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A semiclassical theory of the width and shift of molecular spectral lines is developed for gases. Overlapping
and nonoverlapping lines are considered, within the framework of the impact approximation. Use is made of
“exact” semiclassical theory of molecular collisions, recently developed by Miller and by Marcus, and of
developments in the quantum mechanical theory of spectral line shapes, by introducing the former into the

latter. Comparison is made with a classical-like approach.

1. INTRODUCTION

There have been a number of recent develop-
ments, both in the theory of collisional line broad-
ening'~'* and in the “exact” semiclassical theo-
ry!®18 of collisions. In the present paper, these
two trends are blended to yield a semiclassical
theory of spectral line broadening, valid within
the impact approximation and specifically for the
case of foreign gas broadening for overlapping and
nonoverlapping lines.

The advances in the theory of line broadening
based on the “impact approximation™ (an approxi-
mation which allows the collisions of perturbers
with the absorbing molecule to be treated as well
separated in time), include the pioneering work of
Anderson, ! who employed a classical path approxi-
mation (classical plus only zeroth order treatment
of the relative motion between perturber and ab-
sorber) and a perturbative approximation for the
S -matrices appearing in the line shape expression.
This classical path result was later extended to
overlapping lines by Ba.ra.nger‘2 and Kolb and
Griem, % and by Gersten and Foley, * who also made
detailed calculations for actual systems. Rabitz,
Gordon, and Nielson®® made further developments
in these calculations. An all-quantum-mechanical
formal treatment was developed by Baranger’ to
replace the classical path approximation and the
use of perturbative expansions of the S-matrices.
This formalism was made more compact with the
introduction of Liouville space (“line space”) for-
malism by Fano.® The latter was further developed
by Ben-Reuven, °® who introduced a practical treat-
ment for the high-orbital—-rotational degeneracy
present and proceeded to treat several specific
overlapping line systems.

No ab initio calculations for this “exact” (within
the impact approximation) formalism appear to
have been published. However, there have been
many ab initio calculations using the classical path,
mostly with!® but some without® perturbative
schemes for the internal motions. A nonperturba-
tive classical-like model has been described by

4380

Gordon™ and has been used recently by Gordon
and co-workers® % to calculate various line shapes
for overlapping and nonoverlapping systems. Re-
cent related reviews of relaxation phenomena rele
vant to line broadening have been given by Gordon,
Klemperer, and Steinfeld'® and by Beenakker,
Knaap, and Sanctuary. "

The quantum mechanical formalism for the line
shape®’® is first converted in Sec. I into a form,
which contains “collision cross sections” oz .
The “exact’” semiclassical expressions recently
developed by one of us' and by Miller'® for the S-
matrices!” are then introduced into the cross-
section and a semiclassical expression for the
Wigner 6-j symbols'® is also employed. Both of
these appear in the expression for the line shape
which is valid within the impact approximation.
This expression is developed first for a linear
molecule perturbed by a foreign gas in Sec. HI.
The extension of these expressions to related re-
laxation phenomena® is described in Sec. IV [Egs.
(4.1) and (4.4)]. The latter phenomena will also
be the subject of further papers of this series.

II. QUANTUM MECHANICAL LINE SHAPE EXPRESSION

The assumptions made in each of the all-quan-
tum-mechanical treatments for foreign gas broad-
ening cited earlier, and used here to obtain a trac-
table line shape expression valid within the impact
approximation, are as follows: (i) the absorber and
perturber distribution functions are essentially un-
correlated, (ii) the system is dilute enough in ab-
sorber molecules that absorber—absorber inter-
actions are minor and may be neglected, (iii) it
is at low enough pressures that the approximation
of binary absorber—perturber molecular collisions
may be used, and (iv) the impact approximation is
valid.

The spectral line shape I{w) for electric dipole
transitions is then given for overlapping lines
py®19

Iw)=-1/m)Im 25 ('lulii’)
iitff!
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x{(i'f’;-1,1,0]1/[w - L§ - N{m(w)}]|

Xif;_l’ 1:0» p; ('Llll"'llf) ’ (2- 1)

where Im denotes imaginary part; ¢ and f refer to
states of the absorber (emitter) before and after
the optical transition, respectively; unprimed ¢
and f denote such absorber states before collision
and primed quantities such states after collision;
p; is the probability of finding the absorber (emit-
ter) in state ¢; the —1, 1, and O describe the parity
(~1 for an electric dipole transition) and the rel-
evant tensorial properties of interaction with the
radiation; w is the frequency of the absorbed (emit-
ted) radiation and, on the right hand side of (2.1),
is written as positive for emission and negative
for absorption;? L is the Liouville operator for
the unperturbed absorber; N is the foreign gas
density (perturbers); p is the electric dipole oper-
ator; and {m(w)} is the binary collision Liouville
operator, averaged over all perturber states:
{m(w)}=:§pg Le'e Imw)| L)), (2.2)
where ¢ and ¢’ denote the state of perturber (in-
cluding the translational state of absorber —per-
turber relative motion) before and after collision,
respectively; p, is the probability of finding this
perturber in initial state {. When the effects of
any internal states of the perturber are neglected,
as with monatomic inert gas perturbers at the
usual temperatures (300 °K, for example), ¢ de-
notes only the translational state. We set i=1
throughout. For completeness, notation and oper-
ations®# for the Liouville operator L3, the re-
duced dipole matrix elements and the (double-
bracketted) Liouville vectors in (2.1) and (2. 2)
are summarized in Appendix A.

The operator relationship® between the binary
collision operator m(w) and the transition oper-
ator of scattering theory can be converted to re-
duced matrix form.% The details and subsequent
conversion to S-matrices and collision cross sec-
tions are summarized in Appendix B. One obtains
<< ilfl; - 1’ 13 Ol{m(w)}llfy_ 1’ 1; 0»

==i [ v0pp upp, 40 dy (2.3)

where p 47 v*dv is the normalized Maxwell-Boltz-
mann distribution and oy ;.,; is a cross section
for a collision of an absorber—perturber pair

Cingesir=(a/B%) 2 (=) (2, 41) (20, + 1)

17 4dy¢
J J; 1 J J'l . «

(2.4)
Here, each j denotes the absorber’s rotational
angular momentum quantum number; i and f de-

note properties of the absorber (emitter) before
and after an optical transition, respectively; the

i and f subscripts for ¢ denote r7;j; and 7, for
pure rotational lines and 7;j;n; and 7gm, for ro-
tational-vibrational lines (n;r; and n,m, are the
vibrational quantum numbers and parity before
and after the optical transition, respectively);
unprimed and primed symbols refer tc pre- and
postcollision quantities; I denotes the orbital an-
gular momentum quantum number {({=1;=1, A
=1;=1;); J denotes the total angular momentum
quantum number (e.g., J;=j;+1=j;+1’); and the

i and f denote 7;j;/ and 7., respectively for pure
rotational lines, and denote x4l and wmjd, re-
spectively for rotational —vibrational lines; % is
yv/#, i.e., pv; the distribution function p, is

p,= (1/2nk TV 2 exp(~ w?/2k,T) , (2.5)

kp being Boltzmann’s constant, T the temperature
of the system, and u the reduced mass of the ab-
sorber —perturber pair [not to be confused with
the i in (2.1)]. The S’ and S’ matrix elements
in (2.4) are evaluated at different energies, e.g.,
as in Eq. (B19), Appendix B. Equation (2.4) is
valid within the impact approximation (cf. Ref. 7).

Knowing the matrix elements of N{m(w)} in (2. 3),
those of L§ (=E?—E})) and of w(=wd;), the matrix
elements of [w - L§ - N{m(w)}]! in (2.1) can be
calculated by a suitable inversion method.

Equation (2.4) is converted to semiclassical
form in Sec. II.

IH. SEMICLASSICAL LINE SHAPE EXPRESSION

In this section, an expression for the line shape
is developed, but the variables describing vibra-
tion are excluded for brevity. These variables
pose no difficulty and are included in the final ex-
pression Eq. (3.21) for overlapping lines at the
end of this section.

A semiclassical expression for the 6-j symbols,
appropriate for the case of two large and one small
angular momenta, is®

{70 K) g Caponr s (G 0, DI 2l 0,
i Js

' (3.1)
where A=d; —dJ;, §=j,—j; A, 6=£1,0), and £ is
the angle between the vectors j; and J,,

cosé =[(J; + 3%+ (j; + 2% = L+ 3P1/20; +2)0J; +3) .

(3.2)
A similar expression applies to the other 6-j sym-
bol.

In semiclassical theory'®® the states ¢ and f
are most conveniently described in terms of ac-
tion-angle variables. The action corresponding
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to a quantum number » is (n + &)k where 6 [not to
be confused with the 4 in (3.1)] is, depending on
the degree of freedom, frequently $ or, in the case
of z components of angular momenta, 0. In units
of =1, this action variable becomes 27(s + 5).

The coordinate canonically conjugate to the action
is the angle variable w, which varies from 0 to 1.
However, w is also canonically conjugate to 2y

in the appropriate sense of satisfying the correct
Poisson-bracket relation for canonically conjugate
quantities, &

A collision of an atom and a (rigid) linear mol-
ecule can be described in the center of mass sys-
tem with the aid of the initial action variables
2r(l+3), 27(j+3), and 2¢7(J +3), the initial radial
momentum p,, and their canonically conjugate
coordinates, w,, w;, w;, and R. The dynamics
of the collision are unaffected by the one remain-
ing action variable 2yM, which is the z component
of J, and by its canonically conjugate coordinate
wy. Several of these w’s, multiplied by 27 and
called ¢’s, are shown in Fig. 1. For convenience,
we have set J along a space-fixed z axis, and so
will not exhibit the (presently unneeded)angle 27w,,.
The angle 27w; is measured in the J plane (plane
perpendicular to J) in the direction indicated from
the space-fixed Y axis to the line of intersection
of the j and 1 planes, “the line of nodes ON.” The
angle 2qw; is measured in the j-plane from ON to
the position of the dipole OD. Similarly, the angle
2nw, is measured in the 1-plane from ON to the
position of the line of centers OC of the collision
partners. The postcollision coordinates w,, w,-',
w}, and R’ are canonically conjugate to the post-
collision momenta, 27’ +1), 27’ +3), 27 + %),
and p;. The angles are the same as those in Fig.
1 when primes are placed on the symbols in that
figure.

Finally, in our previous semiclassical papers'®
we used (w° R®) and (w, R) to denote initial and
final coordinates, respectively, and (2mn, p%) and
(277, pr) to denote their canonically conjugate vari-

FIG. 1. Variables
describing internal co-
ordinates ¢;, ¢;, and g,
for the motion of an
atom and rigid rotor.
The rotor axis lies along
OD and the line of centers
of the collision partners
lies along OC, at any
instant of time. The
¢’s are 27 times the
corresponding w’s.
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ables. We have now modified the notation so that
these quantities are now (w ,R ), w',R’), (2an, pr),
and (27n’, p4), respectively, to conform with a
common line broadening practice of using unprimed
and primed variables to represent pre- and post-
collision quantities.

The semiclassical expression for the S-matrix
can be written as??

S‘j'::,,,;“, = El -8, l’)/a(w,-i; Wz){-l/a
X exp[iF4({1'JE 3 lJ;E) +5 U+ + D).
(3.3)
F, is a classical mechanical generating function, 23

for transforming from the precollision momenta
FdJ; s to the postcollision momenta j;7/J;pp:

Fy(iUTiE; 5l E) = = [V 20w dl - [ 20w, dj

- [,¥ Rap, (3.4)
where the integration in (3. 4) is over the classical
trajectory leading from the initial precollision
state j;IJ,E to the desired postcollision final state
jiU'J;E. The summation in (3. 8) is over all such
trajectories (real or complex-valued) which lead
from this initial state to this final state.

X
The exponent of $7iS% in (2.4) can be written as

* .
exponent in Sy §;%=iF4(j{I'J{, E{; j 17, E;)

—iF}(/UJ/Ef; jplJE).  (3.5)
Each F, is real valued when the relevant trajec-
tories are real valued.

When the Fy and F¥ in (3. 5) are expanded about
a common value, retaining the first two terms of
the expansion, we have

FG{U'd{, E{;5dd;, E;) - FfG U'dy, Ef;jflds, Ey)

. 8F, . . 8F, (. .4 OF,

= Lo VRS i O L [ W W S
21<b+aji (7i ]f) + aji’ (]1 ]f)+ aJ,l ( i f)
oF,

E(E;' ~E{),

+g§f}(J{ -J5) +%(Ei -E.)+
! ' (3.6)
where @ =ImF,;. These derivatives and & are
evaluated at a mean value (4,5, J) of (j;, i{, Ji)
and (j;, j;, J;) and at a mean energy. Wenotethat

Ji{=J; and J; = J;.

The partial derivatives in (3. 6) are, respective-
ly, w;, -w;, ws, —wj, wg, —wg, as shown in
Appendix C. Thereby, we have

lhs of (3.6)=2i®+6,+0,, (3.7
where (Appendix C)

0,=21(@;0 - w6 +w;/ X —w;\),
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Gzsz(Ei"Ef)_wE/(Ei/ —Ef') , (3.8)
wg ~wg=t' -t - (R'/v")+{R/v), (<0, v’ >0)
=6=4;=Jp =0 =§{ =4, ~N=d;=Jy, (3.9)
and
w;=w; - Rv,;/v, W =w; —R'v//v’ (3.10)

w;, w/, wy;, w; and wy —wy are constants of the
trajectory, independent of the initial R and time
and of the final values, R’ and #'. wy —wgis a
“collision delay time,” since it is the energy de-
rivative of the phase of an S-matrix.? The diag-
onal elements if = i'f’ offer no difficulty and Eqs.
(3.6) and (3.7) apply. For the off-diagonal ele-
ments one actually has off-the-energy shell T-ma-
trix elements, " as in Appendix C, rather than (2.4).
The occurrence of these elements is alsoreflected
in the fact that E; - E; does not necessarily equal
E/ -E/ when if #i'f’, and hence that E;#E or
E;+E/ in the T-matrix elements of line broaden-
ing. However, such differences between E; ~ Ef’
and E; - E; are neglected, relative to 2T, in the
impact approximation.” Within this approximation
(2.4), (3.6), and (3.7) apply to the off-diagonal
elements, if#i'f’, also.

We note, too, that one pre-exponential factor
of §7i in this expansion is, if we first consider
the pre-exponential factor for the diagonal element
if=i'f', equal to the complex conjugate of that of
§’f. Neglecting interference terms, we now have

J.
S}r::'t' :Jils*j}fl' T 285", 1) /8wy, w,)|
x exp [i(68,+6,) — 2&].
(3.11)

The semiclassical expression for the g;.,;; in

(2. 4) becomes, with the aid of (3.1) and (3.11),

oi,f.;“=(n/k2)f (2l+1)dl(6ji'j{6if'.ff - J; dr’
0

« j”dJ 2J+1
iy (241) ¥ (25+1) (27 +1)
agj, 1) .
XIW | exp(~-2& +292)D§,5(a[3y>,

(3.12)
where j and J denote mean values of (j;,7;) and
(J4, Jp), respectively, and where D%, (aBY) is given
by (3.13), with K=1;
I3

Dé‘:o(aﬁy)=§K ek, (EM5,(E) . (3.13)
The symbol DE (aBy) defined by the right hand
side of (3.13) proves to be the element of a rota-
tion matrix, as shown in Appendix D, and de-
scribes the rotation of the “reduced” dipole OD
into OD’ via the angles @, B, and ¥, as shown in
Fig. 2. The angles «a is the angle measured in the
j-plane from the “reduced” dipole OD to the line
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FIG. 2. Anglesw, 8, v
for rotating the “reduced
dipole” OD into OD’. The
ON is the same as the ON
in Fig. 1, and ON’ is the
corresponding quantity for
the primed variables. Each
g denotes 2w, and W=w
—Rv/v. ON;is the line of

plane before collision with
the one after.

of nodes ON, of the j and j’ planes. The angle 8 is
the angle of rotation about ON; from j to j’. The
angle 7 is the angle measured in the j’ plane from
ON; to the “reduced” dipole OD’. (Thus, aBY de-
scribes the rotation of OD into OD’.) An angle
measured from OD to the actual dipole OD in the

j plane can be seen from (3. 10) to be 27Rv,/v,
while the corresponding angle from OD' to OD' in
the j’ plane is 27R'v|/v'. Dgslapy) is

Dé('s(aﬁ'y)Zeiﬁ'adé{'a(ﬁ)eib'y (3. 14)

following the convention in Edmonds. %
Inasmuch as?®
8", 2')/8wy, ;)| ™ = (81" /030,)5 (8" / 8w,
(3.15)
we can write a term in (3. 12) in the form
e 28 (j',1')/0(w;, w,)| ' dl' =e"2®| 55’ /0w, | 1 dw,
=P ,@,)dw,, (3.16)
Wwhere

Pl(w)=18j" 0w, |5, e . (3.17)

For the off-diagonal element (if #i’f’), retracing
the above argument from (3.11)-(3. 17) one would
use in (3. 19) (given later)

P}T’H(Et)z[(P}r::';ii(Et)Pj?’;ff(wt)]l/z .

P‘;;'.;,i (w,) is the (semiclassical) contribution to
the collision probability for j, —j; from the tra-
jectory with a given j;, !, J;, w,, w;, and E. By
specifying j; and j;, the value of w; needed to
reach j: from j, is automatically specified, al-
though there may be several discrete values of
such a w;, for a givenj,, jj, !, w, and E. The
summation over such discrete points is indicated
by the T in (3.12),

(3.18)

Itisuseful tointroduce a further probability term:
Pj ) ={2J+1)/(20 + 1)[ (2 +1) (2§’ + 1)]*/2}

P}, | (@) (3.19)

intersection of the rotational
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which gives a type of joint probability for finding a
given J (there are 2J+1 states out of a total of
(2i+1)(21 + 1) jl -states before collision and typi-
cally 245’ +1~24+1) and for reaching state j' from
state j. Hence, Eq. (3.12) for rotational overlap-
ping lines becomes

w0 1
Gorpr iy = /1) [ (20+1) dlf8nid0re =2 [ dity
o 0

J+l -
x [ arPi. @) exp(it) Dislapy)] .
-1l (3.20)
For the simple case of a rotating dipole, only
the matrix elements of {m(w)} in Eq. (2.3) for
which j; —j;=+1 and j{ - j;=£1 need to be calculated
The method outlined there then gives the line shape
for this rigid rotating dipole. (Other systems
which involve additional elements, namely j; =j;
and j;=Jj;, i.e., so-called nonresonant spectra,
as in the inversion of ammonia, are described by
adapting the formal treatment™ for those cases.)

As already noted, the preceding treatment also
applies to rotational-vibrational spectra of linear
molecules, when the appropriate vibrational sub-
scripts are added. The line shape prescription
is thereby identical to that mentioned above ex-
cept that the relaxation cross section now becomes

B3 1
Cyrgr if= (W/kz)fo (Zl +1)dl [611‘6111_ Efo d@l

i+l —
X [ ATl @ Di By explil6,+6,)]
i (3.21)
where n denotes the mean value of the vibrational
quantum numbers »; and #, before and after the
i~ f optical transition; the vibrational term 6, is
given by

6, = — 27w, (0} — nf) + 27,(n; —ny) , (8.22)

where w, is the coordinate conjugate to 2rn. (If
there is more than one vibration there is the ap-
propriate sum of 8,’s.) The quantity P}, ;,(w,)
becomes

B(j',n') -1

8(w;, w,)

220
Wy
2J+1
A +1)[(25+1) (27«12
(3.23)
which is now the (semiclassical) contribution to
the collision probability for the transitions j —j’
and n—#' from trajectories having a given initial
(, J, w,;; E), and, essentially, for a joint proba-
bility of having a given J. The sum ¥ in (3. 20) is
over the particular values of w; and w, which give
the desired j' and #' for the given initial values of
the remaining collisional variables. For off-diag-
onal elements one would use the counterpart of
(3. 18) instead of the first two factors in (3. 23).

Py snl@0) - |

1
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For the case of nonoverlapping pure rotational
lines, using a rigid rotor model, the shape of a
given rotational absorption line is, for states 1
and 2,

@)= == | Gyl i) |?

XIm[ Py
- lwl —w12+1(1)012;12)

P2
= lwl —‘-"21+i<U021;21>J ’ (3.24)
If 1 and 2 denote the lower and upper states, re-
spectively, then E, - E;>0; hence, we let wy=wy,
We may now let w be a positive quantity
(the minus sign in — |w| having already taken ac-
count of absorption) and let the shift and width be
denoted by d and w, respectively, where w +id
= {00y ;2 )~ (The latter equals (voyp,15*).) ¢**)
denotes a Maxwell-Boltzmann average over veloc-
ities. We then have

== Wy,

P

T TAy g u—
I(co)—_nIm|(]1||Ll||]z>l [w—wo—d-il"

+—~—”L-} ,  (3.25)

w+wy+d —iw

where w>0 and
0= /) [ @I+ 1)l [1—Zf 7,
! 0 0

g+l _ _ .
XJ; IdJPf”.(w,)exp(sz)Dh(aBY)] .
7=l
(3.26)
The second term in (3.25) is the familiar “nega-
tive resonance” term and corresponds to the tail
of an absorption centered at ~ | w, |.%®

IV. EXTENSION TO OTHER LINE SHAPE SPECTRA

The line shape expression (2. 1) can be written in
a form appropriate to certain additional spectra®:

I(w)Z"%Im 20 (FUNXTEN ) Carf ey
ii'ff (4 1)
1 if; TKQY p; (i | | X™ || 7,

w-Li-N{m(w)}

K@

where the operator describing the interaction of the
system with the radiation is described in general by
a multipole Kth-order tensor operator X ™® (for the
2K_pole interaction with radiation), @ indicates a
particular one of 2K + 1 standard irreducible com-
ponents of that operator, and Il is the parity of that
operator. For the electric dipole spectra in the
previous sections we had K=1, lI=-1, XT¥=
and, for radiation polarized along a space-fixed z
axis, @ =0. For depolarized Raman scattering, K
= 2. Inthe case of application of (4. 1) to the inver-
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sion spectrum of the ammonia molecule, H must be
taken into account.

Instead of (2. 3) we now have

(i'f'; IKQ | {m (@) HIKQ = ~i [ 00 p;14p,470° dv.

(4. 2)

The matrix element for {m(w)} is diagonal in K,
@, and I for isotropic gases and independent of @,
as shown by Ben-Reuven.® Its properties in the
presence of applied fields have been discussed by
Snider and Sanctuary.® In the present case of a
general K, { m(w)} in Eq. (4. 1) is again found to be
given by the right hand side of (2. 3), but now, as
shown in Appendix B, the cross section 0;:4 ;¢ is
that for a system of the given K. It is independent
of @ and is denoted by o fes, ;s

T

08 pp= s 20 (VTR 01) (20,4 1)
k 11 g Jy

3t K g\ i K s 5
X{J; v Ji} {J; ! Ji}[éi"é"‘_si'lisfff] )

where i in o refers to the appropriate quantum num-
bers and i consists of this ¢, J;, and l. This cross
section may be readily expressed semiclassically
for rotation-vibration spectra by noting that the
only difference between (2. 4) and (4. 3) is the ap-
pearance of a K instead of a 1. Hence,

o ig= /1) [ 2L+ 1)L [6103 0p0,= 20 f, ity [

li=tl

(4.3)

5 — | i(oguen)
XP}I’n’;in (wy)e? 62+0n D{‘){'b(aﬁ'y)]

(4. 4)
is the cross section.
V. DISCUSSION

The diagonal elements in ;.4 ,;; describe the shift
and width of nonoverlapping spectral lines. The
off-diagonal elements couple line i —f with line
i'=f* and “transfer intensity” from one to the oth-
er, as well as causing collisional narrowing. The
effects of such transfers have been discussed by
various authors. %%1%1% The gquantum mechanical
expression (4. 3) for 05, is of the same form as
that stated by Gordon, Klemperer, and Steinfeld, '*

The semiclassical expression for the line shape,
given by Egs. (4.1), (4.2), and (4. 4) is seen, in
its “collision cross section” of s .;;, to contain
several factors: a partial transition probability
amplitude Pj ;, a rotation matrix element DX (apy),
with the angles described in Fig. 2, and an added
phase term expi(6,+ 6,).

The various quantities appearing in Eq. (4. 4) can
be evaluated from numerically calculated classical
trajectories. It is frequently convenient to do so
with the aid of Cartesian coordinates, the choice of
initial conditions being made to conform with a
given initial j, I, », J, and E, as well as with some
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preassigned R [the relevant results in (3. 8) to

(3. 10) are independent of R], w;, w;, and w,. The
procedure for transforming from Cartesian coordi-
nates to action-angle variables is available in the
standard texts.?” In application, one selects tra-
jectories which lead to a particular j’ and n’; only
several values of w; and w, satisfy this condition.
From the final data at some preassigned R’ (the re-
sults are independent of R’) one calculates the var-
ious quantities, w}, wy—w;, etc. In this way the
integrand in Eq. (4.4) can be calculated as a func-
tion of the variables appearing there, w,, I, J, for
any given line pair i-f, i’ ~f".

It is useful to evaluate the factor D% ,(apBy)
xexpi(f,+86,) in the integrand of (4.4) for several
cases and interpret its phase in terms of a phase
shift of the mechanical motion. We consider the
diagonal elements if =i’f’ first, The term D%, is
given in Tables I and II for diagonal and off-diago -
nal elements, for the cases of K=1 and K=2, re-
spectively.

From Eq. (3.8) and Table I we have for the RR’
diagonal element, where i -~f is an R-branch tran-
sition and ¢’ - f’ is also an R-branch transition,

RR’ element:
phase

[DE (apy)e’ @290 0ty

+{(t'=t=R'"/v'+R'/v)

X W+ 0, . (5.1)
For the PP’ case we have
PP’ element:
phase
(D5 (apy)ei®e¥n’]= - a-y
+( —t-=R'/v' +R/V)
Xw; e+ 8, (5. 2)

where w;; equals E; — E; and so differs in (5. 1) and
(5. 2).

The right hand sides of (5. 1) and (5. 2) can be
shown to be related to the collisionally induced
phase shift in the vibrational-rotational motion, as
follows. The R and P branches of the spectrum

TABLE I. Matrix elements D s(apy) for electric
dipole transitions.

o]
&' (j=—1)~j (P branch) j—(j—1) (R branch)
B oy OB/ sin’(g/2) e¥*"
];};, (;I;i)Ch) S]'.Ilz (3/2) e-i(a-r) COSz(ﬂ/Z) ei(aw)
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TABLE II. Matrix elements Dglé(aﬁy) for depolarized
Raman scattering.

b (j=2)~j G- -(-1) j=(j=2)
67 (O branch) (@ branch) (S branch)
((é’_lfr)‘a—n]ch) cost(p/2) et 378 sin’g ¢t sin!(g/2) e*itan
Eél—;iq—n:\{‘; v V378 sin’g e%ie L(3cos’8—1) V378 sin’g etle
EJS’_b(f';xiixl) sin®(g/2) ¢ @ 378 sin’g &2 cosi(p/2) gtitesn

arise classically from terms in which some com-
ponent of the mechanical motion oscillates as
cos2qw, cos2nw;, and thereby as a composite of
cos2riw, +w;) and cos2r(w, —w;), respectively.

The time dependence of 2n(w,+w;) and 2n(w, - w;)is
(w,+w;)t and (w,— w;)¢, where the «’s are angular
frequencies, and so give rise to the R and P
branches, respectively. We consider the R branch
first, and calculate the phase of the dipole OD’ in
Fig. 1 relative to that of OD. The rotational phase
of OD’ in Fig. 2 is 2mw). Hence, by (3. 8) the rota-
tional phase of OD’, 2mw’, is 2m(w, + Rv} /v').
These phases are relative to that of ON in Fig, 1.
The rotational phase of OD’ relative to ON; in Fig.
2 is 2n(w}+ RV} /v') - a’, where a’ is the angle from
ON'’ to ON;. Thus, introducing the angle y defined
in Fig. 2, we have

phase OD’(relative to ON,)= v+ 21R'V} /v’
(R’ branch). (5. 3)
A similar argument regarding OD yields
phase OD (relative to ON;)= ~ a+ 27Rv; /v
(R branch) . (5.4)

The rotational phase shift 1, from OD to OD’ is ob-
tained by subtracting (5. 4) from (5. 3) and then sub-
tracting the time-evolution term w;(#' —t) for the
free rotational motion. Noting that w; equals 2mv;
and 2mv}(2mv};= 2mv;), 7, is seen to be given by

(5. 9).

Ny=a+y+ (' —t-R'/v' +R/v)w; (RR’ element).

(5. 5)
The vibrational phase shift 7, is, by a similar ar-
gument, equal to 2n(w}-w,)- w,(# —t). Thus,
using (3. 10), with j’s replaced by #’s, we have

Ny= 2w, —w,)— (' —t-R'/v'+R/v)w,. (5.6)

The sum of 7, and 71, is seen to agree with the right
hand side of (5. 1) since w;; equals — (w;+ w,) for an
R branch and since 6, is given by (3. 22).

We consider next the PP’ element. Here, the
system behaves mechanically as though it had an
angular frequency of w,— w;. The vibrational phase
shift is given above by (5. 6). The rotational phase
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shift is different, however. The phase of OD’ rela-
tive to ON’ is now - 2n(w; + RV} /v’). Relative to
ON;, it is seen with the aid of Fig. 2 to be

phase OD’(relative to ON;)= — vy~ 27R'V} /v’
(P’ branch) .
(5

Similarly,
phase OD (relative to ON;)= a - 27Rv; /v

(P branch) . (5.8)
Subtraction of (5. 8) from (5. 7) and addition of the
time-evolution term w;(# —¢) now yields,
Ny=—a-y+(t'=t-=R"/0"+R/v)w,

(PP’ element), (5.9)

where we have again set vj=v;= w; /2m,

The sum of (5.6) and (5. 9) agrees with the right
hand side of (5.2), which is thus, like (5. 1), the
rotational-vibrational phase shift.

We consider next the off-diagonal element PR’,
with #; =n} and n,=n% (i.e., a vibrationally diagonal
element). From Table II we have

PR’ element:

phase [D5 (aBy)ei'®2®’]=_ a1 y4 0,46, .
(5. 10)
However, differences in E; - E; and E}{ - E} are ig-
nored within the impact approximation.” If we re-
place them by 3 (w;; + Wpp), (3.8) yields

6y~ é(wE—wE')(wif'*‘wi'f') . (5.11)
One then finds,
phase [DE (aBy)e! @29’ |~ ayyim,, (5.12)

where 7, is given by (5.6). One might expect a=1y.

To compare (5. 12) with the estimated phase shift
arising from rotational-vibrational motion we shall
need to introduce a “midpoint” of the collision and
shall let it occur at £=0. The collision time #, can
introduce an uncertainty in locating this “midpoint”
but uncertainties of the order of ¢, are neglected by
the impact approximation.” The phase of the dipole
OD’ relative to ON; is again given by (5.3), and one
subtracts w;i’ to calculate the rotational phase shift
contribution from the midpoint of the collision to
the end, i.e., from ¢=0 to . Thus, this contribu-
tion to m, is ¥+ 2wR'v} /v’ — wjt’. The phase of OD
at the initial time ¢ (#<0) relative to its phase atthe
midpoint of the collision when OD “moves ona P
branch” is again given by (5.8). Upon adding w;t,
we obtain the phase shift of OD for this initial half of
the collision, o — (2rRv;/v)+ w,t. Upon subtraction
of this quantity for OD from that for OD’ we obtain 7,

Ny=y-a=-(t'+t-R' /0" - R/v)w; . (5.13)

The vibrational contribution 7, is again given by
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{5.6). One expects that (¢ —R’/v') and { - R/v will
approximately cancel (e.g., as discussed later) and
s0 7, +1, agrees with the right hand side of (5. 13).
Similar remarks apply to the phase of the RP’ term.
These results regarding the RR’, PP’, PR’, and
RP’ terms also extend as well as to the various
terms arising in the K=2 case in Table II.

The phase shift terms of both halves of the colli-
sion tend to reinforce in a sense in the RR’ case,
as well as in the PP’ one. For example, taking the
midpoint of the collision to occur at £=0, the differ-
ence t' —R'/v’ for a “hard sphere” collision is neg-
ative and equals, in magnitude, the time required
to traverse a distance ¢, the hard sphere collision
diameter. Similarly, the additional term - ({ - R/v),
with £ and v bothnegative, equalsthe same time in-
crement, both in magnitude and in sign, thetwoterms
thus reinforce eachother intheir sum ¢/ —{ - R’ /v’
+R/v. They cancel in the PR’ and RP’ terms,

The present results may be compared with the
nonperturbative classical results of Gordon'': His
Monte Carlo expression for a transition probability
is replaced, in our case, by a semiclassical value
given by Eq. (3.16). However, we have a partial
probability term, a function of w;, rather than a to-
tal probability term. His rotational angle between
the j and j’ (our 8), and his classical phase shiftfor
the diagonal elements are replaced by our semi-
classical ones. He and others have reported that
his expression for the line shift is unreliable.!?
Whether ours will remedy this difficulty will be one
of the points we will test in a future numerical ap-
plication of the present paper. The phase shift for
the off-diagonal elements in Ref. 11 does not have
the cancellation behavior indicated above.

A virtue of semiclassical theory, aside from the
fact that it proceeds directly from the quantum me-
chanical result, is that it can define phase shifts of
trajectories in a precise manner (for the diagonal
elements if=4i'f’ at least). For example, in a tran-
sition 7 —j’, the j'(=4) is exactly fixed by singling out
certain specific trajectories, while purely classical
calculations utilize all possible j”’s located withina
“box” of j £ 3 k. Onthe other hand, purely classical
calculations have a virtue of considerable simplicity.

Depending on the relative accuracies of the var-
ious methods available (exact quantum, classical
path, classical, and semiclassical) one may expect
to draw upon each of them in future calculations.

Note added in proof. The limits on the semiclas-
sical quantity J+ 3 can be shown to be | — 71 and
j+1+1, and so the limits on J in the integral in
Egs. (3.20), (3.21), (3.26), and {(4.4) should
read | —jl =% and I +j+3, instead of |7 —~j! and
I+7.
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APPENDIX A: SUMMARY OF LIOUVILLE SPACE NOTATION

Liouville space is a Hilbert space whose vectors
are operators in the usual Hilbert space 3C of bra
and ket vectors. %% As such, its vectors are ele-
ments of a product space 3¢xict, |a) (b},

la)(b|=]a) (|6))'=|ab)), (Al)
which introduces the notation | )) of Baranger.?®

An element of the dual space is {la){b1)', i.e.,
{5)(al, and can be written as

[6) a|=({5])'(a| =(ad]| . (A2)
If la){b| and ia'’){b"'] are elements, then their
usual product, la}{dla’ ){b"’|, is also an element.
The scalar product in this Liouville space can be
defined by the customary product space definition,
({a'd" |ab))=C(a’ | ({b" )T |a)(|B))'=(a’|a)(b'|b)"
={a'|a){(b]d"), (A3)
or by the customary trace of operators, both defi-
nitions yielding the same final result:
(c|py=TrCc'D,
where C and D denote elements {a’){b’| and |a) {b]
e.g.,
<<arbl

ab)=Tr(|b'){a"|)(|a)(b])={a’|a) (B|b") .

(A4)
The scalar product {{|)), thus defined, has the
usual properties of scalar products.

An operator A in Liouville space is the direct
product of operators in 3¢x¥C!, e.g., A, XA}

Alab))=(A]a)) (A, |p)) . (A5)

The product of A with a scalar, and the sum of two
A’s is also an operator in this space. Thus, the
Liouville operator L

L=[H, I|l=HxI-IxH (A6)

is an operator in this space, I being the identity
operator in 3 {(and in 3¢"). The product of operators
A and B can also be defined in this space.

From the above rules, the matrix element of the
above operator A is

({a'd’|A;xAllab)y=(a’ |A;]|a) (B|A}|B") . (AT)

Frequently, a star notation has been used, ® instead
of the X notation, so that A, XA} is written as A4,A%,
the star indicating that A operates on the left hand
element,

(a'd'|A,A%|ab)) =Tr (A}]6'){a’|) (4;]a) (b )
=(b|A}|d')(a’ |4, |a)
= (Al)a'a (Az)b‘*b EAa’ b* ,ab (A8)

yielding the same result as in (A7). With this nota-
tion I, would be HI * — [H *,



4388 D. E.

Italso follows from the above rules that the matrix
element of an operator A anda vector p, inthis space,

A=A Af, p:%)IC>(c|p|d><dl Ezdz le) pald] ,
(A9)

is

{a'd’

Aplab>>:§<a'|A1|C>(b|A£|b’>pca<d|a> .

{A10)

The Liouville operator L related to the rotation-
al-vibrational part of the Hamiltonian of the unper-
turbed absorber, H{ is®® [H],]. If we let |i) and
| ) be eigenvectors of the Hamiltonian H§ in ordi-
nary Hilbert space, with eigenvalues E} and EY,
e.g., if H}li) equals E?|4), then |i){f|, an oper-
ator in ordinary Hilbert space, is an eigenvector of
Lg:

slifn=[HS, |1 (f 1= |if)) (A11)

where wi;=E} ~E?. Thus, the eigenvalues of L in
this space are the spectral lines, and the space has
been called line space. The matrix elements of L§
are seen from (Al) and (All) to be

(G LS| 3f ) = w0304 Bprg

If 1) and | f) are normalized, it also follows from
the above rules that |if)) is also normalized, i.e.,
that {(i'f"1if)) equals 8;; O 4.

(A12)

The Liouville vector notation in (2.1) and (2. 2),
where ¢ and f are j; and j;, has the following ori-

gin®20: With the usual notation for the rotation op-

erator R,

j .
Rljm)= 22 Disn|jm") (A13)
m==j

the rotation operator R in the product space is de-
fined by
Rljomi, jrme0=R|jm;)(R|jyme))t

(i.e., R is RR*), where |j;m;, j;mg)) is ljm;)
X{jsmy|. One can show that the following Liouville
space vector, defined by the right hand side,

|mejis drms MKQY = 25 (= 1) V2K +1
Ji J K . .
X<ml,- _n;f —Q) Vmidims, mejpme))
(A14)

transforms as

Rljijgs TKQY=2 DE.glisis TIKQ')).  (A15)
QI

In (A14) m; and m; are the space-fixed z components
of ji and j_f .

The reduced matrix element is?®
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GllX™ =22 (=1)7™ (2K +1)

m; Mf

Ji Jf K> . nK s
X(mi —my -0 (],-m,-’XQ ']fnzf>,
(A16)

where X" =y and K=1, =0, II=-1 forthe z com
ponent of the electric dipole operator.

APPENDIX B: RELATION OF FANO’S OPERATOR RESULT
TO EQ. (2.4)

The number of translational states in the phase
space volume element of dp,dp,dp,dxdydz is
dp.dp,dp,dxdydz/h®, and hence the number per unit
volume is dp,dp,dp, /h®. The number per unit vol-
ume with p in (p, p+dp) is thus p?dpdp/h, i.e.,
kzdkd%/(Zn)S, where dp and d% denote an infinitesi-
mal solid angle, describing the orientation of p and
of k, respectively. Since the number of transla-
tional states per unit volume appears in Fano’s
N{mi{w)}, we thus have

22=[1/@a )] [ K2 drdk . (B1)
x
If k) denotes the plane wave whose coordinate rep-
resentative {rlk) is

<r|k>=expik~r, (B2)
then k) can be decomposed as?
|k) = | k&) = 20| klm ) (klm | kK | (B3)
1,m
where
(r|klm)=cyj, (kY)Y (F) (B4)
(klm | k) = (4ni* /c?)Y 7%, (k) . (B5)

ji and Y;,, are the spherical Bessel function and
spherical harmonic, respectively. The c¢,’s are
chosen so that the |kIm )’s have the normalization

(R'U'm' |klm) = 6;10 Spye OE —E') . (B6)

Using the normalizations of j;, and Y;,, one finds (on
setting 77=1)

cp= 2k /7). (B7)
It will be recalled from (2. 2) that we shall need

{m(w)} =20 pk) (k'k’| m(w) |kk)) , (B8)
kk’

where we have used k=¢ and where the density op-
erator p for the perturber has diagonal elements

which depend only on 2. The Liouville vectors in
(B8) are given with the aid of (B3) by

[k )) =25 |k, kTm)) (klm|kk) (ki |k Tm) .
im
Im (Bg)
Further, since
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[ dk(kim |kk) (ki |kTm) = 8,7 6,527/ 1k,
(B10)
one obtains, on integrating (B8) over k and k',

{m(w)}=lz>f0 p(k)kzdkfo B 2dk (1/uk) (1/ k")
1o

XU R Um' |mw) | klm)) . (B11)

(For later use in (B19) it is helpful to note that in
the #’ integrand we can write (¢'2/uk’)dk’ as
d(k’'%/2u).) The Maxwell-Boltzmann distribution
function p(k) will have the property

1=2pk)=[1/2n)?) ff pk) K2 dk dk , (B12)
k
and one finds that
ptk) = (27/ ks T)*/2 exp( - £2/2uks T) . (B13)

To calculate the matrix elements of {m (w)} in the
uncoupled representation we shall need ((jim{,j}m;}
X | {mw)}ljym;,jyms)). Thus, in virtue of (B8) and
(B9), this calculation involves that of {((I'F’|m(w)!
XIF)), where

|I)= | klmjym;); |IF))=|1) (F|
= |klm,j,-mi><klm,jfmf| s
(B14)

with | klm, j;m;) denoting a vector in the joint per-
turber—absorber space, |klm)}jm;).

The scalar product (I’|I), found from (B6), is
(I'|I)=6(E;s —E;) 8y , (B15)

where E; is the energy of the absorber—perturber
pair in state 1I) and where &;-; now includes &,
and 6,,,;,,,1_:

8371= 0101 O n O} 5; Omiem, - (B16)

imy
A matrix element for Fano’s expression® for the
operator m{w) is given by

(I'F |m()[IF)) =(I'| T(E} +w) |I) (F | F")
(I |I)(F'| T(E; - w)|F)*
+mi(Ef —Ep —w){I'| TEH)|I)
X{F'|T(Eg)|F)*
+7i8(Ef —Ep +w){I'| T (ED|D)
X(F'| T (Ef)|F)*, (B17)
where T is the usual scattering theory transition

operator.

It is useful to consider the diagonal elements
{if=i’f’) of (B17) first. We then set w=E; —E;
=E} ~ E;, since a particular line { - f is being ex~
amined. The first 7-matrix element in (B17) is
now (I’| T{E;)\I), which may be written as Ty ,(E;).
Analogous remarks apply to the other elements.
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We may then introduce the standard relation® for
on-the-energy-shell elements

Sll‘=5yi—2ﬂ'iT"i . (BIB)
Upon introducing (B18) into (B17), noting the re-
mark after (B11) that (2’ 2/uk’)dk’ equals d(k'3/2u),

and using the properties of the 6 function we have

[T UL F |\ ml) IF) d(R'%/2 1) = (1) [5,0,64+¢
(i}

= 5,4 (E) S (Ef)]

where the 2 in E; equals that in E,. After the
manipulations involved in (B21)-(B25), this equa-
tion then yields Eq. (2.4) for the diagonal ele-
ments.

(B19)

For the off-diagonal elements the T-matrix ele-
ments” in (B17) are actually off-the-energy-shell
elements. For example, if E, is written as E? + 1%/
2y, where E? is the rotational —vibrational energy
of the absorber (emitter), and if E; is written as
E?' + k'2/2 L, an on-the-energy shell element would
have E? - EY equal to ("2 - %)/2u. Similarly, an
on-the-shell requirement would lead to E}’ - E}]'
also equalling (%2 - £%) /2y, and thus equalling
E?-EY, which cannot, in general, be true. How-
ever, as Baranger has pointed out previously, ’
such differences can be neglected within the im~
pact approximation.

If, for this off-diagonal case, one subtracts and
adds a 5;.;/27 term to each (I'| T | I) in the last
two terms of (B17), and adds and subtracts a
844 /2m to each (F'I T | F)* there, then integrates
over d(k'%/2u) using the remark after (B11), one
obtains (neglecting differences between E; and E,
and between Ef' and E;),

[P mw) IF) a8/ 21) = 6,410
=164, —2mi{I"| T(Ep +w)| D]
X (5700 —2mi(F'| T(Ep)| F)]*
=1 (6,0 =2mi{I'| T(Ep+w)| D))
X [6,4p = 2mi{F'| T(Ep)| PT* . (B20)

Noting the remark already made regarding off-the-
shell elements, we have written these terms as in
(2. 4), within the impact approximation.

Equations (B1)-(B20) apply not only to a (K=1,
@=0) case, but to a general K@ case. To obtain
a reduced matrix element {{i'f’; K'Q {m(w)}! if;
K@), one may use (Al4), (B11), (B14), and (B19)
to yield

'’ K'Q"{m(w)}\ if; K= —ifomp,,47mzdv
X(’UU‘-lfl,'if) 5 (le)

where 4mp,2*dv is the normalized Maxwell-Boltz-
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mann distribution function of velocities and oy,
is a cross section defined by

VK + 1)K +1) (=)

1if

m
oi,f”if_k—z ll'?m'
mim{Mfm}

X(yé, it K',> <ji s K)
mi"'mf"Q mi—m,‘_'Q

X [8y0100 8 = Sy Spee 1, (B22)

where 5, is given by (B16). Equation (22) may be
transformed to the coupled basis by a standard
method briefly mentioned below,

The uncoupled states in the above expression
may be related to the coupled states by expressions
of the type® (omitting n, and 7, in the bras (|, for
brevity)

<jfmflm| = JZ}?’ Vad, +1(= 1) % <7f L g >
Ty e

my Mmoo~ AMf

X1 My | (B23)

Substitution of expressions like this into (B21), use
of the appropriate relationships between the 3-J
and 6-J symbols such as?®

Z) (—l)ji+jf+l+’"i+mf"m<jf l Jf )(]i l Ji >

mymem mfm—M, m,m—Mi
in Js K>:<Jf J; K> Je Jy K

my —my =Q) \=My My =QJ\j; jp 1§

(B24)

and requiring that angular momentum be conserved
in the S-matrices, yields

U:{'f',ifzéKK'éQQ'(ﬂ/kz)”lZ) (-l)ji-ji’”-l'

‘,i Jf
; J,
%@, +1)@d, + 1) 7 T KU K
Ji Jr U )di del
J*
X [8y0y 840y —=STAS e ], (B25)
where the subscripts i and f now signify
islim; , f=lm, . {B26)

It will be noted that o{‘:,,;” is diagonal in K and @
and independent of . ® The diagonal nature of
{m(w)} in (B21) with respect to parity I arises
from the isotropy of the bath of perturbers.®?

APPENDIX C:. PROPERTIES OF THE F, GENERATING
FUNCTION AND DERIVATION OF EQ. (3.7)

We may let the primed variables in (3.4) be the
instantaneous values of the variables along the tra-
jectory, rather than merely the final values. The
F, is then a generating function for transforming
the initial variables to the variables at any point
along the trajectory.
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There are two Fy generating functions which we
shall consider, both given by Eq. (3.4) and so nu-
merically equal, but one written as F,(n'py; npr),
and the other written as F,(n’E’; nE), where n de-
notes the totality of quantum numbers. The prop-
erties of Fy are as follows: The variables canoni-
cally conjugate to 2m}, px, 20n; and p are w}, R,
w; and R, where »; and w; denote the i"th quantum
number and angle variable, respectively. The
equations for the transformation from unprimed to
primed variables follow from (3. 4):

w;=8F,/8(2m,) , R=8F,/8pg ,
(C1)

wy=-0F,/8@Q2mm;) , R =-8F,/apy

These relations are of the standard form for F,-
type generating functions.?

When instead the generating function Fy(n'E’; nE)
is used, the variables canonically conjugate to
2mn,;, E, 2mn;, E' are denoted by w;, wg, w;, and
w,:«, respectively, i.e.,

w;=8F4/8(2m;) ,
Wi=—0F,/3(2mn;) ,

wE=8F4/3E

2
wy=—0F,/0E". (€2)

These variables have some striking properties:
all the 7;’s and ;’s are constants of the motion,
while wp and wy are “timelike.” These results
follow when one observes that E serves as the
Hamiltonian for the unprimed variables, while E’
serves as the Hamiltonian for the primed variables.
Thus, using Hamilton’s equations of motion, we
have

wg=(@E/8E), =1 ,
w, =[8E/8(2mn,)]z=0 ,

iy =(8E'/0E ), =1  (C3)
W; = [0E'/8(2mm;)]5 =0 .
(C4)
The relationship of the 7’s and «’s is seen as

(i) (i), (), o),

Ry;
= s —

v (C5)
(), (), G
YiT\o@mal) /o \o(@mnl) o \opg /p \o(@mn) /g

1 7
:w;—M 5
v

where in the last step of the equation for E;: we have
used the fact that %), is a constant and we have eval-
uated 3pp/8(2m;) at the end of the trajectory, so
that w;, R’, and v’ in (3.10) are the postcollision
values now, rather than the values at any point dur-
ing the collision. Related remarks apply to w; in
(C5), the last step now being taken at the beginning
of the trajectory. The v; and V,f are the pre- and
postcollision values of the ith frequency, 8H,/
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8(2mn;), respectively. Since H, depends on j and
pr, inSec. III, butnotond, v, is zero, and so we have

(Cs)

Equations (C2) and (C5) serve to express the partial
derivatives in (3. 6) in terms of the various angle
variables w;, w;, wy, wy, wg, and wy, respective-
ly, which appear in (3.8) and (3.10). Equation (C5)
proves (3.10), and there remains now the proof of
the last line of (3. 8).

— —
Wy=wy » Wy=wy

Equation (3. 4) can be rewritten in terms of the
F,-generating functions from whence it came, 22 by
an integration by parts

Fyn'E; nE')=Fy(w'R'; nE) - F)w'R'; n'E') ,

(cmn
where
Fy(w'R'; nE)=2n fww' ndw+ fRR'pR dR+2mnw+pgR,
(cs8)

FYw'R'; n'E') = 2m'w +prR’

where ndw denotes X2 n; dw;, and similar remarks
apply to nw and »'w’. We note from (C8) that 2m’
equals 8F, /9w’ and 0F)/ow’, while py equals 8F,/
oR' and 8F3/3R'. We recall that w; equals 8F,/
8E and so equals 8F,/3E, while wy similarly equals
-8F,/9E and 3F)/3E’. Thus, at the point (w'R’)

wyp=3F3/0E" =(8F3 /9pp)(0pr/9E')=R'/v" ('>0)-
(C9)

Again, at the point (w'R’)
wg=0F,/3E =wglat wR)+t -1 , (c10)

where ¢’ -t is the time for the system to go from
wR to w'R’, recalling that w;=1. However, at the
point wR, the two integrals in (C8) vanish and so

wg(at wR)=8F,/8E(at wR)=R/v (v<0) .
(c11)
Equations (C9)—(C11) yield the last line of (3. 8).

APPENDIX D

Conventionally, if three sucessive Euler angle
rotations through the angles «, 8 and y are per-
formed (see Fig. 2), the operation may be de-
scribed by a rotation operator D(aBy). Again, per-
forming two successive sets of three Euler angle
rotations in the order o, B;, % followed by a,, B,
¥, can be described by a single composite set of
three Euler angle rotations «, g and y. A conve-
nient relationship between the matrix elements of
the rotation operators used to describe these rota-
tions is%

’;z D}fnm'l (daﬁz?’z) D{,," ,,.1(01317’1) =D1,,,,.:(aﬁ’}’) ’
where®

Dim(aBy)=e™*dl . (8) '™ = '™, (~ B) '™
(D2)

(p1)
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The procedure used here for executing a set of
Euler angle rotations is that in Edmonds. *°

The right hand side of (3.13) can be rewritten by
substituting in the relations for 6, given by (3. 8)
and rearranging to give

60 a5 (6) dfia8) = (i dfa(E) 1 7H)
r==K A=K
X(e-&'i&'}jﬁ d{%(— £) g irin )
(D3)
Equations (D1)—(D3) and the right hand side of
(3.13) yield

X
2 DE,@nwy, &, 2mw;) DI(- 27w, , - &, - 2mw;)
=K
=D§'5(0{ﬁ7’) ) (D4)

where the angles a, 8, and y are shown in Fig. 2.
This result establishes (3.13).

Equations (D1)-(D3) show that the first set of
rotations (@;8:Y,) in (D1) involves the rotation of
OD through angles (- 27w,, - £, - 27w,), so that
OD now lies along OY in Fig. 1. The second set
of rotations (ayB,¥,) involves the rotation of this
new OD into OD ' via the angles (an",, ¢, 21@,’).
In Fig. 2 we have used g, =27 w, g, =2mw,, etc., for
clarity in the figure.
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