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A semiclassical theory of the width and shift of molecular spectral lines is developed for gases. Overlapping 
and nonoverlapping lines are considered, within the framework of the impact approximation. Use is made of 
"exact" semiclassical theory of molecular collisions, recently developed by Miller and by Marcus, and of 
developments in the quantum mechanical theory of spectral line shapes, by introducing the former into the 
latter. Comparison is made with a classical-like approach. 

I. INTRODUCTION 

There have been a number of recent develop-
ments, both in the theory of collisional line broad-
eningl- 14 and in the "exact" semiclassical theo-
ry15.16 of collisions. fu the present paper, these 
two trends are blended to yield a semiclassical 
theory of spectral line broadening, valid within 
the impact approximation and specifically for the 
case of foreign gas broadening for overlapping and 
nonoverlapping lines. 

The advances in the theory of line broadening 
based on the "impact approximation" (an approxi-
mation which allows the collisions of perturbers 
with the absorbing molecule to be treated as well 
separated in time), include the pioneering work of 
Anderson, 1 who employed a classical path approxi-
mation (classical plus only zeroth order treatment 
of the relative motion between perturber and ab-
sorber) and a perturbative approximation for the 
S -matrices appearing in the line shape expression. 
This classical path result was later extended to 
overlapping lines by Baranger2 and Kolb and 
Griem,3 and by Gersten and Foley,4 who also made 
detailed calculations for actual systems. Rabitz, 
Gordon, and Nielson5,6 made further developments 
in these calculations. An all-quantum-mechanical 
formal treatment was developed by Baranger 1 to 
replace the classical path approximation and the 
use of perturbative expansions of the S-matrices. 
This formalism was made more compact with the 
introduction of Liouville space ("line space") for-
malism by Fano. 8 The latter was further developed 
by Ben-Reuven, 9 who introduced a practical treat-
ment for the high-orbital-rotational degeneracy 
present and proceeded to treat several specific 
overlapping line systems. 

No ab initio calculations for this" exact" (within 
the impact approximation) formalism appear to 
have been published. However, there have been 
many ab initio calculations using the classical path, 
mostly withl0 but some without6 perturbative 
schemes for the internal motions. A nonperturba-
tive classical-like model has been described by 
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Gordonll and has been used recently by Gordon 
and co-workers 6,12 to calculate various line shapes 
for overlapping and nonoverlapping systems. Re-
cent related reviews of relaxation phenomena rele 
vant to line broadening have been given by Gordon, 
Klemperer, and Steinfeldl3 and by Beenakker, 

14 Knaap, and Sanctuary. 

The quantum mechanical formalism for the line 
shape8 ,9 is first converted in Sec. II into a form, 
which contains "collision cross sections" (Ji'f' ;if' 
The "exact" semiclassical expressions recently 
developed by one of US

15 and by Miller16 for the S-
matrices l1 are then introduced into the cross-
section and a semiclassical expression for the 
Wigner 6-j symbols 18 is also employed. Both of 
these appear in the expression for the line shape 
which is valid within the impact approximation. 
This expression is developed first for a linear 
molecule perturbed by a foreign gas in Sec. III. 
The extension of these expressions to related re-
laxation phenomena13 is described in Sec. N [Eqs. 
(4.1) and (4.4)]. The latter phenomena will also 
be the subject of further papers of this series. 

II. QUANTUM MECHANICAL LINE SHAPE EXPRESSION 

The assumptions made in each of the all-quan-
tum-mechanical treatments for foreign gas broad-
ening cited earlier, and used here to obtain a trac-
table line shape expression valid within the impact 
approximation, are as follows: (i) the absorber and 
perturber distribution functions are essentially un-
correlated, (ii) the system is dilute enough in ab-
sorber molecules that absorber-absorber inter-
actions are minor and may be neglected, (iii) it 
is at low enough pressures that the approximation 
of binary absorber-perturber molecular collisions 
may be used, and (iv) the impact approximation is 
valid. 

The spectral line shape I(w) for electric dipole 
transitions is then given for overlapping lines 
by9,19 

I(w)=-(l/TI')Im 6 (f'lIflll·i') 
ii'lf' 
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x« i'f'; -1,1,0 i1/[w - -N{m(w)}] I 

x if; - 1, 1,0» Pi (i II f.J.11f) , (2.1) 

where 1m denotes imaginary part; i andf refer to 
states of the absorber (emitter) before and after 
the optical transition, respectively; unprimed i 
andf denote such absorber states before collision 
and primed quantities such states after collision; 
Pi is the probability of finding the absorber (emit-
ter) in state i; the - 1, 1, and 0 describe the parity 
( - 1 for an electric dipole transition) and the rel-
evant tensorial properties of interaction with the 
radiation; w is the frequency of the absorbed (emit-
ted) radiation and, on the right hand side of (2.1), 
is written as positive for emission and negative 
for absorption;2 La is the Liouville operator for 
the unperturbed absorber; N is the foreign gas 
density (perturbers); f.J. is the electric dipole oper-
ator; and {m(w)} is the binary collision Liouville 
operator, averaged over all perturber states: 

(2.2) 

where l; and l;' denote the state of perturber (in-
cluding the translational state of absorber-per-
turber relative motion) before and after colliSion, 
respectively; Pc is the probability of finding this 
perturber in initial state l;. When the effects of 
any internal states of the perturber are neglected, 
as with monatomic inert gas perturbers at the 
usual temperatures (300 OK, for example), l; de-
notes only the translational state. We set n= 1 
throughout. For completeness, notation and oper-
ations 9,20 for the Liouville operator La, the re-
duced dipole matrix elements and the (double-
bracketted) Liouville vectors in (2.1) and (2.2) 
are summarized in Appendix A. 

The operator relationShipS between the binary 
collision operator m (w) and the transition oper-
ator of scatteri.ng theory can be converted to re-
duced matrix form. 9b The details and subsequent 
conversion to S-matrices and collision cross sec-
tions are summarized in Appendix B. One obtains 

« i'f'; -1, 1, OI{m(w)}1 if; -1,1,0» 
. [00 2 

=-t Jo vai'f';ifPv4'ITV dv, (2.3) 

where Pv4'IT v2 dv is the normalized Maxwell-Boltz-
mann distribution and ai'f';if is a cross section 
for a collision of an absorber-perturber pair 

ai'f';;f = ('IT/k 2) .0 (- )ii-il+l-l' (2J; + 1) (2Jf + 1) 
ll'J i J f 

Here, each j denotes the absorber's rotational 
angular momentum quantum number; i andf de-

note properties of the absorber (emitter) before 
and after an optical tranSition, respectively; the 
i and f subscripts for a denote 'IT J; and 'IT fit for 
pure rotational lines and rrJin; and 'lTfitnf for ro-
tational-vibrational lines (njrr i and nf'ITf are the 
vibrational quantum numbers and parity before 
and after the optical transition, respectively); 
unprimed and primed symbols refer to pre- and 
postcollision quantities; Z denotes the orbital an-
gular momentum quantum number (Z = Z; = Zf' Z' 
= Z; = Z;); J denotes the total angular momentum 
quantum number (e.g., J;=j;+l=j;+l'); and the 
i and f denote 'lTJjZ and 'lTfitZ, respectively for pure 
rotational lines, and denote rr ;nJ;Z and 'lTfnfji, re-
specti vely for rotational-vibrational lines; k is 
f.J.v/n, i. e., f.J.v; the distribution function Pv is 

Pv = (J.I./2rrk BT)3/2 exp( - f.J.V2 /2k B T) , (2. 5) 

k B being Boltzmann's constant, T the temperature 
of the system, and f.J. the reduced mass of the ab-
sorber -perturber pair [not to be confused with 
the f.J. in (2.1)]. The SJ; and SJf matrix elements 
in (2.4) are evaluated at different energies, e. g. , 
as in Eq. (B19), Appendix B. Equation (2.4) is 
valid within the impact approximation (cf. Ref. 7). 

Knowing the matrix elements of N{m(w)} in (2.3), 
those of La and of W(=Wl)if)' the matrix 
elements of [w - La - N {m(w )}] -1 in (2. 1) can be 
calculated by a suitable inversion method. 

Equation (2.4) is converted to semiclassical 
form in Sec. III. 

III. SEMICLASSICAL LINE SHAPE EXPRESSION 

In this section, an expression for the line shape 
is developed, but the variables describing vibra-
tion are excluded for brevity. These variables 
pose no difficulty and are included in the final ex-
preSSion Eq. (3.21) for overlapping lines at the 
end of this section. 

A semiclassical expression for the 6-j symbols, 
appropriate for the case of two large and one small 
angular momenta, is 1S 

{ K
Z 

} = t (_l)l+i j +J r K [(j; +t) (Jj , 
Jilt 

(3.1) 
where X=Jf -J;, I) =jf - j; (x, 1i =± 1, 0), and is 
the angle between the vectors j; and J;, 

= [(J; + + (j; + _ (l + + . 
(3.2) 

A similar expression applies to the other 6-j sym-
bol. 

In semiclassical theory15,16 the states i and f 
are most conveniently described in terms of ac-
tion-angle variables. The action corresponding 
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to a quantum number n is (n + 6)h where 6 [not to 
be confused with the 6 in (3.1)] is, depending on 
the degree of freedom, frequently t or, in the case 
of z components of angular momenta, O. In units 
of n = 1, this action variable becomes 27T(n + 6). 
The coordinate canonically conjugate to the action 
is the angle variable w, which varies from 0 to 1. 
However, W is also canonically conjugate to 27Tn 
in the appropriate sense of satisfying the correct 
Poisson-bracket relation for canonically conjugate 
quantities. 21 

A collision of an atom and a (rigid) linear mol-
ecule can be described in the center of mass sys-
tem with the aid of the initial action variables 
Z7r(l +t), Z7r(j + t), and 21T(J +t), the initial radial 
momentum P R, and their canonically conjugate 
coordinates, W I, wi' w;n and R. The dynamics 
of the collision are unaffected by the one remain-
ing action variable 21TM, which is the z component 
of J, and by its canonically conjugate coordinate 
W M' Several of these w's, multiplied by 27T and 
called q's, are shown in Fig. 1. For convenience, 
we have set J along a space-fixed z axis, and so 
will not exhibit the (presently unneeded) angle 21TWM' 
The angle 27TWj is measured in the J plane (plane 
perpendicular to J) in the direction indicated from 
the space-fixed Y axis to the line of intersection 
of the j and I planes, "the line of nodes ON." The 
angle Z7rwj is measured in the j-plane from ON to 
the pOSition of the dipole OD. Similarly, the angle 
Z7rWI is measured in the I-plane from ON to the 
position of the line of centers OC of the collision 
partners. The postcollision coordinates w;, w/, 
w;, and R' are canonically conjugate to the post-
collision momenta, 21T(l' +t), Z7r(j' +t), 27T(J' + t), 
and The angles are the same as those in Fig. 
1 when primes are placed on the symbols in that 
figure. 

Finally, in our previous semiclassical papers 15 

we used (WO, RO) and (w, R) to denote initial and 
final coordinates, respectively, and (27Tn, and 
(Z7rn, P R) to denote their canonically conjugate vari-

J Z 

X f----, 

c 

FIG. 1. Variables 
describing internal co-
ordinates qj, ql, and qJ 
for the motion of an 
atom and rigid rotor. 
The rotor axis lies along 
OD and the line of centers 
of the collision partners 
lies along OC, at any 
instant of time. The 
q's are 27T times the 
corresponding w's. 

abIes. We have now modified the notation so that 
these quantities are now (w ,R ), (wl,R'), (27Tn,PR)' 
and respectively, to conform with a 
common line broadening practice of using unprimed 
and primed variables to represent pre- and post-
collision quantities. 

The semiclassical expression for the S-matrix 
can be written as22 

Sf:'I';}i' = ia(j!, l')/a(w ji , W,)I-l/2 

x exp[iF4(j!l'JjEi;jilJiEj) +t (l +l' + l)7Tl. 
(3.3) 

F4 is a classical mechanical generating function, 23 

for transforming from the pre collision momenta 
j;lJiPR to the postcollision momenta jfl: 

F4(j!l' JiE;j PiE) = - I:' Z7rWI dl - I{ 27TW} dj 

(3.4) 

where the integration in (3.4) is over the classical 
trajectory leading from the initial precollision 
state j ilJiE to the desired postcollision final state 
j: l' JjE. The summation in (3. 3) is over all such 
trajectories (real or complex-valued) which lead 
from this initial state to this final state. 

* The exponent of SJi SJf in (2.4) can be written as 

* exponent in = iF4(j/l' J/, E;'; j jlJ j, 'E j) 

Each F4 is real valued when the relevant trajec-
tories are real valued. 

When the F4 and Ft in (3.5) are expanded about 
a common value, retaining the first two terms of 
the expansion, we have 

F4(j!l'J!, E/;j;lJj, Ei)-Ft(jjl'Jj, Ej;hlJf,Ef ) 

. aF4 . . ) aF4 (., ") aF4(J J) +-;;-:7 Ji-Jf + "J j- f 
uJi oJj 0 j 

aF4( I ') ) aF4( I ') +aJ.' J i -Jf +aE. Ej-Ef +aE!E j -Ef , 
, • • (3.6) 

where if> = ImF4 • These derivatives and if> are 
evaluated at a mean value (j,j', J) of Uj, j /, J j ) 

and Uf , jj, Jf ) and at a mean energy. We note that 
J/=Jj and Jj=Jf • 

The partial derivatives in (3.6) are, respective-
ly, Wi' -wi, W.n -wi, WE' -w;, as shown in 
Appendix C. Thereby, we have 

lhs of (3.6) = 2iif>+ III + 112 , 

where (Appendix C) 

III = 2n(w; 6' - wJo +w)'A - wJ'A) , 

(3.7) 
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e2 =wE (E j -Ef )-w;(E! -Ej) , (3.8) 

(v<O, v'>O) 

-o=jj-jf' -o'=j!-jj, -"A=Jj-J/> (3.9) 

and 

(3.10) 

WJ' W/, WJ, wi and W; -WE are constants of the 
trajectory, independent of the initial R and time 
and of the final values, R' and t'. w; - WE is a 
"collision delay time," since it is the energy de-
rivative of the phase of an S-matrix. 24 The diag-
onal elements if= if' offer no difficulty and Eqs. 
(3. 6) and (3.7) apply. For the off-diagonal ele-
ments one actually has off-the-energy shell T-ma-
trix elements, 7 as in Appendix C, rather than (2.4). 
The occurrence of these elements is also reflected 
in the fact that E j -Ef does not necessarily equal 
E( -Ej when ift-i'f', and hence that Ejt-E( or 
Eft-E/ in the T-matrix elements of line broaden-
ing. However, such differences between E! - E/ 
and Ei - E f are neglected, relative to kT, in the 
impact approximation. 7 Within this approximation 
(2.4), (3.6), and (3.7) apply to the off-diagonal 
elements, ift-i'f', also. 

We note, too, that one pre-exponential factor 
of SJi in this expansion is, if we first consider 
the pre-exponential factor for the diagonal element 
if = i'f', equal to the complex conjugate of that of 
SJf. Neglecting interference terms, we now have 

*Jf sfh' ;JiIS Jil' ;J,I 0Ia(/, l')/a(wJ, WI)!"l 
x exp [i(6 1 + 62) - 24>]. 

(3.11) 
The semiclassical expression for the ai'f' ;if in 

(2.4) becomes, with the aid of (3.1) and (3.11), 

a/,!, ;i' = (1flk2)foo (2l + 1) dl (OJi'J i 0f,'Jf - 6 f'dl ' 
o 
t+ 1 2J+1 

x (21+1) ..; (2j+1) (2/ +1) 

a(j' 1') -1 ) xl a (' ) 1 exp( - 24> + , 
WJ,WI 

(3.12) 
where j and J denote mean values of (j I> j,) and 
(Jj , J,), respectively, and where is given 
by (3.13), with K= 1; 

(3.13) 

The symbol Df,6(ex{ly) defined by the right hand 
side of (3.13) proves to be the element of a rota-
tion matrix, as shown in Appendix D, and de-

the rotation of the "reduced" dipole OD 
into OD' via the angles ex, 13, and Y, as shown in 
Fig. 2. The angles ex is the angle measured in the 
j-plane from the "reduced" dipole OD to the line 

FIG. 2. Angles o!, {3, 'Y 
for rotating the "reduced 
dipole" OD into OD'. The 
ON is the same as the ON 
in Fig. 1, and ON' is the 
corresponding quantity for 
the primed variables. Each 
q denotes 2rrw, and w = w 
- Rv/v. ONJ is the line of 
intersection of the rotational 
plane before collision with 
the one after. 

of nodes ONJ of the j and j' planes. The angle 13 is 
the angle of rotation about ONi from j to j'. The 
angle Y is the angle measured in the j' plane from 
ONJ to the "reduced" dipole OD'. (Thus, ex{ly de-
scribes the rotation of OD into OD'.) An angle 
measured from OD to the actual dipole OD in the 
j plane can be seen from (3.10) to be 21fRv/v, 
while the corresponding angle from OD' to OD' in 
the j' plane is 21TR'v'/v'. Df,6(ex{lY) is 

Df'6( ex (l Y) = e i6' '" df, 6({l)e 16' Y 

following the convention in Edmonds. 25 

inasmuch as26 

(3.14) 

1 a (j', l')/a(wJ' WI) 1-1 = (al'/a wdjf(aj' / &W} )WI 

(3,15) 
we can write a term in (3.12) in the form 

1 a (j', l')/a(wJ, WI) 1-1 dl' = 1 aj'/aw} 1-1dwl 

=pf';j(w/)dw l , (3.16) 
where 

P J (-) 1 a ·'1 - I }';j WI = :7 aw J WI e (3.17) 

For the off-diagonal element (if t- if'), retracing 
the above argument from (3.11)-(3.17) one would 
use in (3.19) (given later) 

pf';jCw/)=[(pfl';j;(w /)pf/';Jf(W/)]1/2. (3.18) 

(WI) is the (semiclassical) contribution to 
the collision probability for j; - from the tra-
jectory with a givenj;, l, J;, WI, wi' and E. By 
specifying jj and the value of wJ needed to 
reach from j j is automatically specified, al-
though there may be several discrete values of 
such a wi' for a givenji' l, wI> and E. The 
summation over such discrete points is indicated 
by the in (3.12). 

It is useful to introduce a further probability term: 

pf, ;} (WI) ={(2J + 1 l/(21 + 1)[ (2j + 1) (2/ + l)P t2} 

xpf',J (WI) (3.19) 
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which gives a type of joint probability for finding a 
given J (there are 2J + 1 states out of a total of 
(2j + 1) (2l + 1 )jZ-states before collision and typi-
cally 2/ + 1- 2j + 1) and for reaching state j' from 
state j. Hence, Eq. (3. 12) for rotational overlap-
ping lines becomes 

(Ji'f' ,if =' (1f/k 2) r"" (2l + 1) dl[o!.!Of'f - 11 dW l )0 0 

f l+1 
X . ;j(W I ) . 

13-/1 (3.20) 
For the simple case of a rotating dipole, only 

the matrix elements of {m(w)} in Eq. (2.3) for 
which ji - j, ='± 1 and j: - j;=, ± 1 need to be calculated 
The method outlined there then gives the line shape 
for this rigid rotating dipole. (Other systems 
which involve additional elements, namely jj =' j, 
and j: =' j;, i. e., so-called nonresonant spectra, 
as in the inversion of ammonia, are described by 
adapting the formal treatment9b for those cases. ) 

As already noted, the preceding treatment also 
applies to rotational-vibrational spectra of linear 
molecules, when the appropriate vibrational sub-
scripts are added. The line shape prescription 
is thereby identical to that mentioned above ex-
cept that the relaxation cross section now becomes 

(Ji"',if='(1f/lf)!o'" (2l+1)dl[o!.,of·f- '0 Jo
1
dWI 

X fi+! , 
Ii -II 

(3.21) 
where n denotes the mean value of the vibrational 
quantum numbers ni and nf and after the 
i - f optical transition; the vibrational term en is 
given by 

(3.22) 

where wn is the coordinate conjugate to 21fn. (If 
there is more than one vibration there is the ap-
propriate sum of en's.) The quantity pf'n'; in(W!) 
becomes 

2J+l 
x (2l + 1)f(2j + 1) (2/ + 1)]1/2 , 

(3.23) 
which is now the (semiclassical) contribution to 
the collision probability for the transitions j - j' 
and n-n' from trajectories having a given initial 
(l, J, WI; E), and, essentially, for a joint proba-
bility of having a given J. The sum in (3.20) is 
over the particular values of Wi and wn which give 
the desired / and n' for the given initial values of 
the remaining collisional variables. For off-diag-
onal elements one would use the counterpart of 
(3. 18) instead of the first two factors in (3.23). 

For the case of nonoverlapping pure rotational 
lines, using a rigid rotor model, the shape of a 
given rotational absorption line is, for states 1 
and 2, 

x 1m [ P1 
- I w I - w12 + i (V(J12 ;12) 

+ P2 ] 
- I w I - W21 + i (V(J21 ;21 > . (3.24) 

If 1 and 2 denote the lower and upper states, re-
spectively, then E2 - E1 > 0; hence, we let Wo=' w21 
=' - W 12• We may now let w be a positive quantity 
(the minus sign in - I w I having already taken ac-
count of absorption) and let the shift and width be 
denoted by d and w, respectively, where W + id 
=' (V(J21;21)' (The latter equals (V(J12;12*)') ( ••• ) 
denotes a Maxwell-Boltzmann average over veloc-
ities. We then have 

P2 ] + ., w+wo+d-zw (3. 25) 

where w> 0 and 

(J12;12 = (1T/k2) fa'" (2l + l)dl fa"' dW I 

X exp(ie2)Di1(Qli3Y)]. 
)13-11 

(3.26) 
The second term in (3.25) is the familiar "nega-
tive resonance" term and corresponds to the tail 
of an absorption centered at - I Wo I. 9b 

IV. EXTENSION TO OTHER LINE SHAPE SPECTRA 

The line shape expression (2. 1) can be written in 
a form appropriate to certain additional spectra9a: 

(4.1) 

ITKQ I w- I if; IIKQ» Pi (i II x TIK Ilf> , 
where the operator describing the interaction of the 
system with the radiation is described in general by 
a multipole Kth- order tensor operator X TIK (for the 
2K-pole interaction with radiation), Q indicates a 
particular one of 2K + 1 standard irreducible com-
ponents of that operator, and II is the parity of that 
operator. For the electric dipole spectra in the 
previous sections we had K =' 1, II = - 1, XTIK = Jl 
and, for radiation polarized along a space-fixed z 
axis, Q =' O. For depolarized Raman scattering, K 
= 2. In the case of application of (4.1) to the inver-
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sion spectrum of the ammonia molecule, II must be 
taken into account. 

Instead of (2. 3) we now have 

«i'f'; IIKQ I {m (w)} I IIKQ » = - i {'" vai' /' ;i/Pv4rrv2 dv. 
(4.2) 

The matrix element for {m(w)} is diagonal inK, 
Q, and II for isotropic gases and independent of Q, 
as shown by Ben-Reuven. 9 Its properties in the 
presence of applied fields have been discussed by 
Snider and Sanctuary.8 In the present case of a 
general K, {m(w)} in Eq. (4.1) is again found to be 
given by the right hand side of (2.3), but now, as 
shown in Appendix B, the cross section ai'/'.if is 
that for a system of the given K. It is independent 
of Q and is denoted by af'/',i/: 

{
j;Kj,}jj;Kj/}[ Ji 1'J 

x J/ l' J i t J/ l J i 0"10f'f- S l"S/,/ , (4.3) 

where i in a refers to the appropriate quantum num-
bers and i consists of this i, J i , and l. This cross 
section may be readily expressed semiclassically 
for rotation-vibration spectra by noting that the 
only difference between (2.4) and (4.3) is the ap-
pearance of a K instead of a 1. Hence, 

af.f' 'i/= (rr/k2)J,'" (2l + l)dl [Oi'i 0/,/-1.:. fro1 dwz (+1 dJ 
'0 Ii_II 

x p-J (-) i(82+8n)DK ( (.l )J j'n';;n WI e 0'0 a,..,y (4.4) 

is the cross section. 

V. DISCUSSION 

The diagonal elements in ai'/'W describe the shift 
and width of nonoverlapping spectral lines. The 
off-diagonal elements couple line i - f with line 
i' - f' and "transfer intensity" from one to the oth-
er, as well as causing collisional narrowing. The 
effects of such transfers have been discussed by 
various authors. 6,9,11,12 The quantum mechanical 
expression (4.3) for af,/,;;/ is of the same form as 
that stated by Gordon, Klemperer, and Steinfeld. 13 

The semiclassical expression for the line shape, 
given by Eqs. (4. 1), (4.2), and (4.4) is seen, in 
its "collision cross section" af.f' ;i/, to contain 
several factors: a partial transition probability 
amplitude Pf. ;j, a rotation matrix element D K (O!{3Y), 
with the angles described in Fig. 2, and an added 
phase term expi(B2 + Bn). 

The various quantities appearing in Eq. (4.4) can 
be evaluated from numerically calculated classical 
trajectories. It is frequently convenient to do so 
with the aid of Cartesian coordinates, the choice of 
initial conditions being made to conform with a 
given initialj, l, n, J, and E, as well as with some 

preassigned R [the relevant results in (3.8) to 
(3.10) are independent of RJ, wi> wI> and w n• The 
procedure for transforming from Cartesian coordi-
nates to action-angle variables is available in the 
standard texts. 27 In application, one selects tra-
j ectories which lead to a particular j' and n'; only 
several values of w; and wn satisfy this condition. 
From the final data at some preassigned R' (the re-
sults are independent of R') one calculates the var-
ious quantities, wj, W$, etc. In this way the 
integrand in Eq. (4.4) can be calculated as a func-
tion of the variables appearing there, wI> l, J, for 
any given line pair i - f, i' -f'. 

It is useful to evaluate the factor Df'o(a{3y) 
x exp i(B2 + Bn) in the integrand of (4.4) for several 
cases and interpret its phase in terms of a phase 
shift of the mechanical motion. We consider the 
diagonal elements if = i'f' first. The term Df,o is 
given in Tables I and II for diagonal and off-diago-
nal elements, for the cases of K = 1 and K = 2, re-
spectively. 

From Eq. (3.8) and Table I we have for the RR' 
diagonal element, where i - f is an R-branch tran-
sition and i' - f' is also an R-branch transition, 

RR' element: 
phase 

[Df'o(a{3y)e i (82 -16n )J= a+y 

+ (t' - t - R'lv' +R' /v) 
x wif+ Bn • (5.1) 

For the PP' case we have 
PP' element: 

phase 
[Df, o( a{3y) e ;(82 -16n )J = - a - y 

+ (t' - t-R'/v' +R/v) 

(5.2) 

where Wi/ equals Ei - E f and so differs in (5.1) and 
(5.2). 

The right hand sides of (5. 1) and (5.2) can be 
shown to be related to the collisionally induced 
phase shift in the vibrational-rotational motion, as 
follows. The Rand P branches of the spectrum 

TABLE I. Matrix elements nJ'o(O/{3'Y) for electric 
dipole transitions. 

(j-l) - j 
(P' branch) 

j- (j-l) 
(R' branch) 

(j -1) - j (P branch) j - (j -1) (R branch) 
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TABLE ITo Matrix elements (ai3y) for depolarized 
Raman scattering. 

(j - 2) - j (j -1) - (j - 1) j - (j - 2) 
i,' (0 branchl (Q branch) (S branch) 

(j-2) -j cos 4(1l/21 e-2ila• y) "./37'8 sin2j3 sin'(1l/2) eZHa-y) 
(0' branch) 

(j-l)-U-l)yW8 "Il -2ia 
(Q' branch) , SIn e cos'Il-1) ,1378 sin2J3 (!2ia 

[j- (j-2)] sin'(p/2) e- "la-rl yW8sin'll e2ir cos'(1l/2) e2;(o.y) 
(S' branch) 

arise classically from terms in which some com-
ponent of the mechanical motion oscillates as 
COs27TWn COS21TW j , and thereby as a composite of 
COS21T(Wn+W j ) and COS21T(Wn-W j ), respectively. 
The time dependence of 21T(Wn + W j) and 21T(Wn - W j) is 
(wn+ Wj)t and (wn- Wj)t, where the w's are angular 
frequencies, and so give rise to the Rand P 
branches, respectively. We consider the R branch 
first, and calculate the phase of the dipole OD' in 
Fig. 1 relative to that of OD. The rotational phase 
of OD' in Fig. 2 is 21Twj. Hence, by (3.8) the rota-
tional phase of OD', 21TWj, is 21T(Wj + Rvj Iv'). 
These phases are relative to that of ON in Fig. 1. 
The rotational phase of OD' relative to ONj in Fig. 
2 is 21T(wj+R'v}/v')-a', where a' is the angle from 
ON' to ONj' Thus, introducing the angle y defined 
in Fig. 2, we have 

phase OD'(relative to ONj )= y+ 21TR'vj lv' 

(R' branch). (5. 3) 

A similar argument regarding OD yields 

phase OD (relative to ONj ) = - a+ 21TRvj Iv 

(R branch) . (5.4) 

The rotational phase shift TJr from OD to OD' is ob-
tained by subtracting (5.4) from (5.3) and then sub-
tracting the time-evolution term wj(t' - t) for the 
free rotational motion. Noting that W j equals 21TV j 
and 21TVj(21TVj CC' 21TV j ), TJr is seen to be given by 
(5.5). 

TJ r= a + y+ (t' - t - R' lv' +Rlv) Wj (RR' element). 
(5.5) 

The vibrational phase shift 17v is, by a similar ar-
gument, equal to - w n) - wn(t' - t). Thus, 
using (3.10), withj's replaced byn's, we have 

(t'-t-R'lv'+Rlv)wn' (5.6) 

The sum of TJ r and TJ v is seen to agree with the right 
hand side of (5. 1) since wi! equals - (Wj + wn ) for an 
R branch and since On is given by (3. 22). 

We consider next the PP' element. Here, the 
system behaves mechanically as though it had an 
angular frequency of wn - wj • The vibrational phase 
shift is given above by (5.6). The rotational phase 

shift is different, however. The phase of OD' rela-
tive to ON' is now - 21T(W j +Rvjlv'). Relative to 
ONi> it is seen with the aid of Fig. 2 to be 

phase OD' (relative to ON j )= - y- 21TR'vj lv' 

(P' branch) . 
(5.7) 

Similarly, 
phase OD (relative to ONj )= a- 21TRv;/v 

(P branch). (5.8) 
Subtraction of (5.8) from (5.7) and addition of the 
time-evolution term wj(t' - t) now yields, 

17r= - a- y+ (l'- t-R'lv' +Rlv)wJ 

(PP' element), (5.9) 

where we have again set vj"'Vj= wj/21T. 

The sum of (5. 6) and (5.9) agrees with the right 
hand side of (5.2), which is thus, like (5.1), the 
rotational-vibrational phase shift. 

We consider next the off-diagonal element PR', 
with ni =n; and nf=n't (i. e., a vibrationally diagonal 
element). From Table II we have 

PR' element: 

phase 6( a{3'Y) e i (82<6n)] = - a + y + 02 + On . 
(5.10) 

However, differences in Ei - E f and E; - Ej are ig-
nored within the impact approximation. 7 If we re-
place them by t (Wif + Wi' f')' (3.8) yields 

02"" t(WE-WE,)(Wif + Wi'f')' 

One then finds, 

phase [D:'6(a{3y)e i (82<6n)]CC' - a+ Y+TJv, 

(5.11) 

(5.12) 

where TJ v is given by (5.6). One might expect aCC' y. 

To compare (5. 12) with the estimated phase shift 
arising from rotational-vibrational motion we shall 
need to introduce a "midpoint" of the collision and 
shall let it occur at t = O. The collision time te can 
introduce an uncertainty in locating this "midpoint" 
but uncertainties of the order of te are neglected by 
the impact approximation. 7 The phase of the dipole 
OD' relative to ONj is again given by (5.3), and one 
subtracts Wjt' to calculate the rotational phase shift 
contribution from the midpoint of the collision to 
the end, i. e., from t = 0 to t'. Thus, this contribu-
tion to TJ r is y+ 21TR'vj lv' - wjt'. The phase of OD 
at the initial time t (t < 0) relative to its phase atthe 
midpoint of the collision when OD "moves on a P 
branch" is again given by (5.8). Upon adding Wjt, 
we obtain the phase shift of OD for this initial half of 
the collision, a - (21TRv jlv) + Wjt. Upon subtraction 
of this quantity for OD from that for OD' we obtain 17 r : 

TJr=y-a-(t'+t-R'lv'-Rlv)wj • (5.13) 
The vibrational contribution 17v is again given by 
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(5.6). One expects that (t' - R' Iv') and t - R/v will 
approximately cancel (e. g., as discussed later) and 
so 11r+11v agrees with the right hand side of (5.13). 
Similar remarks apply to the phase of the RP' term. 
These results regarding the RR', PP', PR', and 
RP' terms also extend as well as to the various 
terms arising in the K = 2 case in Table II. 

The phase shift terms of both halves of the colli-
sion tend to reinforce in a sense in the RR' case, 
as well as in the pp' one. For example, taking the 
midpoint of the collision to occur at t= 0, the differ-
ence t' -R'/v' for a "hard sphere" collision is neg-
ative and equals, in magnitude, the time required 
to traverse a distance a, the hard sphere collision 
diameter. Similarly, the additional term - (t - R/v), 
with t and v both negative, equals the same time in-
crement, both in magnitude and in sign, the two terms 
thus reinforce each other in their sum t' - t - R'lv' 
+R/v. They cancel in the PR' and RP' terms. 

The present results may be compared with the 
nonperturbative classical results of Gordonll: His 
Monte Carlo expression for a transition probability 
is replaced, in our case, by a semiclassical value 
given by Eq. (3.16). However, we have a partial 
probability term, a function of w" rather than a to-
tal probability term. His rotational angle between 
the j and j' (our (3), and his classical phase shift for 
the diagonal elements are replaced by our semi-
classical ones. He and others have reported that 
his expression for the line shift is unreliable. 12 

Whether ours will remedy this difficulty will be one 
of the points we will test in a future numerical ap-
plication of the present paper. The phase shift for 
the off-diagonal elements in Ref. 11 does not have 
the cancellation behavior indicated above. 

A virtue of semiclassical theory, aside from the 
fact that it proceeds directly from the quantum me-
chanical result, is that it can define phase shifts of 
trajectories in a precise manner (for the diagonal 
elements i/=i'/' at least). For example, in a tran-
sition j - j " the j '(= j) is exactly fixed by singling out 
certain specific trajectories, while purely classical 
calculations utilize all possible j" s located within a 
"box" of j ± i h. On the other hand, purely classical 
calculations have a virtue of considerable simplicity. 

Depending on the relative accuracies of the var-
ious methods available (exact quantum, classical 
path, classical, and semiclassical) one may expect 
to draw upon each of them in future calculations. 

Note added in proof. The limits on the semiclas-
sical quantity J + i can be shown to be I 1 - j I and 
j +l + 1, and so the limits on J in the integral in 
Eqs. (3.20), (3.21), (3.26), and (4.4) should 
read Il-jl -i and 1 +j+i, instead of Il-jf and 
1 +j. 

APPENDIX A: SUMMARY OF LIOUVILLE SPACE NOTATION 

Liouville space is a Hilbert space whose vectors 
are operators in the usual Hilbert space X of bra 
and ket vectors. 8,20 As such, its vectors are ele-
ments of a product space X xxt , I a > ( b I , 

la> (b 1= la> (I b»)t= lab» , (AI) 

which introduces the notation I » of Baranger. 2b 

An element of the dual space is (I a) (b I)t, i. e. , 
I b) (a I, and can be written as 

(A2) 

If I a > ( b I and I a") ( b" I are elements, then their 
usual product, I a) (b I a") (b" I, is also an element. 

The scalar product in this Liouville space can be 
defined by the customary product space definition, 
«a' b' lab» = (a' I ( ( b' I )t la) (I b»)t = (a' I a) ( b' I b > t 

=(a'la)(blb') , (A3) 

or by the customary trace of operators, both defi-
nitions yielding the same final result: 

«CID»=TrCtD, 
where C and D denote elements I a') (b' I and I a) (b I 
e. g., 
«a'b'lab»=Tr(lb')(a'I)(la)(bl)=(a'la)(blb') . 

(A4) 
The scalar product « I », thus defined, has the 
usual properties of scalar products. 

An operator A in Liouville space is the direct 
product of operators in xxxt, e. g., A1 XAL 

A lab»= (Alia») (A2 Ib»)t . (A5) 

The product of A with a scalar, and the sum of two 
A's is also an operator in this space. Thus, the 
Liouville operator L 

L=[H,I]'=HXI-IXH (A6) 

is an operator in this space, I being the identity 
operator in JC (and in xt). The product of operators 
A and B can also be defined in this space. 

From the above rules, the matrix element of the 
above operator A is 

(A7) 

Frequently, a star notation has been used, 8 instead 
of the x notation, so that A1 is written as A1A{, 
the star indicating that A: operates on the left hand 
element, 

«a'b' lab» = Tr I b') (a' I) (Alia) (b I) 
= (b (a'IA1Ia) 

= (A 1 )a'a (A2 )",\=.Aa•b·,ab (A8) 

yielding the same result as in (A7). With this nota-
tion L would be HI* -IH*. 
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It also follows from the above rules that the matrix 
element of an operator if and a vector p, in this space, 

p =6 I c) (C I pi d) (d I = 6 Ie) Pcd (d I 
cd cd 

(A9) 
is 

« a' b' lAp I ab» =6 (a' IAl Ie) (b I b') Pcd (d I a) 
cd 

(A10) 
The Liouville operator Lg related to the rotation-

al-vibrational part of the Hamiltonian of the unper-
turbed absorber, Hg is 8 ,9 [Hg,]. If we let Ii) and 
If) be eigenvectors of the Hamiltonian H g in ordi-
nary Hilbert space, with eigenvalues and 
e. g., if Hg I i) equals I i), then Ii) (j I, an oper-
ator in ordinary Hilbert space, is an eigenvector of 
Lg: 

Lg I if» = [Hg, Ii) (j 1]= I if» , (All) 

where W?f = - EJ. Thus, the eigenvalues of Lg in 
this space are the spectral lines, and the space has 
been called line space. The matrix elements of Lg 
are seen from (A1) and (All) to be 

(A12) 

If Ii) and If) are normalized, it also follows from 
the above rules that I if» is also normalized, i. e. , 
that «i 'f' I if» equals 0i'i of'!. 

The Liouville vector notation in (2.1) and (2.2), 
where i andf are ji and jf, has the following ori-
gin9,2o: With the usual notation for the rotation op-
erator R, 

j 

R I jm ) = 6 m I jm' ) 
m'=-j 

(A13) 

the rotation operator R in the product space is de-
fined by 

R I jim;, hmf»=R Ijimi)(R Ihmf»)t 

(i. e., R is RR*), where I jim;, hmf» is Ijimi) 
x (h mf I. One can show that the following Liouville 
space vector, defined by the right hand side, 

l1Td;, jf1Tf; IIKQ» = 6 (_l)J;-mi v' 2K + 1 
mimi 

( h jf K) I' .» x Q 1TiJim;, 1TfJtmf mi -mf-
(A14) 

transforms as 

R Ijdf; Ijih; IIKQ'». (A15) 
Q 

In (A14) mi and mf are the space-fixed z components 
ofjj andh. 

The reduced matrix element is28 

(jiIIXIlKlljf)= 6 (_l) j i-mi (2K+1) 

X(ji h K) (jimi IxgK \jlmt ), 
mi -mf-Q 

(A16) 
where X ilK = Jl and K = 1, Q = 0, II = -1 forthe z com 
ponent of the electric dipole operator. 

APPENDIX B: RELATION OF F ANO'S OPERATOR RESULT 
TOEQ. (2.4) 

The number of translational states in the phase 
space volume element of dPxdpydP.dxdydz is 
dPxdPydP.dxdydz/h3, and hence the number per unit 
volume is dPxdPydP./h3. The number per unit vol-
ume with p in (p, p+dp) is thus p 2 dpdp/h3, i. e., 
k2 dkik/(21T?, where dp and dk denote an infinitesi-
mal solid angle, describing the orientation of p and 
of k, respectively. Since the number of transla-
tional states per unit volume appears in Fano's 
N{m(w)}, we thus have 

6= [l/(21T)3] f k2 dkdk . (El) 
k 

If I k) denotes the plane wave whose coordinate rep-
resentative (rlk) is 

(rlk)=expik.r, 

then I k) can be decomposed as29 

I k) = 1 kk) = 61 klm ) ( klm I kk) , 
I,m 

where 

(rlklm)=ckj/(kr)Y/m(r) , 

(klm Ikk) = dt) . 

(B2) 

(B3) 

(B4) 

(B5) 

jz and Y lm are the spherical Bessel function and 
spherical harmonic, respectively. The C k' S are 
chosen so that the Iklm)'s have the normalization 

(k'l'm'lklm) = 0Il' 0mm' o(E -E') . (B6) 

USing the normalizations of jl and Y lm one finds (on 
setting n = 1) 

(B7) 

It will be recalled from (2.2) that we shall need 

{m(w)}=6 p(k) «k'k'i m(w) Ikk» , (B8) 
tt' 

where we have used k= 1: and where the denSity op-
erator P for the perturber has diagonal elements 
which depend only on k. The Liouville vectors in 
(B8) are given with the aid of (B3) by 

Ikk»=6Iklm, klm» (klmlkk) (kklkliii) . 
1m 
in; 

(B9) 
Further, since 
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J cik(klm Ikk) (kklklm) = 0/10mm(27f)3//lk , 
(B10) 

one obtains, on integrating (B8) over k and k', 

{m(w)}= 61"" P(k)k2dk!n"" k,2dk' (l/jJ.k) (l/jJ.k') 
1m 0 0 

l'm' 

x«k'l'm' Im(w) Iklm» . (B11) 

(For later use in (B19) it is helpful to note that in 
the k' integrand we can write (k' 2/ jJ.k' )dk' as 
d(k' 2/2jJ.).) The Maxwell-Boltzmann distribution 
function p(k) will have the property 

1 =Fp(k)= [1/(27f)3] J J p(k)k2dk dk, (B12) 

and one finds that 

p(k) = (27f/ jJ.k B T)3/2 exp( - k2/2jJ.kB T) . (B13) 

To calculate the matrix elements of {m (w)} in the 
uncoupled representation we shall need «jimi,jjmj 
x I {m(w)}ljimi,j,m,». Thus, in virtue of (B8) and 
(B9), this calculation involves that of «1' F'I m (w)1 
XIF», where 
II)= Iklmjimj); IIF»= II)(FI 

= Iklm,hmi) (klm,j,m, I , 
(B14) 

with I kim, jimi) denoting a vector in the joint per-
turber-absorber space, I klm) Ij jmi ) • 

The scalar product (I'II), found from (B6), is 

(1'II)=o(Ei , -E;)0I'I, (B15) 

where Ei is the energy of the absorber-perturber 
pair in state I I) and where 0i'l now includes 0m'm 
and Omjm j: 

(B16) 

A matrix element for Fano's expressions for the 
operator m (w) is given by30 

«1' F' Im(w) IIF» 3; (I' I T(EF +w) II) (F IF') 
-(1' II) (F' I T(E1 -w) IF)* 

+7rio(Ef -EF -w)(I' I T(EnlI) 

x(F' I T(EF)IF)* 

+ 7fio(EF - EI +w) (1' IT (EI ) II) 
X(F' I T(EF)IF)* , (B17) 

where T is the usual scattering theory transition 
operator. 

It is useful to consider the diagonal elements 
(if=i'f') of (B17) first. We then set w =Ej -E, 
= Ei - Ej, since a particular line i - f is being ex-
amined. The first T-matrix element in (B17) is 
now (I'I T(EI)II), which may be written as T",(Ej ). 
Analogous remarks apply to the other elements. 

We may then introduce the standard relation31 for 
on-the-energy-shell elements 

SI'I = °1' I - 27fi T I , I . (B18) 

Upon introducing (B18) into (B17), noting the re-
mark after (B11) that (k' 2/ jJ.k')dk' equals d(k' 2/2jJ.), 
and using the properties of the ° function we have 

r « t F'I m(w) I IF» d(k'2/2 jJ.) = (27fit1 [° 1 'iOf'f 

- f(E,)] , (B19) 

where the k in E j equals that in E,. After the 
manipulations involved in (B21)-(B25), this equa-
tion then yields Eq. (2.4) for the diagonal ele-
ments. 

For the off-diagonal elements the T-matrix ele-
ments7 in (B17) are actually off-the-energy-shell 
elements. For example, if E j is written as E? + k2/ 

2 jJ., where E? is the rotational-vibrational energy 
of the absorber (emitter), and if E; is written as Er + k'2/2 jJ., an on-the-energy shell element would 
have - Er equal to (k'2 - k2)/2J.l. Similarly, an 
on-the-shell requirement would lead to - EJ' 
also equalling (k'2 - k2) /2 J.l, and thus equalling 

- Er, which cannot, in general, be true. How-
ever, as Baranger has pointed out previously, 7 

such differences can be neglected within the im-
pact approximation. 

If, for this off-diagonal case, one subtracts and 
adds a oj,;/27f term to each ([' I T I I) in the last 
two terms of (B17), and adds and subtracts a 
0f'1 /27f to each (F' I T I F) * there, then integrates 
over d(k'2/2jJ.) using the remark after (B11), one 
obtains (neglecting differences between E: and E. , . . 
and between E, and Ef ), 

f «['F'I m(w) I IF» d(k'2/2jJ.) = OJ 'iol'l 

- HOi'i - 27fi (I'I T(EF + w) I I)] 
x[0f'f -27Ti(F'1 T(EF)IF)]* 

-t [OJ'i -27fi(I'1 T(E;+w)II)] 

x[o",-27fi(F'1 T(E;)IF)]*. (B20) 

Noting the remark already made regarding off-the-
shell elements, we have written these terms as in 
(2.4), within the impact approximation. 

Equations (Bl)-(B20) apply not only to a (K= 1, 
Q = 0) case, but to a general KQ case. To obtain 
a reduced matrix element «i'f'; K' Q'I{m(w)} I if; 
KQ», one may use (A14), (B11), (BI4), and (BI9) 
to yield 

(Uf'; K'Q'I{m(w)}lif; KQ»=-ifo""Pv47fV2dv 

X (vui"';jf) , (B21) 

where 47TPvv2dv is the normalized Maxwell-Boltz-
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mann distribution function of velocities and ui'f';if 
is a cross section defined by 

U i 'f',if=k1T2 :0 v'(2K+I)(2K' +1)(-tJi-Ji-mi-m; 
ll'mm' 

mimfmfmj 

x(J; j; K') (h jf K) 
m; - m; - Q' mi - mf - Q 

X[OI'IO",-SI'ISt" ] , (B22) 

where °1 '1 is given by (BI6). Equation (22) may be 
transformed to the coupled basis by a standard 
method briefly mentioned below. 

The uncoupled states in the above expression 
may be related to the coupled states by expressions 
of the type32 (omitting nf and 1Tf in the bras ( I, for 
brevity) 

(jfmflm I = v' 2Jf + I (_I)Z-JrMf (h 1 Jf ) 
",Mf mf m -Mf 

(B23) 

Substitution of expressions like this into (B21), use 
of the appropriate relationships between the 3-J 
and 6-J symbols such as26 

(_I)Ji+irz+mi+mf+m(jf 1 Jf )(jj 1 Jj) 
mjmfm mf m -Mf mj m -Mi 

x (j I j f K ) = (Jf J I K) K l, 
mi - mf - Q - Mf MI - Q }j 1J 1 I 

(B24) 
and requiring that angular momentum be conserved 
in the S-matrices, yields 

J* 
x [OI'IOf'f -S;';IS/,], (B25) 

where the subscripts i and f now signify 

i=lj;ni' f=ljfnf' (B26) 

It will be noted that ufo!' ;if is diagonal in K and Q 
and independent of Q. 9 The diagonal nature of 
{m(w)} in (B21) with respect to parity n arises 
from the isotropy of the bath of perturbers. 9 

APPENDIX c: PROPERTIES OF THE F4 GENERATING 
FUNCTION AND DERIVATION OF EQ. (3.7) 

We may let the primed variables in (3.4) be the 
instantaneous values of the variables along the tra-
jectory, rather than merely the final values. The 
F4 is then a generating function for transforming 
the initial variables to the variables at any point 
along the traj ectory. 

There are two F4 generating functions which we 
shall consider, both given by Eq. (3.4) and so nu-
merically equal, but one written as npR), 
and the other written as F4(n'E'; nE), where n de-
notes the .!..otality of quantum numbers. The prop-
erties of F4 are as follows: The variables canoni-
cally conjugate to 21Tn; andPR are w;, R', 
Wi and R, where ni and Wi denote the i'th quantum 
number and angle variable, respectively. The 
equations for the transformation from unprimed to 
primed variables follow from (3.4): 

w;=aF4/a(21Tni) , R=aF4/apR, 
(CI) 

These relations are of the standard form for F 4-

type generating functions. 23 

When instead the generating function F 4(n ' E'; nE) 
is used, the variables canonically conjugate to 
21Tn;, E, 21Tn;, E' are denoted by Wi' WE, w;, and 

respectively, i. e., 

Wi = aF4/a(21Tni) , 

, 

WE = 8F4 /aE 

= - aF4 /8E'. 
(C2) 

These variables have some striking properties: 
all the w;' sand w;' s are constants of the motion, 
while WE and are "timelike." These results 
follow when one observes that E serves as the 
Hamiltonian for the unprimed variables, while E' 
serves as the Hamiltonian for the primed variables. 
Thus, using Hamilton's equations of motion, we 
have 

WE = (aE/aE)n; = 1 , 

Wi = [aE/a(21Tni)]E = 0 , 

= (aE'/aE')n l = 1 (C3) , 
w; = [aE' /a(21Tn;)]E' = 0 . 

(C4) 
The relationship of the w's and w's is seen as 

Rv· =wi _::..:.:..1. , 
V 

, 
= w· -=-T-L , v 

(C5) 

where in the last step of the equation for w; we have 
used the fact that Wi is a constant and we have eval-
uated ap;)8(21Tn;) at the end of the trajectory, so 
that w;, R', and v' in (3.10) are the postcollision 
values now, rather than the values at any point dur-
ing the collision. Related remarks apply to Wi in 
(C5), the last step now being taken at the beginning 
of the traj ectory. The VI and v; are the pre- and 
postcollision values of the ith frequency, aHo/ 

Downloaded 16 Feb 2012 to 131.215.21.63. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



MOLECULAR SPECTRAL LINE SHAPES IN GASES 4391 

a (21Tn;), respectively. Since Ho depends on j and 
PR' inSec. III, butnotonJ, vJ is zero, and so we have 

-, 
wJ=wJ, wJ=wJ' (C6) 

Equations (C2) and (C5) serve to express the partial 
derivatives in (3.6) in terms of the various angle 
variables w;, Wj' WJ' WE' and respective-
ly, which appear in (3.8) and (3.10). Equation (C5) 
proves (3.10), and there remains now the proof of 
the last line of (3.8). 

Equation (3.4) can be rewritten in terms of the 
F 2-generating functions from whence it came, 22 by 
an integration by parts 

F 4(n'E; nE')=F2(w'R'; n'E') , 
(C7) 

where 

( , , l w' rR ' F2 wR;nE)=21T w ndw+JR PR dR+21Tnw+PR R, 

..,0 ( " ") "" 1'2 W R; n E = 21Tn W +pRR , 
(C8) 

where ndw denotes Lni dw;, and similar remarks 
apply to nw and n' w'. We note from (C8) that 21Tn' 
equals aFz/aw' and while equals aFz/ 
aR' and We recall that WE equals aF4/ 

aE and so equals aF2/aE, while similarly equals 
-aFdaE' and a11/aE'. Thus, at the point (w'R') 

= aFgjaE' = =R'/v' (v' > 0) . 
(C9) 

Again, at the point (w'R') 

WE = aF2/aE = wE(at wR) + t' - t , (C10) 

where t' - t is the time for the system to go from 
wR to w'R', recalling that WE = 1. However, at the 
point wR, the two integrals in (C8) vanish and so 

wE(at wR) = aF2/aE(at wR) = R/ v (v < 0) . 
(Cll) 

Equations (C9)-(Cll) yield the last line of (3.8). 

APPENDIX D 

Conventionally, if three sucessive Euler angle 
rotations through the angles a, {3, and 'Yare per-
formed (see Fig. 2), the operation may be de-
scribed by a rotation operator D(a{3'Y). Again, per-
forming two successive·sets of three Euler angle 
rotations in the order a1' {31, 'Y1 followed by a2, {32' 
'Y2 can be described by a single composite set of 
three Euler angle rotations a, (3 and 'Y. A conve-
nient relationship between the matrix elements of 
the rotation operators used to describe these rota-
tions is33 

p,n:..m,,(a2!3a'Y2)dm"m,(a1{31'Yl) = D-:"m'(a{3'Y) , (01) 
where34 

= e im' '" d-:"m' ((3) elm)' = ei m' '" d-:" 'm( - (3) eimy • 
(D2) 

The procedure used here for executing a set of 
Euler angle rotations is that in Edmonds. 35 

The right hand side of (3.13) can be rewritten by 
substituting in the relations for e1 given by (3.8) 
and rearranging to give 

KKK ( ') 2' -'6') e nWj 
X.-K 

Equations (01)-(D3) and the right hand side of 
(3.13) yield 

K 

21TW;)Dfr,(-21TWj, -21TWI) 
A.-K 

(D3) 

= Df.6 (a{3'Y) , (D4) 

where the angles a, {3, and 'Yare shown in Fig. 2. 
This result establishes (3.13). 

Equations (D1)-(D3) show that the first set of 
rotations (a1{31'Y1) in (Dl) involves the rotation of 
015 through angles (- 21TWj , - 21TWJ), so that 
015 now lies along OY in Fig. 1. The second set 
of rotations (a2{32'Yz) involves the rotation of this 
new 015 into 015' via the angles 21TW;). 
In Fig. 2 we have used tij = 21T iii, (iJ:= 27TWJ, etc., for 
clarity in the figure. 
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