to the true bound states of the three-
body collinear system. Those lying above E = 1 
are not strictly eigenvalues of Eq. (1) and most of 
them do not converge to any limit as the size of 
the basis set is increased. However, a number of 
these higher eigenvalues do not change as the size 
of the basis set is increased. They are approxi-
mations to the resonance energies. 

All of the computed eigenvalues which lie between 
E = 3. 0 and 4. 5 are gi ven in Table I for different 
basis sets. Although most of the eigenvalues are 
unstable, the underlined values do not change as 
the basis set is increased. It is seen that one of 
these stable eigenvalues is a good approximation 
to the resonance plotted in Fig. 1. 

Table II gives resonance energies computed by 
a scattering calculation discussed in the last sec-
tion compared to a variational calculation for 
various mass, depth, and steepness parameters 
m, d, and a. In most cases, of course, the varia-
tional calculation was performed first to locate the 
resonances, and the location was verified by a 

TABLE 1. Some higher eigenvalues of the collinear 
system. a 

Size of basis set 

4 x32b 4 x36 4x40 
3.0787 3.0559 3.0385 
3.1870 3.1825 3.0810 
3.2179 3.2647 3.1544 
3.3746 3.3260 3.2865 
3.4950 3.4848 3.3472 
3.5477 3.5553 3.4334 
3.6426" 3.6426 3.5942 
3.7366 3.6585 3.6267 
3.8041 3.8458 3.6426 
3.8903 3 •. 8561 3.7685 
3.9408 3.8903 3.8903 
4.1131 4.0484 3.9204 
4.1451 4.1131 3.9560 
4.1610 4.1851 4.1131 
4.3110 4.2647 4.1560 
4.3959 4.3110 4.2311 
4.4840 4.4839 4.3110 

4.4940 4.3694 
4.4839 

aComputed by diagonalizing the Hamiltonian matrix of 
Eq. (1)wHhm=0.2, a=0.1, d=1.5 with the basis set 
giveninEq. (8)withA=0.15, 11=2.0. 

bThis notation means that 4 basis functions of y and 32 
basis functions of x were used in Eq. (8). 

"The underlined eigenvalues do not change with an in-
creased basis set. 
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TABLE II. Resonance energies for various systems. 

Scatteringa Variationb First orderc Zero orderd Quantum No. e 

1. 63901 
1.887 
2.110 
2.308 

3.64263 
3.890 
4.113 

2.209 

3.215 
3.500 
3.761 
3.998 
4.218 

2.98239 

m =0.2 

1. 6390 
1. 8870 
2.1101 
2.3083 
2.4816 
2.6300 

3.6426 
3.8903 
4.1131 
4.3110 
4.4839 
4.6320 

m=0.2 

2.209 
2.569 
2.904 
3.214 
3.500 
3.761 
3.997 
4.218 

111 =0.5 
2.9824 
4.9828 

0!=0.1 

1.6392 
1. 8875 
2.1109 
2.3092 
2.4826 
2.6309 

3.6428 
3.8908 
4.1138 
4.3118 
4.4848 
4.6328 

O! = 0.1 

2.2088 
2.5699 
2.9059 
3.2170 
3.5031 
3.7642 
4.0003 
4.2113 

O! =0.25 
2.9824 
4.9829 

aComputed by a scattering calculation. 

d= 1. 5f 

1.6338 0,1 
1.8827 1,1 
2.1065 2,1 
2.3054 3,1 
2.4793 4,1 
2.6281 5,1 

3.6338 0,2 
3.8827 1,2 
4.1065 2,2 
4.3054 3,2 
4.4793 4,2 
4.6281 5,2 

d=3.0 

2.1905 0,2 
2.5528 1,2 
2.8901 2,2 
3.2024 3,2 
3.4897 4,2 
3.7520 5,2 
3.9893 6,2 
4.2016 7,2 

d=0.05 

2.9817 0,1 
4.9817 0,2 

hsome of the stable higher eigenvalues from a variational calculation. 
cPerturbation method including the first order correction. 
dZero order perturbation method. 
ern the form n, i from Eqs. (11) and (16). 
fThese mass, steepness, and well depth parameters, respectively, are roughlyappropri-

ate for an inert atom-halogen molecule interactibn. 

scattering calculation. It is seen that the varia-
tional calculation accurately predicts the location 
of the resonances as expected. 

In cases where there were many resonances, 
only the low-lying ones were computed here. The 
resonances lying close to the threshold for the next 
transition are difficult to approximate in the pres-
ence of lower resonances with the basis set used 
in Eq. (8). Also, these resonances are sharper 
than the low-lying ones and are even more difficult 
to find than the latter by means of a scattering 
calculation. 

It turns out that, for the purpose of computing 
resonance energies, the incident particle and os-
cillator motions are nearly separable for most 
collinear systems of physical interest. Thus it is 
expected that perturbation methods would give a 
good approximation to the resonance energies. 

For the purpose of using perturbation methods, 
the Hamiltonian in Eq. (1) is partitioned into a 

separable part and a perturbing potential as fol-
lows. The separable zero order Hamiltonian is 

H(O) = _ m-lo2jox2+ V(x) - o2joy2+l, (9) 

where V(x) is the Morse potential function defined 
in Eq. (2). The perturbation must be 

(10) 

The eigenvalues of H(O) are the sum of the harmonic 
oscillator eigenvalues given by Eq. (4) and the 
Morse oscillator eigenvalues29 and are 

= 2i + 1- ci(a - n - Wj(4m), (11) 

where 

a=2(md)1/2ja (12) 

and n is restricted to 0 -s n < a -

These zero order eigenvalues are compared in 
Table II with the numerically computed resonance 
energies. There is reasonable agreement in all 
cases in which variational and scattering calcula-
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tions have been performed. 

The first order shift in the eigenvalues due to 
the perturbation H(lI of Eq. (10) is given by the 
usual perturbation'theory as 

= J'" J '" V(x - y) - V(x)] 
_GO _co 

(13) 

where <Pi(y) are harmonic oscillator wavefunctions 
defined by Eq. (4) and X.(x) are real, orthonormal 
eigenfunctions of the Morse oscillator Hamilto-
nian, 29 

- m-1a2/ax2+dexp(_ ax)- 2dexp(- i ax). (14) 

Using the definition (2) for V(x- y) and V(x), Eq. 
(13) becomes 

J'" J'" _co 

- 2d J: )e-""'/ 2 dx J: <p:(y )(e"Y/ 2 - 1) dy. 
(15) 

The integrals over the harmonic oscillator coordi-
nate yare easily done17 and those over the Morse 
oscillator coordinate x may be carried out by using 
a polynomial representation of the X.(x) eigenfunc-
tions. 30 The result is 

where 

KI(a)= S.: 
= (2/ in-1 exp(a2/4) t 2Jj! a2j -2j _ 1 

j=O J 

and a is given by Eq. (12). 

(16) 

(17) 

The resonance energy correct to first order is 
given by the sum E;:t) and appears in Table 
II. It is seen that the first order eigenvalue is in 
quite good agreement with the numerically com-
puted resonance locations, much more so than 
the zero order eigenvalue. 

APPENDIX 

It is deSired to evaluate the integral, 

1= JT J'" 'l1t(x,y)'l1/(x,y)dydx, (18) 
.. iC _GO 

where '11/ (x, y) is a solution of Eq. (1) with boundary 
conditions given by Eq. (3). Differentiation of Eq. 
(1) with respect to E yields 

[- m-1a2/ax2 _ a2/al +y2 + V(x - y) - E]a '11/ (x,y )/aE 

(19) 

Substitution of this into Eq. (18) gives 

1= - m-1 r J'" dy dx 
_iC .. ., 

x[a 'III (x,y)/aE] dy dx. (20) 

The first integral in Eq. (20) may be integrated by 
parts twice with the result, 

since it is assumed that 'III (x, y) and its derivative 
with respect to x vanish at x= - 00. In a similar 
manner the second integral in Eq. (20) becomes 

IT (f'" *( ) a'l1I (X,y) ) _'" _'" 'IIj x,y oy2 aE dy dx 

_fT ('" a2'11t(x,y) O>¥j(X,y) d d (22) - _'" L ol oE y x. 

Substituting Eqs. (21) and (22) into Eq. (20) and 
making use of Eq. (1) yields 

1= 1 J."':I'( )o2'l1/(r,y) _ a'l1t(r,y) o'll/(r,y) d 
- m _'" 'II, r, y oroE or aE y. 

(23) 
Since r is assumed large enough that the interac-
tion potential is negligible, the asymptotic form 
(3) may be used for >¥t(r,y) in Eq. (23). This al-
lows the derivatives of 'l1j (r,y) with respect to r 
and E to be evaluated explicitly. After much tedious 
manipulation and use of Eq. (6), the orthonormality 
of the ¢.(y), and the conservation of probability, 17 

6 P ni =l , 
n (24) 

one obtains 

I=r( 1 kiPn;/kn) + IP;;/kj sin(2k j r+ 71/1) 

+ (2k j /m)6 P n.(d7lni/dE ) 
n 

n 
(25) 

Differentiating Eq. (24) with respect to E yields the 
identity 

(26) 

which when substituted into Eq. (25) yields the de-
sired result, Eq. (7). 

*This research was supported by U,S, Army Munitions 
Command, Picatinny Arsenal, Dover, NJ. 
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