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Semiclassical theory for bound states is discussed and a method is described for calculating the
eigenvalues for systems not permitting separation of variables. Trajectory data are supplemented by
interpolation to connect open ends of quasi-periodic trajectories. The method is also applied to
quasi-bound states.

Previously, semiclassical S-matrix theory has focused on * direct ” reactions. Processes involv-
ing complexes (compound state resonances) are treated in the present paper and an expression is
derived for the S-matrix. Use is made of the above analysis of quasi-bound states and of trajectories
connecting those states with open channels. The result deduced for the S-matrix has the expected
factorization property, and expressions are given for computing the quantities involved. Some
extensions and applications will be described in later papers. An implication for classical trajectory
calculations of complexes is noted.

1. INTRODUCTION

A semiclassical S-matrix theory for * direct ’ inelastic and reactive collisions has
been developed in recent papers.!*2 (Ref. (3) contains related studies.) On the
other hand, many collisions and other processes involve short- or long-lived vibra-
tionally-excited intermediates " : unimolecular reactions,® molecular beam reac-
tions involving complexes,® other bimolecular reactions (e.g., possible at a threshold),’
and intramolecular energy transfer in general.®

In the present paper we consider the dynamics of coupling between open channels
and quasi-bound states (“ compound state resonances ), and formulate a semi-
classical S-matrix theory for such collisions. The theory of direct collisions * is first
summarized in Section 2. A method utilizing classical mechanical trajectory data is
proposed in Section 3 for calculation of eigenvalues of bound states. It is non-
perturbative and is directed toward systems for which one cannot separate variables.
It is adapted in Section 4 to quasi-bound states.

The principal result for quasi-bound states is given by eqn (4.9), (4.12), (4.16) and
(4.17). A method for calculating the quantities is described. One-dimensional

(“ shape ') resonances, such as those occurring in orbiting, have earlier been treated
semiclassically.10-12

2. SEMICLASSICAL THEORY OF DIRECT COLLISIONS

The semiclassical wave function y+(q, nE) is a function of the coordinates, denoted
collectively by q, the quantum numbers 7, and the total energy E. For direct inelastic
collisions, this wave function at large separation distances R is !

YH(q, nE) = {qnE+) = [A" exp{iF,'} + 4 exp{i(F, —4n}] exp{il,n/2}, (2.1)

¢ 1{1 Tlus research was supported by a grant from the National Science Foundation at the University
of Illinois.

34



R. A, MARCUS » 35

where the term with superscript i describes the incoming particles, and the second term
is for the outgoing ones.* The A’s and F’s are functions of q, n and E; —=/2 is the
usual phase loss for a reflection ; /,n/2 is present by convention, where /, is the orbital
quantum number contributing to #n. Units of # = 1 are used.

F, in (2.1) is a classical mechanical generating function !* and serves to make a
canonical transformation of variables from q, p to momenta in nE and to conjugate
coordinates). Illuminating discussions of the relation between classical canonical
transformations (e.g., embodied in Fy(g, nE)) and quantum mechanical unitary
transformations (e.g., embodied in {q|nE+) have been given.'4-¢

Fi for a partial wave, when the ¢’s consist of a radial coordinate R and angle
coordinates w, is given by (2.2). [The value when the ¢’s are conventional coordinates
appear later in (4.5).]

Fi(WR, nE) = —k,R+2nnw, 2.2)

The w’s are canonically conjugate to 2zn and are frequently employed for the internal
motions. 2- 17-19 Their properties are very convenient and have been summarized
in Part IV.} nw is an abbreviation for Zn;w;, the summation being over the various
internal degrees of freedom (including orbital, if any).

Fy(wR, nE) is the phase integral calculated from the classical trajectory passing
through the cited q [the point (w, R)), beginning at the givennand E and hence at some
initial point (wo, Ro):

R
F,(wR, nE) = —k,Ro+2nnwo+ j

w

prdR +2nj 7idw, (2.3)

Ro wo

where 7 is the instantaneous » along the path.

The amplitude 4 in semiclassical solutions can be evaluated either by flux conser-
vation !+ 2022 or by normalization to a d-function.?- !5-'¢ When normalized to
d(n—n")[2nd6(E—E")] it is the determinant } :

A = |0*F,/00dg|? 2.9
where the «’s are E and (since & = 1) 2nn.  One finds from (2.2)-(2.4) that
A =v7t, A =v"Howe/owl?, (2.5)

where v, and v denote the magnitude of the initial and final radial velocity for the
trajectory specified by the final point (wR) and the initial momenta present in nE.
The semiclassical S-matrix S,,, can be defined via the expression for + at large R :

W*(wR, nE) = Y vy ¥(exp {2nimw})[S xp { —i(knR—11,m)} —
i Sun XD {i(kuR— 4,1 (26)
Comparison of (2.1) and (2.6) yields (Part II, ref. (1))

-1 )
Son = j |dwe/dwl¥(exp iA) dw (to be stationary phased), 2.7
0

using the fact that only the stationary phase points contribute (whence v = vp,).! Ais
given by
‘ A = Fy(wR, nE)—F4(wR, mE)+3(l,+1,+ Dn. (2.8)
* The wave function given by eqn (2.1)-(2.6) is for a volume element dq. If the volume element
is g% dq, e.g., R? dR dw,* then (2.1) and (2.6) are multiplied by gt eg, R
+ This is equivalent in (2.5) to the normalization used in ref. (1), where each 4 was normalized to
unit radial flux at a given R.
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A stationary phase evaluation of (2.7) yields *
S,y = Z (—idA/dwe)~* exp {i[F4(mE, nE)+3(l,,+1,+ n]} (2.9

evaluated at 1 = m.

The summation is over stationary phase points w’, i.e., over the one or several traject-
ories leading from the initial momenta in nE to the final momenta in mE. (The
Riemann sheet discussion in Section 3 and 4 provides an understanding of the fact
that several trajectories lead from nE to mE, namely one per sheet.) F, is a gener-
ator!3 for a canonical transformation from nE to mE, and was denoted by A’, apart
from the n-terms, in ref. (1).

km m
F,(mE, nE) = — j R dpR—2nI wdin = - J. qdp. (2.10)
k

A uniform approximation ' 2 of (2.7) can be made. It usually invelves.-Airy
functions and has wider validity than the stationary phase value, (2.9).:-2

The amplitude 4 in (2.5) becomes infinite on certain surfaces (* caustics ™).
This infinity in A is detected by the intersection there of neighbouring trajecteories.
(E.g., see later, “ surfaces ” AB, BC, CD and DA in fig. 1): the resulting vanishing
of the * cross-sectional area” between the trajectories causes the amplitude 4 to
become infinite to * conserve probability flux.” In such cases one can still usually
use (2.7) to obtain a stationary phase or uniform approximation for S, since the
stationary phase points are themselves usually nonsingular..

To have a useful integral expression for S,,, one can change the coordinate repre-
sentation to one which is sometimes singularity-free, by a canonical transformation
(Part III of ref. (1)) from wR to wt, where the W are constant and t is a time variable.
This representation leads to the same result as (2.7), but with dw amd dw replaced by
9w and dw, and with A having an added term 2n(i—m)w. The uniform and station-
ary phase values of the new expression agree exactly with those of (2.7)-(2.9), but the
new integral is now sometimes also of particular use when asymptotic evaluation
methods become poor. The form of this integral expression had been predicted by
intuitive arguments.?

3. SEMICLASSICAL TREATMENT OF EIGENVALUE PROBLEMS

To obtain the phase F,(q, 7) of the wave function for a bound state at a point q,
one may integrate along a trajectory, as in (2.3). Except in the case of degeneracy,
accidental or intrinsic, this trajectory does not close on itself, i.e., is not periodic.

Moser 23.and Arnold 22 have proved an important theorem for celestial mechanics
and thereby for the present nonlinear mechanics. Under certain conditions for
systems not permitting (or permitting) separation of variables, the motion is quasi-
periodic (multiply-periodic) rather than ergodic. That is, the p’s amd q’s can be re-

N
presented as functions of time by Fourier series, €.g., Z m,...my exp{i £ 2amwit},
my...my i=1

where the m’s denote the integers from —oo to co and where the coefficients a decrease
exponentially with (Im,|+ ... +|my[).2> The contrast between ergodic and quasi-
periodic is seen in fig. 1: the former would occupy the whole space within the line of
constant energy, while the other would be more confined spatiaily. Ina nondegenerate
system, N is the number of degrees of freedom. The v, are the frequencies of the true
angle variables w; for this problem, i.e., those canonically conjugate to the actions,
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2mn,, the classical counterparts of the quantum numbers. Hamilton’s equations of
motion yield

d2mn)/dt = —2H@n)/éw, = 0, dw,/dt = 6H(n)[6(2nn;) = vi(n). 3.1

Quasi-periodicity implies that there is a canonical transformation from (q, p) to
(w, 2nn) and hence a generating function F(q, 7) * for this transformation. In turn,
F,(q, n) defines a congruence of trajectories, directed along VF,. Later, F; will be the
phase in a semiclassical wave function, each surface  of constant phase serving as a
wave front and the trajectories serving as rays along the normal to the front.

Fic. 1.—* Box-like ™ orbit formed by a simple trajectory in a bound or quasi-bound state. (The

actual figure was made for two uncoupled oscillators, using conventional coordinates.) Caustics are

AB, BC, CD, DA. The clliptical curve is a constant energy curve, with energy cqual to the total
energy.

In the nondegenerate situation depicted in fig. | a single trajectory, for the case of
two degrees of freedom, generates four congruences of rays, corresponding to the four
possible algebraic signs of the two components of the momentum p, as scen in fig. |
and as emphasized in fig. 2 and (in Appendix) fig. 4. The corresponding VF; (= p)

B

FiG. 2.—Congrucnces of rays present in fig. 1, cach corresponding to a branch (Riemann sheet) of the
function p(q).

then has four branches (Riemann sheets).2® [When there arc N coordinates instead
of 2 there are 2¥ branches.] The rays in fig. | do not cross when they are on the same
sheet, except at the boundaries, i.c., at the caustics AB, BC, CD, DA.

* The symbol Fi(q, #) is shorthand notation for Fx(q, 2mn). An analogous remark applies to F2
in Section 2,
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The semiclassical wave function is a linear combination of the solutions, 4(q)
exp{iF.(q, n)}, one per sheet; F, is Ip dq. In the several-dimensional wave diffrac-

tion literature, the formula for connecting such asymptotic expansion terms is found
by assuming a local separation of variables near the caustic and solving the local
problem exactly.?* The local solution usually involves the Airy function and its
derivative. When this procedure is applied to the present problem in the vicinity of
caustics AB and AD, near point A, one obtains (3.2) for the case of two vibrations.
(It is easily generalized to N-coordinates, and then has 2V terms.) Each sheet of F,
is described by a Roman numeral :

W(q, P) = C|0*F}/oqdal*[(exp {i(F;—3n)} +(exp {i(F2 +3im)})]+
Cl0*FY'/0qdel*[(exp {iF5'})+(exp {iF% })] (3.2)
where '

q
Fl = j p,dg, (v =L IL 1L IV) (3.3)
) |

and
Pu= —Mh Piv = —Pur (3.4)

o denotes 2nn, and 2an, ; Cis a normalization constant. The pre-exponential factors:
which are absolute values of the determinants, are equal in the region near A. One
sees from (3.4) that congruence II(IV) is related to I(III) by time-reversal.

If one similarly obtains a local solution in the vicinity of D, and uses it to obtain
the connection formula relating the (4 exp iF,)’s, the resulting ¥ is similar to (3.2),
but with A replaced by D and with a different arrangement of the 7/2’s, namely 0, 0,
—n/2, n/2 for branches I to IV. Since ¥ is single-valued these two solutions can
differ at most by a multiplicative constant. A further analysis (Appendix) then
establishes (3.5). A similar comparison of (3.2) with the ¥ resulting from a local
solution near B yields (3.6):

o’ o] . .
2+ =§_pda =" mda+ [ pmda (35)
2

P P
2n(n,+4) = §c pdq = jp pdq+ jpl Pm dq (3.6)
1

where O, O’, P, P’ are arbitrary points on their respective caustics, as in fig. 2.

It may be emphasized for this derivation that the local separation of variables near
a caustic is used only to obtain the connection formulae of the (4 exp iF;)’s. The
global nature of the (4 exp iF,)’s as solutions, for points not near caustics, is the
principal tenet (asymptotic expansion) of semiclassical theory.

Eqn (3.5) and (3.6) have been obtained earlier by a different argument 20 each
(A exp iF,) term was assumed to be single-valued and A was allowed to vary on
passage through a caustic. (This appears to be a type of phase integral argument.)
The present discussion and that in Section 4 avoids a phase integral approximation,
though the latter frequently suffices. o

F, satisfies the Hamilton-Jacobi partial differential equation and the method of
characteristics (classical trajectories) is a convenient method for solving it. However,

that method is not the only one. Thus, it should be emphasized that the Ip dq’s

need not be along dynamical trajectories, that is, along a ray congruence. In fact,
in the case of a nondegenerate system the motion is not periodic and so one cannot
compute the C, and C, path integrals merely by integration along classical trajectories.
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Instead, one can use an * interpolation ” of the exact trajectory data to close the ends
of an open ended path. For example, the fp dq data obtained from the single
trajectory can be represented by a Fourier series. One may then use that series to

join two ends of a trajectory and so compute fﬁ p dq along the two independent paths.

Fourier series, suitably chosen to avoid the * small divisor > problem when necessary,
have been extensively used in the astronomical literature.25 Fig. 1 describes an orbit
which has been termed * box-like” in the computer-simulated stellar dynamics
literature.?¢ Other classes of orbits exist (* shell-like,” * tube-like ), readily
understood physically, and can be analogously treated.

The need for supplementing trajectory data by interpolation for calculation of

551) dq has been missed, incidentally, by a number of authors,2” who accordingly but

incorrectly insisted on periodic dynamical trajectories. (The classical Feynman
propagator, with its usual dynamical associations, was used as a starting point.) Two
other approaches should also be recalled : perturbation theory '8 28 and a proposed
mapping of the nonseparable problem onto a separable one.?® Quasi-periodicity
implies incidentally, that there exists a canonical transformation for a mapping of
the nonseparable one onto a separable one, since the problem in (3.1) has become
separable.

4. SEMICLASSICAL THEORY OF COMPOUND-STATE RESONANCES

The description of the quasi-bound (g-b) state, like the bound state, involves
caustics. The two states differ, in that the g-b state is connected via (rcal or complex)
trajectories to other states, e.g., to open collision channels. We consider, by way of
example, the situation depicted in fig. 3, where AB, BC, DC and DA are caustics
bounding the g-b state. The semiclassical wave function for collisions involving
compound-state resonances is constructed below so as to satisfy the boundary
conditions at R = o0, and in the vicinity of the various caustics.
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Fi1G. 3.—Schematic picture of caustics AB, BC, CD, DA bounding the quasi-bound state, and caustic

EF “shielding ” the state from the open channels at large R. B, and B,, are vibrational turning

points for states nEand mE at large R. A dynamical trajectory to caustic BC is indicated. When EF

and BC are real-valued caustics, P is real in regions & and complex in &. All arrows in this figure
refer to motion at the dotted line.

For simplicity of presentation the case where entrance and exit from the g-b state
occur mainly at one of the caustics BC in fig. 3, will be considered. Quantum
mechanically, the region in the vicinity of such a caustic would then be the one
contributing most to the matrix elements coupling the g-b state to the open channels.
Fig. 3 is schematic: the g-b state and open channels are separated by * caustics ”,
but spatially the two regions may overlap. Again, like the bound state, more compli-
cated examples exist.
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As in Section 3 a solution based on local separation of variables near A, to find the
connection formula, yields (3.2). Comparxson with a solution determined near D
yields (3.5). A local separation of variables is made in a segment near caustic EB,
followed by use of the one dimensional solution for the coordinate normal to EB and
the two turning-point one dimensional solution !! for the curvilinear coordinate
parallel to EB. (The two turning points occur on EF and on BC.) When the latter
is fitted to the solution (3.2) one obtains the desired connection formula, whence a
standing wave solution {q|n,E) for the ¢-b state |n,E) is found to be

qinE) = 240*F}[0qdal*(exp {iG'} +exp {iG"}) +
240 Faqoatexp (iG™} +exp {(iG"})) (@)

where
Gl = F'2+5rs_%¢s_%na G“ = F‘zl-ara+&'¢s+*n (4"2)
G" = F12"+6rs“i¢s’ GY = F;v—5,5+%¢s
q
F = JEp, dq @¢=1..,1IV) 4.3)

The p,’s are related as in (3.4), and so F" = —F} and FYY= —FY. Thus, (4.1)isa
standing wave solution. §,, and ¢, are independent of n and m and are discussed
later. s denotes n,E.

Eqn (4.1) contains two radially ingoing terms (branches II and IV) whose sum is
denoted by {q|n, E*), and two radially outgoing terms (branches I and III), whose sum
is denoted by {qjn,E"), so that {q|n,E) is the sum of these. [Each sum is separately
normalized to &(n, —n,)d0[2n(E—E")] (and hence to unit radial flux).

We turn now to the y+(q, nE) satisfying the appropriate boundary conditions
for a collision. The incident term in (2.1), denoted by {(q|nE*), is given by (4.4)
using conventional coordinates,

{QInE'y = 27*[|0*°Fy"/aqoa,|* exp {iFy"+3in}+

|0%F5"10qdu,|* exp {iFy"™ —4in}] exp {ilnf2},  (44)
where

q
Fi' = L pdg—kR (v =1IL1IV). (4.5)

B, is the vibrational turning point in state nE at the given R (fig. 3). In branch II the
vibrational momentum points toward and in branch IV away from B,. Similarly, the
wavefunction {q|nE’) for an outgoing wave is identical with (4.4)-(4.5) but with II
and IV replaced by III and I, respectively. The unperturbed wave function is the
sum {q|nE") +{q|nE").

To construct the desired wave function Y+(q, nE) analogous to- (2. I) with (4.4) as
the incident term, it is necessary to follow the two congruences of rays in (4.4) during
the collision until they have become outgoing rays at large R. To do this we match
an ingoing ray(s) of {qinE') with one(s) of {q|n,E') by finding the stationary phase

value of j-(an‘Iq) dq'{q|nE"). (The q’ indicates integration at a fixed large R.)

The stationary phasing serves to match a p(q) in |#E") with one in |n,E*)> and so provide
a smooth trajectory to the g-b state. The outgoing ray(s) emerge as {q|n,E*). Thus,
the rays lead from the initial state nE to a congruence in the g-b state. Then, from
another congruence in the q-b state they go out to some q at large R, Upon summing
the contributions from all g-b states and including the contribution (if any) from any
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direct collision trajectories not involved in the caustics of fig. 3 ((q|nE+)4) one obtains

¥*(q, nE) = (q|nE*) = <<1|nE'>+(tllnl-‘?”)ﬁ%:z {qInEN{n,E'InE", (4.6)

where the first term is the incident term, as in (2.1), and {n,E'|nE') denotes the
stationary phase value of j(n,E‘Iq) dq’ {g|nE".

Comparison of eqn (2.6) and (4.6) shows that
—Spn = {METNE* Y4+ Y. {mE‘n,EY(n,E'[nE",| 4.7

where (mE'|n,E*) is obtained by stationary phasing I(mE’lq) dq'{q|n,E"). The

latter also serves to match an outgoing ray(s) in {q|n,E?) with one(s) in {q|mE®.
Eqn (4.1)-(4.5) yield (after some manipulation related to that in eqn (7) of ref. (15))

(n,E'[nE"Y = B, exp {i(0,s— 15— 1m)}, (4.8)
where
Bus = % y=zlllv lidw}/anl* exp {i[F}+3(l,+ D]}, 4.9)
and
E
Fl = ja p,dq—k,R = — I qdp, (y =1L 1V), (4.10)

where w} is canonically conjugate to 2nn;, being equal to 0F}/0(2mn,), and the inte-
gration over p, in (4.10) is over the path from B, to E.

(mETnEYy = Bl exp {i(6,,— 46, — 40}, @11
where
fLo=4 3 lowiomep I+ +de]), (1)
and
Bm
F=["pda-kk=-[a0, o=1m @
E

The §,, in eqn (4.8) and (4.11) is given by !

—o -
E o E*Gﬂ* — tan {a(n, + - 44}, @.14)

and, when EF and BC are real caustics,

0,=l5f pdq
C3

C, is a contour encircling BC and EF. ¢, a function of 6, given in ref. (11), is close
to zero unless the system is near the top of the barrier between BC and EF. 6 is
given by a related equation !* when BC and EF are complex caustics.

The exponential, exp{ }, in (4.8) can be written as (exp{ } —1)+1 and, it can be
shown, that stationary phase value of BB, has the same form as (2.11). It

n2
constitutes contribution from the direct collision trajectory involving reflection from
caustic EF. If the sum of this contribution and of S, is written as S,,,, eqn (4.7), (4.8)
and (4.11) yield

tan é,; =

. (4.15)

Snm = ng— Z ﬁ;:ﬂu[(exp {2i5,,—i¢,})— 1]’ (4.16)
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where the sum over s denotes the sum over n, (at the given E). If the exponent is
expanded about E— E one obtains !!

Smn = ng— Z ﬂ;rsﬂnsrs/(E'—Es+ir‘sl2)’ (4'17)

where the E, are the E’s for which n, is an integer (when ¢, 0) and where I'; is given
by eqn (24) of ref. (11). When exp{—6,} <1, we have

I, /h=v,exp{—0,}, (4.18)

where v,, is the frequency E/0(2an,) for the mode corresponding to 7, in the g-b
states. i6, can be calculated as the difference of the f p dq overa path (fromany nEto

any mE) which encircles caustic EF and one over a path which encircles both EF and
BC. (The ends of the paths at large R are joined analytically, and care is taken to
compare paths on the same ingoing branch y.)

To apply eqn (4.16) or (4.17) in a form utilizing exact trajectories it is necessary to
obtain the F, for the q-b state, as deduced from Section 3. From caustic BC one
then calculates trajectories leading to the open channels. The usual analytic argu-
ments ** 2 at large R then yield the integrals in f,, and f,.*

5. DISCUSSION

Eqn (4.16) has the appropriate factorization property,® one which reflects the
* Joss of memory ” of  indirect ” collisions occurring in the g-b state. It also has the
appropriate time-reversal symmetry of Sy, since B! is a time-reversed f.

When state |#,E) couples strongly with some state, the 8 for that state will be
close to and can be replaced by unity or evaluated by an integral expression (suitably
expressed in terms of w’s) used to obtain (4.8). The small §’s can still be evaluated by
the semiclassical expression (4.8) and (4.11). When the collision system is purely
elastic, the sum over s reduces to a single term Bt.B.s (= 1), and the formulation
reduces to that ! for elastic collisions, as it should.

~ One implication of (4.17) for purely classical calculations involving complexes may
be noted. When the relevant I'y’s are large, one may anticipate that classical tra-
jectories will reasonably well reproduce the quantum dynamical behaviour. When,
however, a relevant I’y is small one should, at least, exclude from such calculations
certain trajectories—those for which an individual vibration associated with the T,
has, for any significant time, an energy substantially less than its zero-point energy.
Otherwise the calculations could not approximate in this respect the corresponding
quantum mechanical behaviour.

Some extensions and applications, computational and perturbative, will be des-
cribed elsewhere.§ As in the case of direct collision trajectories some partial averag-
ing 3° should serve to isolate aspects of the collision which are predominantly quantum

mechanical.

* B.g., to calculate B, the analytic expression for py(q) in state nE at Iarge R is used to calculate

-Iq dp, from By to a point on the trajectory leading to BC. The py(q) data for that trajectory are

then employed, and the g-b p,(g) data are used to obtain the contribution to reach B. Subtraction of

i65/2 then yields the value to reach E. .

§ Eqn (4.3)-(4.13) refer, for simplicity, to a vibration-translation problem, but are readily extended
to include rotational and orbital problems by including appropriate generating functions, functions
which disappear in the second halves of (4.10) and (4.13). Certain 4~ terms, arising from passage
through vibrational turning-points, are also omitted for brevity. -
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APPENDIX

DERIVATION OF BQN (3.5) AND (3.6)

The path from A to D on any branchy can be deformed to lie along the caustic AD. The
component of p normal to AD is zero, and so (fig. 2) b = pv = —Pu = —Pm O1 AD. The

integral _\'p,dq from A to D fory = I or IV thus equals that from D to A fory = Il or 111.
This fact is used in the comparison of the solution (3.2) and the corresponding one originating
from D to show that the magnitude of the above integral equals n(n,+%), whence ﬁp dq

equals 27(n,+14) if the cyclic path C; lies along AD.

To prove (3.5) one may suitably deform the above path, and to do this it is necessary
to remove the multivaluedness of p. While p (and hence VF3) is a function of q, one may
introduce a Riemann surface on which it is single-valued.?® As usual the pair of sheets
which have the same p at a branch cut (caustic) are joined. When one does this at all
caustics, one obtains for the Riemann surface a torus,2° as in fig. 4, where the torus is an
open * cylinder”, whose rims are the “ellipse” passing through C and D and the one
passing through A and B.

Fic. 4—Riemann surface for the system in fig. 1 and 2. The two lines joining D to C coincide
spatially, as do the two joining A and B. The congruences in fig. 1 and 2 are indicated, as are the
cyclic paths C; and C; in eqn (3.5) and (3.6).

The momentum p(q) is now a (single-valued) analytic function of q on this surface, and
so one may deform the contour C, for fp dq, which originally went from A to D and back to

A along AD, to be any other equivalent cyclic C; path as indicated in fig. 4. Mathematically,
this path is equivalent to the second half of (3.5). Eqn (3.6) is obtained similarly.

In three dimensions, points A and D lie at the corner of a cube, instead of a square, and
AD lies along an edge. Once again all p,’s are equal in magnitude on AD, since the com-
ponents of p normal to the edge vanish., Thus, the preceding argument can be generalized.

For an N-dimensional system, it leads to f p dq equal to 2n(n;+14), for the N topologically

independent paths C;.
Fig. 2 is, essentially, a deformed square. An equilateral triangle has also been treated,
by a different method.?°
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