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Compound state resonance effects are reported in exact, numerical calculations of the collinear
collision of a particle with a harmonic oscillator with a Morse interaction potential. They are shown to
be due to the formation of a long-lived complex or quasibound state and are much more narrow than
resonances reported previously for this type of system. The stable eigenvalues resulting from a
variational calculation with a bound state basis set are found to be in excellent agreement with the
resonance energies, and such a variational calculation is a good way of locating these resonances.

INTRODUCTION

Compound state resonances are resonance ef-
fects in the scattering of a projectile from a tar-
get which are due to the formation of a long-lived,
projectile~target complex, Such resonances have
been observed experimentally in processes such
as nuclear particle scattering! and in electron-
atom collisions,? and a number of theoretical treat-
ments of such phenomena exist,3* In addition,
compound state resonances have been found in cal-
culations of the scattering of a particle from a
rigid rotor. *-’

In this work, compound state resonances in the
collinear collision of a particle with a harmonic
oscillator are studied. This relatively simple
model is aften used to study molecular vibrational
energy transfer without the complications intro-
duced by the possibility of rotation and other pro-
cesses.,®

There appear to be two types of resonances in
collinear collisions. The first type, which has
been studied previously, ° has been seen only for
square well interaction potentials. These reso-
nances are due to the formation of standing waves
in the region of the attractive well® and might well
be called shape resonances® in analogy with the shape
resonances of potential scattering. The secondtype
of resonance in collinear collisions is the com-
pound state resonance reported here. These are
seen for Morse interaction potentials which do not
exhibit shape resonances. These resonances are
very much narrower than the shape resonances;
that is, the resonance effect occurs over a very
narrow range of incoming particle energy. An-
other difference is that the inelastic vibrational
transition probability decreases drastically at a
compound state resonance whereas it increases or
peaks at a shape resonance in all cases which have
been calculated.

A number of collinear collision calculations have
been carried out in the past with attractive well in-
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teraction potentials which exhibit fluctuations in
the transition probability®=*® which are often called
resonances. One such calculation!® involving a
deeper attractive well than considered in this work
exhibits a sequence of dips in the inelastic transi-
tion probability. Possibly these are compound
state resonances of the type investigated here.

One motivation for this work was the desire to
provide exact, quantum mechanical results for
resonances in a simple, well-defined model. These
may be used to evaluate approximate methods, in
particular the semiclassical treatment of multi-
dimensional bound states and resonances recently
proposed by Marcus, ¢

The next section contains the results of scatter-
ing calculations in which compound state reso-
nance effects are seen and provides the physical
interpretation. The last section is a discussion of
various methods of locating these very narrow
resonances.

SCATTERING CALCULATIONS

The Schrodinger equation for the collinear colli-
sion of a particle with a harmonic oscillator may
be reduced by proper choice of units™'” to

[- m%%/ax® —8%/8y% +3%+ Vix - y) - E]wlx, ) =0.

(1)
Here m is a mass ratio, ® x is the coordinate of the
incoming particle, y is the displacement from
equilibrium of the oscillator, V(x- 9) is the inter-
action potential, and E is the total energy of the
system in units of the zero point energy of the
oscillator, The interaction potential is here taken
to be a Morse potential which has the form

Vir)=dexp(- ar) — 2dexp(~ % o). (2)

Here d is the depth of the attractive well and «
determines the “steepness” of the attractive and
repulsive parts of the potential,

The boundary conditions for Eq. (1) when the
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oscillator is initially in the state denoted by 7 are

q’i(x’y)r:-w g,
&, (0, ) 7w ¢, (y) expl - ik, x)

+220,(3) explike,x) by /)Y %S,
n
(3)
where ¢,(y) is the wavefunction for a free oscilla-
tor which satisfies

(—8%/6y% 492 —2n - 1)¢,(y)=0 @)

and k2= m(E—2n~1). The matrix of coefficients
S,; is often called the S matrix.'® The probability
that the oscillator in state ¢ will undergo a transi-
tion to state n is given by

Poy=] 8% (5)

In what follows, use will be made of the phase of
the S matrix defined by

Sy = P Zexplin,) (6)
where 7,; is real and ranges from 0 to 27,

A series of calculations of 5; for a range of en-
ergies E were performed for a number of mass,
well depth, and steepness parameters m, d, and
«. The method of amplitude density functions'®
was used to compute a reactance or K matrix,
which is analogous to the S matrix defined as in
Eq. (3) but with the complex exponentials replaced
by sines and cosines.?’ Thus, solving for the K
matrix involves only real arithmetic, The S ma-
trix was then recovered from the K matrix by a
suitable transformation, 2°

The resonances reported here are characterized
by an extremely rapid increase by 27 of the phase
of the S matrix 7,; with energy E. This occurs in
the vicinity of certain distinct energies which are
usually called the resonance energies. At these
resonance energies the inelastic transition prob-
abilities dip sharply and then rise again to the off-
resonance value.

The behavior of the phase of the S matrix and the
transition probability at a typical resonance is
shown in Fig. 1. The rapid rise in 75, and the dip
in P, is clearly seen on this greatly expanded en-
ergy scale, The resonance occurs at an energy
of E=3.642630, which is above the threshold for
excitation of the n =1 vibrational state at £=3 but
below the threshold for the n=2 state at E=5.

To compute the S matrix accurately close to the
resonance energy, it was necessary to include
several more channels in the close coupling scheme
and to take many, closely spaced integration steps.
In the calculation reported in Fig. 1, eight chan-
nels were included and 5700 integration steps taken
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at £=3,6426298, for example, while at
E =3, 6426200 only four channels and 500 steps
were necessary to obtain comparable accuracy.

Even with this amount of computation, it was not
possible to adequately resolve the resonance in the
ground state elastic phase ny. It is not known
whether the numerical method is not capable of
resolving this resonance or whether the resonance
in 7¢ does not exist.,

The usual physical interpretation of this type of
resonance is as follows. At the resonance energy,
the incident particle “sticks” to the target for an
abnormally long time compared with the particles
incident at neighboring energies. The resonance
is thus an indication of the formation of a quasi-
bound or compound state, which in this case is a
three-particle complex with a long but finite life-
time,

The evidence for this interpretation in the pres-
ent case is twofold. First of all, it may be shown®!
that the time by which the incident particle is de-
layed by the interaction with the target oscillator
is proportional to dn,;/dE. Thus if 1, rapidly in-
creases by 27 at the resonance energy and returns
to its previous, slowly changing behavior, the in-
cident particle has been trapped by the target with
a lifetime proportional to the rate of increase of
Ny With E,

On the other hand, one may evaluate the integral
S LD T wn )| ayax,

where 7 is large enough so that the integration is
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FIG. 1. The probability of a 10 vibrational transi-
tion and the phase of the S-matrix modulo 27 [cf. Eq. (6)]
in the vicinity of a resonance. This collinear system
has mass, steepness, and well depth parameters m =0, 2,
a=0.1, d=1.5, respectively.



COMPOUND STATE RESONANCES IN COLLINEAR COLLISIONS

over the whole region where the interaction poten-
tial is nonnegligible, This integral is a measure
of the probability of finding the incident particle in
the vicinity of the oscillator. In the Appendix it
is shown that it is

jm j’_m | @, (x, )| 2 dydx
:r(l +20 Pk /k,,>+ VB, /ky sin(2k,7 +1;,)
+(2k;/m) 25 P,ldn,;/dE) . (7)

It is clear from this result that close to a reso-
nance energy where dn,;/dE is large, the last term
will dominate and there will be a high probability
of finding the incident particle in the vicinity of the
target.

VARIATION AND PERTURBATION CALCULATIONS

It is very difficult to discover the location of the
resonance energies by performing scattering cal-
culations because the jump in the phase occurs
over a very small range of energy. For example,
to find all the resonances like the one in Fig. 1
between the thresholds for 1+ 0 and 2+ 0 vibrational
transitions would require calculations at more than
4000 energies, which is a considerable computa-
tional effort. Better methods of locating the reso-
nance energies, which have been found to be use-
ful, will now be discussed.

From Eq. (7), one suspects that the amplitude of
the wavefunction at a resonance energy will be
large in the region where the potential is large, At
nearby energies the amplitude will be much small-
er. Thus the resonance wavefunction has the quali-
tative features of a bound state wavefunction. The
difference is that, whereas a bound state wave-
function vanishes as the incoming particle coordi-
nate approaches infinity, the resonance wavefunc-
tion oscillates in the manner given by Eq. (3).
Thus it is reasonable to expect that a variational
calculation of ¥(x,y) of Eq. (1) using a basis set
of bound state wavefunctions will nearly converge
to the resonance energy. This method of comput-
ing resonance energies was first proposed by
Taylor® 2 and was called the stabilization method.
It was used successfully to compute resonances
for simple models. 24?7

In this work the scattering wavefunction was ap-
proximated by a set of harmonic oscillator eigen-
functions ¢,(y) defined by Eq. (4). That is, the
wavefunction was written

Ulx,y) =2 ciap: Ox = ¥)9,(3), (8)
i,n
where X and v are adjustable parameters and the

coefficients ¢;, are to be determined by the varia-
tional procedure. Substitution of Eq. (8) into Eq.
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(1) leads to the usual algebraic eigenvalue problem,
which was solved by standard numerical methods,
This results in a large set of eigenvalues. The
eigenvalues lying below energy E =1 are, of course,
approximations to the true bound states of the three-
body collinear system. Those lying above E=1

are not strictly eigenvalues of Eq. (1) and most of
them do not converge to any limit as the size of

the basis set is increased. However, a number of
these higher eigenvalues do not change as the size
of the basis set is increased. They are approxi-
mations to the resonance energies.

All of the computed eigenvalues which lie between
E=3.0and 4.5 are given in Table I for different
basis sets. Although most of the eigenvalues are
unstable, the underlined values do not change as
the basis set is increased. It is seen that one of
these stable eigenvalues is a good approximation
to the resonance plotted in Fig. 1.

Table II gives resonance energies computed by
a scattering calculation discussed in the last sec-
tion compared to a variational calculation for
various mass, depth, and steepness parameters
m, d, and a., In most cases, of course, the varia-
tional calculation was performed first to locate the
resonances, and the location was verified by a

TABLE I. Some higher eigenvalues of the collinear
system.?

Size of basis set

4 x32Pb 4 x36 4 x40
3.0787 3.0559 3.0385
3.1870 3.1825 3.0810
3.2179 3,2647 3.1544
3.3746 3.3260 3.2865
3.4950 3.4848 3.3472
3.5477 3.5553 3.4334
3.6426° 3.6426 3.5942
3.7366 3.6585 3.6267
3.8041 3.8458 3.6426
3.8903 3..8561 3.7685
3.9408 3.8903 3.8903
4.1131 4,0484 3.9204
4.1451 4,1131 3.9560
4,1610 4,1851 4.1131
4,3110 4,2647 4,1560
4.3959 4.3110 4,2311
4,4840 4.4839 4,3110
4.4940 4,3694
4, 4839

*Computed by diagonalizing the Hamiltonian matrix of
Eq. (1) with m =0.2, a=0.1, d=1.5 with the basis set
given in Eq. (8) with A=0,15, v=2.0,

PThis notation means that 4 basis functions of y and 32
basis functions of x were used in Eq. (8).

“The underlined eigenvalues do not change with an in-
creased basis set.
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TABLE II. Resonance energies for various systems.

Scattering® Variation® First order® Zero orderd Quantum No. ®
m=0,2 a=0.1 d=1.5!
1.63901 1.6390 1.6392 1.6338 0,1
1.887 1.8870 1,8875 1.8827 1,1
2,110 2,1101 2,1109 2,1065 2,1
2,308 2,3083 2.3092 2,3054 3,1
2,4816 2,4826 2.4793 4,1
2,6300 2.6309 2.6281 5,1
3.64263 3.6426 3.6428 3.6338 0,2
3.890 3.8903 3.8908 3.8827 1,2
4,113 4,1131 4,1138 4.1065 2,2
4.3110 4,3118 4,3054 3,2
4,4839 4,4848 4,4793 4,2
4.6320 4,6328 4.6281 5,2
m=0.2 a=0.1 d=3.0
2.209 2.209 2.2088 2.1905 0,2
2.569 2.5699 2.5528 1,2
2.904 2.9059 2,.8901 2,2
3.215 3.214 3.2170 3.2024 3,2
3.500 3.500 3.5031 3.4897 4,2
3.761 3.761 3.7642 3.7520 5,2
3.998 3.997 4, 0003 3.9893 6,2
4,218 4,218 4,2113 4.2016 7,2
m=0,5 a=0.25 d=0,05
2.98239 2.9824 2,9824 2.9817 0,1
4,9828 4,9829 4,9817 0,2

2Computed by a scattering calculation,
“Some of the stable higher eigenvalues from a variational calculation.
®Perturbation method including the first order correction,

9Zero order perturbation method.,

°In the form », ¢ from Eqs. (11) and (16).
IThese mass, steepness, and well depth parameters, respectively, are roughly appropri-
ate for an inert atom~halogen molecule interaction,

scattering calculation,

It is seen that the varia-

tional calculation accurately predicts the location
of the resonances as expected.

In cases where there were many resonances,

only the low-lying ones were computed here,

The

resonances lying close to the threshold for the next
transition are difficult to approximate in the pres-
ence of lower resonances with the basis set used
in Eq, (8). Also, these resonances are sharper
than the low-lying ones and are even more difficult
to find than the latter by means of a scattering

calculation.

It turns out that, for the purpose of computing
resonance energies, the incident particle and os-
cillator motions are nearly separable for most
collinear systems of physical interest.
expected that perturbation methods would give a
good approximation to the resonance energies.

Thus it is

For the purpose of using perturbation methods,
the Hamiltonian in Eq. (1) is partitioned into a

separable part and a perturbing potential as fol-
lows. The separable zero order Hamiltonian is

BY = m0%/0x + Vix) - 82/ag? + 42, (9)

where V(x) is the Morse potential function defined
in Eq. (2). The perturbation must be

HY = V(x - y) - Vlx). (10)

The eigenvalues of H' are the sum of the harmonic
oscillator eigenvalues given by Eq. (4) and the
Morse oscillator eigenvalues29 and are

EQ=2i+1- d®a-n~3?/(4m), (11)
where
a=2md)"?/ (12)

and # is restricted to 0=n<a —%.

These zero order eigenvalues are compared in
Table II with the numerically computed resonance
energies. There is reasonable agreement in all
cases in which variational and scattering calcula-
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tions have been performed.

The first order Sh]ft in the eigenvalues due to
the perturbation H'" of Eq. (10) is given by the
usual perturbation theory as

E;}’zf_: f_: X (eF (9 Vix - 3) - V%))

X x,(x)¢; (y)dxdy , (13)

where ¢,;(y) are harmonic oscillator wavefunctions
defined by Eq. (4) and x,(x) are real, orthonormal
eigenfunctions of the Morse oscillator Hamilto-
nian, ¥

—-me%/ox’ +dexp(— ax) - 2dexp(- 3 ax). (14)
Using the definition (2) for V(x-y)and V{x), Eq
(13) becomes

Eg'=d [ xieax [ ol(y)e~1)ay

-2d f: Xex)e o & dx f_: ¥ (y)e® 2~ 1 dy.
(15)
The integrals over the harmonic oscillator coordi-
nate y are easily done'” and those over the Morse
oscillator coordinate x may be carried out by using
a polynomial representation of the x,(x) eigenfunc-
tions.?® The result is

EX =(d/a)a-n- DK () - 2K,(a/2)], (16)

where

= Jw o2(y)e® - 1) dy

s\ 2
<’) 2jla%-% _ 1
J

M..

= (2471)texp(a?/4)

1y
(=]

7

(17
and ¢ is given by Eq. (12). )

The resonance energy correct to first order is

given by the sum E’ + EY and appears in Table

II. It is seen that the first order eigenvalue is in
quite good agreement with the numerically com-
puted resonance locations, much more so than
the zero order eigenvalue.

APPENDIX

It is desired to evaluate the integral,
I= f: f: ¥ (v, v)¥ (x, y) dydx, (18)

where ¥,(x, y) is a solution of Eq. (1) with boundary
conditions given by Eq. (3). Differentiation of Eq.
(1) with respect to E yields

[-mte?/ox? - 8%/0y% + 92+ Vx—y) - EJ0 ¥, (x,y)/0F
=¥ (x, y). (19)

Substitution of this into Eq. (18) gives

I=—mt [T [ 7w 9)0%/2®) o 4, (x, ) /0 E) dy dx

- f_: f_: T (x, y)(82/0y2) [0 4, (x, ) /8 E]dy dx

s 7 [T w9y Vix-y) - E]
x[8 ¢, (x,y)/3E] dy dx, (20)

The first integral in Eq. (20) may be integrated by
parts twice with the result,

([ st 3 2552 s

auK(r,y) 8y, (r,y)

® 3 oy lr,y)
= * — 2DV
S_ W, 9357 g ar oE D
TT %ur(x,y) 3y (x,y)
+L L L L ay ax 1)

since it is assumed that ¥,(x, y) and its derivative
with respect to x vanish at x= - «, Ina similar
manner the second integral in Eq. (20) becomes

32 3\11 (x
* _L__’J
J (J- ] (x, ay EYa) d )dx

(7 (7 Purn,y) 8wy, y)
—£ SN 857 op  dvdx . (22)

w©

Substituting Eqs. (21) and (22) into Eq. (20) and
making use of Eq. (1) yields
dy.

I-- _j G
(23)

Since 7 is assumed large enough that the interac-
tion potential is negligible, the asymptotic form

(3) may be used for ¥(r,y) in Eq, (23). This al-
lows the derivatives of ¥,(r,y) with respect to #

and F to be evaluated explicitly., After much tedious
manipulation and use of Eq, (6), the orthonormality
of the ¢,(y), and the conservation of probability, **

Epni:19
n

3 W, r,y)  2ut(ny) 39(r,y)
9Y3E ar 9F

(24)
one obtains
I=7 (1 +§ kiP,.i/k,,>+ VP ;/k; sin(Rk;v + ;)
+(2k; /m)? P,i(dn,;/dE) .
- (iki/m)nz (dP,;/dE) . (25)

Differentiating Eq. (24) with respect to E yields the
identity

21 dP,;/dE =0, (26)

which when substituted into Eq. (25) yields the de-
sired result, Eq, (7).

*This research was supported by U.S. Army Munitions
Command, Picatinny Arsenal, Dover, NJ.
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